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Abstract
The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its
pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the
feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of
Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla
scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to
generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were
extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A
J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and
low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of
accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis
that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction
of Fuhrman grade in patients affected by CCRCC.
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Introduction

Despite being relatively rare, renal cancer is estimated to cause
almost 15.000 deaths during 2019 in the USA alone [1]. The
most common primary kidney malignancy is the renal cell
carcinoma (RCC), with the clear cell subtype (CCRCC) ac-
counting for the large majority of cases [2]. While character-
ization of these lesions using imaging modalities such as CT
and MRI still represents a complex and challenging task, the
increasing number of management strategies endorses the
need for a more informative pre-treatment assessment to allow

treatment tailoring [3]. Fuhrman grade is a histological predic-
tive factor based on nuclear characteristics which is highly
regarded as an independent prognostic factor in patients with
CCRCC [4]. It allows to stratify patients into four groups (I, II,
III, IV) with progressively worse prognosis, although the first
two grades are generally considered as low grades having a
better cancer-specific survival compared with high-grade tu-
mors (III and IV) [5, 6].While Fuhrman grade can be obtained
prior to treatment by means of percutaneous biopsy, this inva-
sive technique suffers from serious limitations [7, 8]. As a
result, attempts have been made to identify imaging parame-
ters predictive of nuclear grade at histopathology with many
investigating texture analysis (TA) approaches [9–16]. Indeed,
TA might hold the key to reach a deeper insight into RCC
biology through medical imaging [17–19]. This advanced
post-processing technique is based on the quantification of
tumor heterogeneity with the extraction of numerous parame-
ters differing in terms of significance and complexity, with
interesting results in other fields of radiology [20–22].
Recently, machine learning (ML) has been successfully
coupled to TA for both oncologic and non-oncologic imaging
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applications [23–26]. ML is a branch of artificial intelligence
focused on the development of algorithms capable of learning
and improving by analyzing datasets, without prior explicit
programming. With specific regard to CCRCC and prediction
of nuclear grade, to the best of our knowledge, TA has been
exclusively explored on CT images [10–13], recently in com-
bination with ML too [14–16]. Therefore, the aim of the pres-
ent study was to evaluate the feasibility of a combined TA and
ML approach on MR images for the prediction of Fuhrman
grade in CCRCC.

Methods and Materials

This retrospective study was approved by the local IRB and
the need for informed consent was waived.

Patient Population

MRI scans of patients referred to our institution between 01
January 2017 and 01 January 2019 for the evaluation of renal
lesions were retrieved from the department radiology informa-
tion system’s database. The following inclusion criteria were
applied: (1) MRI protocol including at least a T2-weighted
and a dynamic contrast-enhanced sequence on the axial plane;
(2) patients who underwent surgical treatment no more than
1 month after the MRI scan was performed; (3) final histo-
pathologic diagnosis of CCRCC with Fuhrman grading was
available. Finally, patients were excluded if artifacts were
present on MR images.

MRI Acquisition

All MR images were acquired on a 3-Tesla scanner
(Magnetom Trio, Siemens Healthcare, Erlangen, Germany)
equipped with surface multichannel body coils and embedded
spinal coils. The imaging protocol included, among others, the
following sequences that were used for the analysis: (1)
HASTE T2 on the axial plane without fat suppression (TE,
95; TR, 2000; slice thickness, 4 mm; FOV, 328 × 350; matrix,
192 × 256) and (2) T1 VIBE on the axial plane (TE, 1.1; TR,
3.3; slice thickness, 2 mm; FOV, 393 × 450; matrix, 179 ×
256) acquired before and after the injection of contrast agent
(0.1 mmol/kg Gd-DTPA Magnevist, Bayer Pharma,
Germany).

Image Segmentation and Texture Analysis

Two readers reviewed the entire protocol in consensus to iden-
tify the renal tumor. Similarly, image segmentation was per-
formed in consensus. In particular, using a dedicated segmen-
tation software (ITK-Snap, v3.6.0) [27], regions of interest
were manually drawn on every slice containing the renal

tumor on T2-w and arterial phase DCE images while exclud-
ing macroscopic necrotic and cystic areas when present
(Fig. 1). Therefore, a whole-lesion volumetric region of inter-
est (VOI) was obtained for each patient. Subsequently, an
open-source Python software (PyRadiomics, v2.2.0) [28]
was employed for feature extraction.

The image pre-processing pipeline follows the recommenda-
tions of PyRadiomics’ developers and previously published stud-
ies [29]. First of all, images and corresponding VOIs were
resampled to an isotropic 1 × 1 × 1 mm. Then, image normaliza-
tion was performed. In detail, mean intensity was subtracted on a
voxel-by-voxel basis followed by division by the standard devi-
ation and scaling by a factor of 100, resulting in an expected
range of [− 300, 300]. The resulting intensity array was shifted
by 300, as suggested by the developers, to avoid negative values
that may alter the calculation of some first-order texture param-
eters. Image discretizationwas performed by applying a fixed bin
width of 5 and finally, additional filtered images were obtained
by applying Laplacian of Gaussian filters with sigma values
ranging from 1 (finest texture) to 5 mm (coarsest), with 1 mm
increments, and Wavelet decomposition, yielding 8 derived im-
ages. These filters were used in addition to the original images for
feature extraction as they can highlight different aspects of tissue
texture. From the resulting images, first-order statistics, 3D
shape–based, and Gray Level Co-occurrence (GLCM), Run
Length (GLRLM), Size Zone (GLSZM) and Dependence
(GLDM) Matrices–derived features together with Neighboring
Gray Tone Difference Matrix ones were computed.

Machine Learning

The Konstanz InformationMiner analytics platform (KNIME,
v 3.7.1) was employed for the ML analyses as it was already
proved to be useful in similar settings [30–32]. Patient data
were divided in a binary fashion in high (III and IV) and low (I
and II) tumor grade classes; then, a multiclass assessment was
performed using all available tumor grades as classes.

Prior to the analysis, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied. It generates synthetic data
points (patients in this study) by extrapolating an object be-
tween two nearest neighbors belonging to the same class.
Successively, a point along the line connecting these two ob-
jects is randomly selected, determining the new object’s attri-
butes [33]. In this study, the extra data created using SMOTE,
consisting of 90 completely artificial patients, was not
employed for model training or testing but only for validation.

After the application of the hold-out method to divide the
dataset in training (75% of the total sample) and testing sets
(the remaining 25%) on the data obtained from real patients, a
two-step feature selection was applied to the training set [34].
First of all, the correlation matrix was computed among all
variables and a correlation threshold of 0.5 was selected to
exclude highly intercorrelated ones as to eliminate redundant
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Fig. 2 Feature correlation matrix
represented as a hierarchically
clustered heatmap. The resulting
data was employed in the first
step of the feature selection
process

Fig. 1 Images from a patient with
a Fuhrman grade III clear cell
renal cell carcinoma of the left
kidney. T1-weighted post-con-
trast (a, b) and T2-weigthed (c, d)
images are shown before (a, c)
and after (b, d) lesion
segmentation
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data (Fig. 2). Secondly, the Wrapper method was applied for
each algorithm. This searches for the best combination of features
based on a heuristic function optimization and a tenfold cross-
validation. It splits the dataset into k folds and themodel is trained
k times on k-1 folds and tested on the remaining fold.

Subsequently, evaluation metrics (i.e., accuracy, recall, pre-
cision, sensitivity, specificity, and AUCROC) were obtained
by assessing the performance of the resulting models on the
test and validation sets, composed respectively by real patient
data and artificial data [35].

Table 2 Algorithms and features selected for the multiclass assessment

Algorithms Features

J48 1. dce_wavelet-LHH_glcm_Imc2
2. dce_wavelet-HHH_firstorder_Maximum
3. dce_wavelet-HHH_glcm_SumEntropy
4. t2_wavelet-HLH_glcm_InverseVariance
5. t2_wavelet-HHH_glcm_SumSquares

Bagging 1. dce_original_glrlm_LongRunHighGrayLevelEmphasis
2. t2_log-sigma-1-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis
3. dce_wavelet-HHH_glcm_SumEntropy
4. 2_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis
5. t2_wavelet-HHH_firstorder_Uniformity
6. t2_wavelet-HHH_glrlm_GrayLevelNonUniformityNormalized

RF 1. dce_wavelet-HLL_firstorder_Skewness
2. t2_wavelet-HHL_gldm_DependenceNonUniformityNormalized
3. dce_wavelet-LLH_glcm_SumEntropy
4. dce_wavelet-LLH_glcm_InverseVariance
5. t2_wavelet-HHH_glrlm_GrayLevelNonUniformityNormalized
6. t2_wavelet-HHH_glrlm_GrayLevelVariance

ADA-B 1. dce_log-sigma-2-0-mm-3D_glcm_Imc2
2. dce_wavelet-HHH_glcm_SumEntropy
3. dce_wavelet-LLH_glcm_SumEntropy
4. t2_wavelet-HLL_glszm_LargeAreaLowGrayLevelEmphasis
5. t2_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis
6. t2_wavelet-HHL_firstorder_Median
7. t2_wavelet-HHH_glrlm_GrayLevelNonUniformityNormalized

Decorate 1. dce_wavelet-HLL_firstorder_Kurtosis
2. dce_wavelet-HHH_glcm_SumEntropy
3. dce_original_glrlm_LongRunHighGrayLevelEmphasis

RF, random forest; ADA-B, bagging and boosting

Table 1 Algorithms and features selected for the binary classification (high- vs. low-grade tumors)

Algorithms Features

J48 1. t2_log-sigma-2-0-mm-3D_glcm_Correlation

Bagging 1. dce_wavelet-LLH_glcm_SumEntropy
2. dce_wavelet-HHH_firstorder_Kurtosis
3. t2_log-sigma-1-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis

RF 1. dce_wavelet-LLH_glcm_InverseVariance
2. dce_wavelet-LHH_glcm_Imc2
3. t2_wavelet-HHH_glrlm_GrayLevelVariance

ADA-B 1. dce_wavelet-LHL_firstorder_Mean
2. dce_wavelet-HHH_firstorder_Kurtosis
3. t2_wavelet-HHH_glszm_SizeZoneNonUniformityNormalized

Decorate 1. dce_wavelet-LLH_glcm_InverseVariance
2. dce_wavelet-LLH_glcm_SumEntropy
3. t2_wavelet-HLH_glszm_LargeAreaHighGrayLevelEmphasis
4. t2_wavelet-HLH_glszm_SizeZoneNonUniformityNormalized

RF, random forest; ADA-B, bagging and boosting
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Algorithms

In this study, a J48 decision tree alone and in combination with
ensemble learning methods were used. Decision trees perform
predictions by comparing test observations to predictor space
segmentations made on the training data. The rules on which
training data stratification is obtained can be represented
graphically in a tree-like structure, to which the name of the
algorithm class is owed [36].

Bagging and boosting (ADA-B) are among the most fa-
mous ensemble learning methods. While the first one needs
an unstable learner to achieve the best performances, the sec-
ond one keeps a group of weights over the original training set
and updates them after each classifier is learned by the base
learning algorithm [37]. On the other hand, random forest
(RF) employs a large number of decision trees, based on bag-
ging, resampling data repeatedly, and training a new classifier
for each sample. Each tree is trained on a diverse set of records
and attributes. The row sets for each decision tree are created
by bootstrapping and have the same size as the original input
table. For each node of a decision tree, a new set of attributes is
determined by taking a random sample of size square root of
m, where m is the total number of attributes [38]. Decorate
generates an ensemble by training a classifier on a given train-
ing data set. In successive iterations, some artificial data are
created from the training set in a way that their classes differ
maximally from the predicted classes by the current ensemble.

These data are added to the first training set and a new classi-
fier is made on this new data set. This procedure increases the
diversity of the ensemble. The artificial data are created by
using the mean and the standard deviation of the training set
together with its Gaussian distribution [39].

Results

Patient Population

The final population included 32 patients, 15 males and 17
females, with a median age of 59.5 years (interquartile range =
23.5). Overall, lesion grouping based on Fuhrman grade was
the following: 8 grade I lesions, 12 grade II lesions, and 12
grade III lesions. No grade IV lesions were found in our pop-
ulation. Therefore, the low-grade group was composed of 20
patients while the high-grade group of 12 patients.

Feature Selection

Since the number of features was too high (2438 features)
related to the number of patients (30 real patients in the first
test, 90 patients in the extra validation), the correlation
matrix–based feature selection allowed us to reduce the num-
ber of non-redundant features to 53. The Wrapper method
further reduced the number of employed features to between

Table 3 Accuracy parameters for each model in the binary classification

Test on real data Test on artificial data

Accuracy (%) AUCROC Accuracy (%) Recall (%) Precision (%) Sensitivity (%) Specificity (%) AUCROC

J48 87.5 0.900 74.0 55.5 69.0 55.5 85.0 76.6

Bagging 62.5 73.3 90.6 88.9 86.5 88.9 91.7 0.952

RF 75.0 0.633 91.7 88.9 88.9 88.9 93.3 0.918

ADA-B 75.0 0.733 92.7 91.7 89.2 91.7 93.3 0.933

Decorate 62.5 0.700 91.7 86.1 91.2 86.1 95.0 0.903

RF, random forest; ADA-B, bagging and boosting

Table 4 Accuracy parameters for each model in the multiclass assessment

Test on real data Test on artificial data

Accuracy (%) Accuracy (%) Recall (%) Precision (%) Sensitivity (%) Specificity (%)

J48 37.5 75.0 69.4 80.6 69.4 90.0

Bagging 50.0 81.2 83.3 88.2 83.3 93.3

RF 62.5 84.4 94.4 91.9 94.4 95.0

ADA-B 50.0 83.3 88.9 94.1 88.9 96.7

Decorate 62.5 83.3 100 81.8 100 86.7

RF, random forest; ADA-B, bagging and boosting
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1 and 7 according to algorithm and number of classes
(Tables 1 and 2).

Machine Learning Analysis

For each model in the binary classification, the results of
learning and testing on real data as well as testing on the
artificial data are shown in Table 3. All the ensemble methods
achieved an accuracy greater than 90%: ADA-B obtained the
best accuracy (92.7%), recall, and sensitivity (91.7%); bag-
ging showed the highest AUCROC, being an indicator of a
good quality of binary prediction; decorate reached out the
greatest precision (91.2%) and specificity (95.0%).

As aforementioned, after the binary analysis on both real
and artificial data in order to distinguish a low and a high
grade of tumor, the multiclass assessment according to tu-
mors’ grading was performed. All the results according to this
classification are summarized in Table 4. In this case, the best
results were achieved by RF in terms of accuracy (84.4%),
decorate in terms of recall and sensitivity (100%), and

ADA-B in terms of precision (94.1%) and specificity
(96.7%) (Fig. 3). Figure 4 represents the complete analysis
workflow on KNIME.

Discussion

In recent years, there has been a growing interest towards
radiomic applications in medical imaging and in particular
in their potential role in the evaluation of renal tumors.
Many publications focused on differential diagnosis of re-
nal lesions, based either on CT [25, 40–43] or MRI-derived
[44–46] textural features. Other authors also focused their
attention on tumor staging [47] or prediction of survival
[48]. While CT radiomic features have been used to predict
CCRCC Fuhrman grade, we aimed to expand the available
literature by combining radiomic TA and ML on MR im-
ages for this purpose. As reported above, the model with
the best performance reached a diagnostic accuracy of
92.7% on the test dataset in discriminating low- and high-

Fig. 4 Schematic representation of the KNIME analysis workflow employed in the analysis

Fig. 3 Bar plot comparison of the
accuracy obtained on artificial
data by each algorithm in both
binary and multiclass
classifications
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grade CCRCC. On the hand, the 3-class assessment perfor-
mance was relatively lower (84.4%). This difference in ac-
curacy is somewhat expected as ML algorithms usually
benefit from a lower number of output classes, especially
when available data is limited [49]. Similarly, the improved
performance of ensemble methods compared with the J48
decision tree alone could be anticipated [37].

It is interesting to note that Lin et al. also employed a
gradient-boosted decision tree from the CatBoost library to
classify CCRCC grade on CT images, obtaining an AUC of
0.87 [16]. This approach is similar to that employed in our
study as we confirm the good performance of decision tree
ensembles in this setting, even on MRI radiomic data.
Recently, Kocak also tested the usefulness of SMOTE in CT
ML of CCRCC [15]. In his study, a more complex algorithm
(a neural network) was employed, but no difference was found
in its accuracy when balancing the data with this over-
sampling technique. Similarly, we chose not to employ
SMOTE for data balancing, but to create a new artificial data
set that allowed us to perform classifier external validation, a
known approach in ML [50, 51]. Other families of classifiers
were tested in literature for Fuhrman grade prediction fromCT
images [14]. In his study, Bektas reports that the best
performing model was based on a support-vector machine. It
should be noted that the cited studies obtained overall lower
accuracy for the classification of low and high CCRCC grade
(reported AUC range = 0.71–0.87) when compared with our
results (AUC= 0.93). It could be hypothesized that MRI TA
provides more useful information than CT for the training of
ML models. This is further supported by the good accuracy
also demonstrated in the 3-class prediction.

The present work might contribute in the laying of founda-
tions for a non-invasive pre-operatory assessment of CCRCC
nuclear grade. As aforementioned, the Fuhrman grade is an
independent predictor of prognosis for patients. However,
while percutaneous biopsy is currently accepted as the diag-
nostic tool to predict nuclear grade, it is an invasive procedure
prone to limitations highlighted by previous study sharing a
similar clinical implication to ours [15]. If our preliminary
results were to be confirmed, this approach might allow mul-
tiple assessments of Fuhrman grade in patients during follow-
up without the need for ionizing radiation exposure [15].

This study suffers from some limitations that should be
acknowledged and discussed. Firstly, the retrospective nature
of the study and the relatively small sample size, which is also
accountable for the absence of grade IV lesions in our popu-
lation, might undermine the value of our results. Secondly, a
reproducibility analysis to test the reliability of manual seg-
mentation and therefore feature stability was not performed in
the present study. Indeed, it has been reported that two-
dimensional segmentations of CT images for CCRCC patients
are sensitive to inter- and intra-operator variability [52] and
that segmentations’ margins can significantly affect the ML

workflow and output [53]. However, the abovementioned lim-
itations are intrinsically related to the exploratory nature of
this study, specifically aimed to test the feasibility of a meth-
odology that will need further and more robust validations to
achieve its promising clinical potential.

Conclusion

With this study, we provided evidences to support the feasi-
bility of a combined TA and ML approach on MR images for
the prediction of Fuhrman grade in patients affected by
CCRCC. Further studies are advocated to assess whether this
methodology could play a role in the management of these
patients in clinical practice.

Compliance with Ethical Standards This retrospective study
was approved by the local IRB and the need for informed consent was
waived.
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