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Abstract
The grading of glioma has clinical significance in determining a treatment strategy and evaluating prognosis to investigate a novel
set of radiomic features extracted from the fractional anisotropy (FA) and mean diffusivity (MD) maps of brain diffusion tensor
imaging (DTI) sequences for computer-aided grading of gliomas. This retrospective study included 108 patients who had patho-
logically confirmed brain gliomas and DTI scanned during 2012–2018. This cohort included 43 low-grade gliomas (LGGs; all
grade II) and 65 high-grade gliomas (HGGs; grade III or IV). We extracted a set of radiomic features, including traditional texture,
morphological, and novel deep features derived from pre-trained convolutional neural network models, in the manually-delineated
tumor regions. We employed support vector machine and these radiomic features for two classification tasks: LGGs vs HGGs, and
grade III vs IV. The area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity was
reported as the performance metrics using the leave-one-out cross-validation method. When combining FA+MD, AUC= 0.93,
accuracy = 0.94, sensitivity = 0.98, and specificity = 0.86 in classifying LGGs from HGGs, while AUC = 0.99, accuracy = 0.98,
sensitivity = 0.98, and specificity = 1.00 in classifying grade III from IV. The AUC and accuracy remain close when features were
extracted from only the solid tumor or additionally including necrosis, cyst, and peritumoral edema. Still, the effects in terms of
sensitivity and specificity are mixed. Deep radiomic features derived from pre-trained convolutional neural networks showed higher
prediction ability than the traditional texture and shape features in both classification experiments. Radiomic features extracted on
the FA andMDmaps of brain DTI images are useful for noninvasively classification/grading of LGGs vs HGGs, and grade III vs IV.
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Introduction

Gliomas are the most common type of primary brain tumor in
adults and a critical cause of brain cancer mortality [1].

According to the World Health Organization (WHO), gliomas
can be classified into four grades in terms of the pathologic
evaluation of the tumor [2]. Grades I and II are low-grade
gliomas (LGGs) with more favorable outcomes [1–3].
Grades III and IV are high-grade gliomas (HGGs) and they
are malignant. HGGs indicate a poor prognosis [1, 3, 4]: the 5-
year survival of Grade IV patients (i.e., glioblastoma) is ap-
proximately 10%, while Grade III tumors have a slightly bet-
ter prognosis than glioblastoma. An accurate classification
between LGGs and HGGs is critical for clinical planning of
treatment strategies and predicting prognosis and treatment
response. There is a need for a noninvasive approach to dif-
ferentiate glioma grades both at initial diagnosis and at follow-
up in the clinical management of gliomas [5].

Radiological imaging such as brain magnetic resonance
imaging (MRI), is a noninvasive tool for glioma diagnosis
[6, 7]. Routine brain MRI such as T2-weighted, fluid attenu-
ation inversion recovery (FLAIR), and contrast-enhanced T1-
weighted sequences can illuminate the size, shape, lesion
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structure, and enhancement patterns of gliomas. Due to the
overlap of the imaging features between LGGs and HGGs,
classification with routine MR imaging sequences is often
unreliable [8]. With the development of MRI techniques, ad-
vanced procedures, such as diffusion-weighted imaging
(DWI) and diffusion tensor imaging (DTI) [9, 10], have been
incorporated in standard MRI examinations to assist preoper-
ative glioma assessment. DTI is an in vivo diffusion imaging
technique for assessing the directionality (anisotropy) and
magnitude (diffusivity) of water diffusion, revealing the mi-
crostructural architecture of both normal and diseased tissues
[10]. The conventional metrics of DTI are the mean diffusivity
(MD) and fractional anisotropy (FA) [9–11].MD describes the
rotationally invariant magnitude of water diffusion within tis-
sues. There is an inverse relationship between the cellularity
and the MD value of gliomas [9]. FA expresses the orientation
of the tissue microstructure. Preliminary studies showed that
some characteristics of the FA appear to be useful for differ-
entiating LGGs and HGGs [9, 10], but FAwas not shown to be
differential for glioma grades in some other reported studies
[11, 12]. The brain DTI is still under-investigated in terms of
its potential/capability for helping glioma grading.

Radiomics is an approach that quantifies the tumor pheno-
types by extracting a large number of quantitative imaging
features [13, 14]. This quantitative analysis method can char-
acterize tumor properties in a non-invasive manner, and it also
can be used as a powerful tool to investigate biomarkers that
can assist the diagnosis and prognosis of diseases along with
other clinical parameters [15, 16]. The radiomics approach
follows two processes [13, 14, 17]: (a) extracting many quan-
titative features from medical images that represent structural,
physio-pathologic, and genetic characteristics of tissues/
diseases; and (b) buildingmachine-learning models to classify
these imaging features for an outcome. Promising effects have
been reported in many radiomics-based cancer studies. Few
studies were conducted for glioma grading by extracting fea-
tures on structural MR images [18](T1- and T2-weighted im-
ages) and textural analysis on apparent diffusion coefficient
(ADC) maps was identified to be effective in discriminating
glioma grades [19].

While it is relatively easy to diagnose glioma grading on
current MR techniques, particularly in developed countries, in
many developing countries, radiologists underperform those
in developed countries and thus they may still need additional
help in diagnosing gliomas due to several reasons: (1) they
lack experience, (2) they have not received adequate training
like in large academic medical centers, and (3) they have to
read a much larger volume of images in daily clinical duties
that may lead to low efficiency and potential misdiagnosis.
Thus, computerized methods or models may still provide a
potential useful tool to augment those radiologists for glioma
grading. In this study, we attempted to evaluate the effects of
radiomics analyses of MD and FA maps based on segmented

tumor volume in the preoperative classification of different
glioma grades. We compared the results using two different
sizes of tumor regions segmented manually by radiologists.
Unlike previous work using only a single MRI slice [18], we
utilize 3D features in radiomics analysis. Also, our radiomic
features included not only common shape/morphological and
texture features but also different forms of structure or texture
features extracted from the shallow layers of pre-trained
convolutional neural networks (CNNs) [20]. The effects of
these different types of radiomic features were evaluated by
feature selection and machine learning-based classification
tasks.

Material and Methods

Study Cohort

The institutional review board approved this retrospective
study of our institution, and informed consent from patients
was waived. A total of 136 patients diagnosed from
November 2012 to May 2018 were identified for this study.
Inclusion criteria were: (1) Patients with pathologically con-
firmed newly diagnosed gliomas according to the fourth edi-
tion of the WHO classification criteria [2]; (2) patients with
preoperative MRI on 3T scanners with DTI sequences ac-
quired prior to any treatments and operations. Among them,
28 patients were excluded for the following reasons: (i)
Patients with suboptimal image quality due to motion or sus-
ceptible artifacts (n = 7); (ii) lesions with hemorrhage (n = 2);
(iii) irretrievable images/sequences (n = 17); (iv) WHO I le-
sion too small to be analyzed (n = 2). Thus, 108 patients were
included in the final analysis.

MRI Protocol

All patients were examined with the same imaging acquisition
protocol on a 3T whole-body MRI system (Signa HDxt, GE
Medical Systems, Milwaukee, Wisconsin) with an eight-
channel head coil. The MRI protocol consists of a T1 inver-
sion recovery (IR) sequence, a T2-weighted sequence, a
FLAIR sequence, and an axial T1-Contrast Enhanced (CE)
sequence using the contrast agent Gadodiamide (Omniscan,
GE Healthcare, Ireland) with a dose of 0.1 mmol/kg of body
weight and at the rate of 2 mL/s. Before the gadolinium injec-
tion, DTI was acquired for every patient. The DTI was per-
formed axially using a single-shot echo-planar imaging (EPI)
sequence with the following parameters: TR/TE = 8000/
88 ms, matrix size = 128 × 128, FOV = 240 mm× 240 mm,
slice thickness = 5.0 mm, slice gap = 0 mm, diffusion gradient
encoding in 30 directions, diffusion weighting factors (b val-
ue) were b = 1000 s/mm2 and b = 0 s/mm2 (no diffusion gra-
dient). The DTI acquisition time was 4 min and 24 s.
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After the acquisition, the DTI images were transferred to the
workstation (Advantage Workstation 4.6; GE Medical
Systems) to generate MD and FA maps. The diffusion tensor
was diagonalized to yield the major (λ1), intermediate (λ2) and
minor (λ3) eigenvalues corresponding to the three eigenvectors
in the diffusion tensor matrix [21]. MD and FA derive from the
three eigenvalues (λ1, λ2, and λ3). MD is a voxel-wise measure
of the directionally averaged magnitude of diffusion (unit:
square millimeters per second), calculated as follows (Eq. 1):

MD ¼ λ1 þ λ2 þ λ3ð Þ
3

ð1Þ

FA is used to measure the fraction of the total magnitude of
diffusion, that is anisotropic and has a value of 0 for isotropic
diffusion (λ1 = λ2 = λ3) and 1 for completely anisotropic dif-
fusion (λ1 = >0, λ2 = λ3 = 0). FA was calculated as follows
(Eq. 2):

FA ¼
ffiffiffi

3

2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ1−MDð Þ2 þ λ2−MDð Þ2 þ λ3−MDð Þ2
λ21 þ λ22 þ λ23

s

ð2Þ

Methodology Pipeline

Our proposed methodology pipeline for glioma grade classi-
fication is shown in Fig. 1. In the data preparation stage, we
first define and manually segment tumor regions on both the
MD and FA maps. Then, a set of 329 radiomic features are
extracted, followed by feature selection and support vector
machine (SVM)-based machine learning classification.

Tumor Segmentation

Tumor regions are first segmented manually by an experienced
radiologist (with 14-year experience in the Department of

Radiology) on the B0 images (DWI without diffusion sensiti-
zation) and reviewed by another senior radiologist (with 26-
year maturity). The segmentation was done slice by slice using
the ITK-SNAP software (version 3.6.0) (http://www.itksnap.
org) and following a previously described visual inspection
procedure [22]. We defined two different regions of interest
(ROIs) to label the tumor regions (Fig. 2). ROI1 denotes all
abnormal signals on the B0 image, including the contrast-en-
hancing, peritumoral edema, cyst, and necrotic regions, while
ROI2 just contains the solid part of the tumor, excluding necro-
sis, cyst, and peritumoral edema. Tumor boundaries were iden-
tified referring to the high-signal intensity areas. The ROIs were
segmented directly on the B0 image, while T1CE, T1W, and
FLAIR images are allowed to access for reference for the seg-
mentation. The segmentationmasks were then transferred to the
corresponding MD and FA maps for radiomic feature
extraction.

Radiomic Feature Extraction

A total of 329 candidate radiomic features were extracted from
the ROIs of all MRI scans using the Image Processing toolbox
provided by Matlab2016b and the third-party toolkit
MatConvNet [23]. These include three different types of fea-
tures, namely, convolutional deep features, texture features,
and shape/morphological features (Table 1). Those features
were further filtered by a feature selection step to use a much
smaller set of features to build the classification models.

Convolutional deep features: recent studies [24] have
shown that the shallow layers in deep learning CNNs convey
some sufficient information of the input imaging data.
Extensive experiments [25, 26] of applying pre-trained CNN
models from ImageNet for different medical processing tasks
had demonstrated that these pre-trained models could be used
as an offline feature extractor. We followed this paradigm to

Fig. 1 The flowchart of the proposed methodology pipeline
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extract deep convolutional radiomic features from the tumor
regions. For the segmented ROI1 part, the average diameter of
the tumor is 4.29 cm (range 1.67–5.80 cm), while for the
segmented ROI2 region, the average diameter of the tumor
is 3.69 cm (range 1.56–5.76 cm). As the size is 107 × 107
for the input of the network, we rescaled larger tumor ROIs
to 107 × 107 using the nearest-neighbor interpolation algo-
rithm. For tumor ROIs smaller than 107 × 107, we keep the
original image resolution/signal by padding extra zeros to the
107 × 107 image matrix. Deep learning CNN models extract
low- and high-level features at different layers. To explore the
transferability of a pre-trained model VGG-f [27], we chose to
use the third layer to extract imaging features from the tumor
ROIs by referring to previous work [28], where the third layer
represents a trade-off between performance and model depth.
The corresponding structure of the network is shown in
Table 2, while example feature maps extracted from the pre-
trained model are shown in Fig. 3. We chose to use the VGG-f
model in this study because of its relatively good generaliza-
tion capability with fast speed [23] in transferring deepmodels

to other tasks. Besides, several works of literature [24] have
shown that deep learning model working in medical images
do benefit from a pre-training on a large non-medical imaging
dataset such as the ImageNet. A total of 256 quantitative deep
radiomic features are extracted from the first 3 convolutional
layers of the pre-trained model. As a robustness analysis, we
also compared the overall effects of extracting radiomic fea-
tures from the first four layers of the model.

In the convolutional layers, the first number indicates the
receptive field size as “num × size × size,” followed by the
convolution stride “str.,” spatial padding “pad,” local response
normalization “lrn,” and the max-pooling down-sampling fac-
tor “pool.”

Handcrafted texture features: for commonly used
handcrafted texture features, and we utilized two types of
features, i.e., Gray-Level Co-occurrence Matrix (GLCM)
and wavelet features. Before computing the GLCM fea-
tures, a preprocessing step, image filtration, is applied,
where a Laplacian of Gaussian band-pass filter was applied
with a step size of 3 for image denosing. When extracting
GLCM features, the gray-level is set with ten. We use the
features of contrast, correlation, energy, and homogeneity
in GLCM from angles 0, 45, 90, and 135, respectively.
Wavelet features were extracted with the coefficients of
low and high frequency at level 2. In total, 43 texture fea-
tures were extracted.

Shape/Morphological features: for 2D shape features, we
extracted a set of 27 geometric features of the ROIs from an
MRI slice, including eccentricity, extent, perimeter, orienta-
tion, centroid, major axis length, area, solidity, extrema,
equiv-diameter, and minor axis length features etc. These 2D
features extracted from all 2D MRI slices are combined.
Besides, three volumetric 3D shape features are computed
from the tumor volume, namely, volume, superficial area,
and degree of sphericity.

Fig. 2 Tumor region segmentation demonstration. (Left) Images of a 51-
year-old male with oligodendroglioma (grade II). (Right) Images of a 64-
year-old male with glioblastoma (grade IV). ROI1 denotes all abnormal
signal on the B0 image, including contrast-enhancing, necrotic regions,

cyst, and peritumoral edema, while ROI2 just contains the solid part of the
tumor, excluding necrosis, cyst, and peritumoral edema. The ROIs were
segmented on the B0 images and then transferred to the corresponding
MD and FA maps

Table 1 List of the 329 candidate radiomic features

Feature
ID

The description of features

1–256 Novel deep convolutional features (structural/texture features)

257–272 Gray-Level Co-occurrence Matrix (GLCM) texture features

273–283 Intensity histogram and uniformity features

284–299 Wavelet texture features

300–326 Common 2D shape features, namely, eccentricity, extent,
perimeter, orientation, centroid, major axis length, minor
axis length, area, equivalent diameter, solidity, extrema

327–329 3D shape features, namely, volume, surface area, and
spherical degree
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Classification and Statistical Analysis

In this work, we adopt the SVM to build classification models.
To reduce data redundancy and the number of powerful features,
we adapted the iterative information gain algorithm [29] to per-
form feature selection under the leave-one-out cross-validation
strategy and used AUC as the optimization criteria. Note that
when conducting feature selection, themodel is only trained with
the training set instead of all the data. In each iteration, every
feature is attempted to be added into the selected feature set, and
the one improves the AUC score mostly is chosen in a given
iteration. The selected set of features is updated from iteration to

iteration, yielding the final results when none of the remaining
features could further improve the AUC.

The selected features were fed into an SVM classifier with a
linear kernel (we used the SVM implementation provided in
Matlab 2016b) for classification. All the SVM parameters are
fixed across all of the experiments. We investigated two glioma
grading experiments, i.e., the classification between LGGs and
HGGs as well as between WHO III and WHO IV grades.
Considering our sample size, we utilized the leave-one-out
cross-validation to evaluate the performance of the classifica-
tion models. The goal of cross-validation is to test the model’s
ability to predict new data and to give an insight into how the

Table 2 Using the pre-trained convolutional neural network (CNN) models as a feature extractor

Structure Convolutional neural network

Input images (107 × 107) Conv layer 1 Conv layer 2 Conv layer 3

64 × 11 × 11 256 × 5 × 5 256 × 3 × 3

str. 4, pad 0, lrn, *2 pool str. 1, pad 0, lrn, *2 pool str. 1, pad 0

(a) original ROI (b) feature maps from the first layer

(c) features from the third layer

Fig. 3 Example feature maps extracted from the pre-trained model
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model will generalize to an independent dataset. Leave-one-out
cross-validation reserves one sample for test and the rest sam-
ples for training. During the experiments, all the samples will be
used as a test sample once, where the final results augment from
all tests.

In addition, we further explored the performance of the
method using the pure deep learning modeling method. In this
method, we utilized the VGG model where the convolutional
layers are fixed, and the fully connected layers are adapted and
fine-tuned with our own image data. Five-fold cross-valida-
tion is conducted, and we trained 100 iterations as the network
has converged. The performance of using deep learning
modeling alone is compared to the effect of using the combi-
nation of deep learning and radiomics.

The area under the receiver operating characteristic (ROC)
curve (AUC), accuracy, sensitivity, and specify was measured.
All statistical analyses were performed using the IBM SPSS
Statistics (v. 19.0; Chicago, IL). The level of confidence was
kept at 95% and results with p < 0.05 were considered statis-
tically significant. The chi-square test was used to assess
whether the constituent ratios of sex and age are significantly
different between groups. All experiments were implemented
and run on a desktop computer with an Intel Core I7-7800X
3.50GHz*12 and two Titan X Graphical Processing Units
(GPUs).

Results

Among the 108 patients, 43 were LGGs, and the remaining 65
were pathologically confirmed HGGs (25 WHO III and 40
WHO IV patients). The clinical characteristics of the study
cohort are summarized in Table 3. Statistical results listed in
Table 3 show that no significant differences were found be-
tween LGGs and HGGs for all the listed factors.

Gliomas Grade Classification: LGGs Vs HGGs

The ROCs of the selected features in different DTI maps
are shown in Fig. 4. For a broader tumor region (i.e.,
ROI1), MD achieved a marginally higher AUC of 0.93 in
comparison to the 0.92 yielded by FA. Likewise, for a
smaller tumor region (ROI2), the AUC of FA is 0.90, and
improvement is observed for MD with an AUC of 0.96. In
both scenarios, MD outperforms FA. When combining the
features selected separately from FA and MD together,
AUC is 0.93 for ROI1 and 0.92 for ROI2, respectively;
there is no noticeable improvement when fusing FA and
MD compared to using the FA or MD alone. Also, when
we used the first four layers for feature extraction, the AUC
is 0.93 for ROI1 and 0.92 for ROI2 on the combination of
MD and FA (ROC curves not plotted in Fig. 4).

The IDs of the selected features are listed in Table 4.
Referring to Table 1, all selected features here are from the
deep convolutional features, except feature #282 (wavelet tex-
ture features) and #319 (one of extrema points in the region).
We also find that the number of features is not correlated with
the classification performance. For example, it is a single fea-
ture that leads to the highest AUC for ROI1 on FA+MD (i.e.,
feature #211; AUC = 0.93) and ROI2 on MD (i.e., feature
#64; AUC = 0.96). Figure 5 shows the weight distribution of
the 211th and 64th features, where we can see that the distri-
bution of these two most predictive features spans a range of 0
to 10.

As shown in Table 5, the accuracy, sensitivity, and speci-
ficity, the combination of the FA and MD, brings increased
performance for some but not for all scenarios. The effects of
comparing the two ROIs are also mixed.

Gliomas Grade Classification: WHO III Vs WHO IV

Like “Gliomas Grade Classification: LGGs Vs HGGs”,
experiments on classifying WHO III vs IV grade were con-
ducted, and similar results were reported here. As shown in
Fig. 6, on both ROI1 and ROI2, FA outperforms MD, and
when the two modalities were combined, a substantial in-
crease of AUC was observed, and the AUC goes high up to
0.99 on both ROIs. The patterns of the effects are different
from those in classifying LGGs from HGGs (“Gliomas
Grade Classification: LGGs Vs HGGs”). Also, when we
used the first four layers for feature extraction, the AUC is
0.96 for ROI1 and 0.97 for ROI2 on the combination of
MD and FA (ROC curves not plotted in Fig. 6). Figure 7
shows a false positive example and a false negative exam-
ple. According to the MD maps of the tumors, there are
obvious edema, necrosis, and cystic degeneration, so it is
difficult to grade them between WHO III and IV. The pre-
diction model has mistakenly classified them.

Similarly, Table 4 shows that most selected features
are still from deep convolutional features except the
317th feature (one of extrema points in the region).
Figure 8 indicates that the 317th feature has a quite
small variation while it is helpful for the classification
task.

In Table 5, we can see that ROI1 generally has better
performance than ROI2. Note that the specificity on
ROI2 is substantially low (i.e., 0.64 and 0.60) for either
the FA or MD map. However, when combining the two
maps, the specificity is significantly boosted up to an
AUC of 0.96.

The classification results of using deep learning modeling
alone are shown in Table 6. As can be seen, the combination
of deep learning and radiomics outperforms the deep learning
modeling alone.
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Discussion

Accurate grading of brain gliomas is essential for clinical ther-
apeutic planning. In this study, we employed a radiomics ap-
proach to perform automated classification for brain gliomas
using the DTI sequences in brain MRI. We focused on the FA
and MD two different modalities generated from the DTI se-
quences. We assembled a set of radiomic features including
deep features extracted from offline pre-trained deep learning
models and typical texture and morphological features. In the
two classification scenarios, we showed that FA, MD, or their
combination, can achieve a promising performance to distin-
guish LGGs from HGGs, and WHO III vs IV grade.

A new aspect of our study is the use of the DTI sequences.
Unlike the routine T1, T2, FLAIR, or T1-CE sequences, DTI
is usually not a standard MRI sequence but often included for
preoperative assessment at our institution. Preliminary evi-
dence supports the potential of DTI data as an imaging bio-
marker for integrated glioma diagnosis [10, 12, 30–32]. MD
and FA derived from DTI are commonly used parameters in
related imaging study literature as well. MD and FA can pro-
vide complementary structure information to improve tumor
characterization. MD correlates with the cellularity of tumor
tissues through altered diffusion values due to increased cel-
lular density of glioma tissues. FA represents the directionality
of the diffusion process and reflects the cellular organization

Table 3 Baseline demographics and clinical characteristics of the 108 patients

Low grade High grade P value

Patients (N/%) 39.81% (43/108) 60.19% (65/108) NA

Ages(rang, years) 43.2(24–66) 51.3(21–78) 0.072

0–30 11.63%(5/43) 7.69%(5/65)

31–60 83.72%(36/43) 72.31%(47/65)

> 60 4.65%(2/43) 20%(13/65)

Gender (N/%) 0.77

Male 58.14% (25/43) 55.38% (36/65)

Female 41.86% (18/43) 44.62% (29/65)

Histologic subtype (N/%) Diffuse astrocytoma Anaplastic astrocytoma NA

51.16% (22/43) 16.92% (11/65)

Oligodendroglioma Anaplastic oligodendroglioma

41.86% (18/43) 20.00% (13/65)

Oligoastrocytoma Anaplastic oligoastrocytoma

6.98% (3/43) 1.54% (1/65)

Glioblastoma

61.54% (40/65)

Fig. 4 ROCs for distinguishing
LGGs vs HGGs: a using features
extracted from ROI1; b using
features extracted from ROI2
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of tumors as well as their microenvironment, the extracellular
matrix. In the literature, FA values have been shown to indi-
cate malignancy of gliomas and are associated with cell den-
sity and proliferation in human glioblastoma as well as WHO
grades [30, 31]. All these shreds of evidence may help partly
interpret why the quantitative radiomic features derived from
FA and MD are capable of classification of the glioma grades.

It is worth to point out the importance of multi-parametric
MR imaging features in brain tumor diagnosis and grading.
Tian [17] et al. showed that diffusion-weighted imaging fea-
tures (ADC, distributed diffusion coefficients, intravoxel in-
coherent motion) had a comparable effect to the structural
imaging features (T1, T2, CE-T1 sequences), while the com-
bination of them achieved the highest performance compared
to either of them alone. Cho [33] et al. used open-source data
from the MICCAI Brain Tumor Segmentation 2017
Challenge (BraTS 2017). They achieved an average accuracy
of 0.9292 and AUC of 0.9400 using three classifiers with
fivefold cross-validation. Similar findings were found in an-
other study [34] where the most predictive texture features
were the CE-T1-derived entropy and ADC-based homogene-
ity. Furthermore, in classifying and grading pediatric posterior
fossa tumors (medulloblastomas, pilocytic astrocytomas, and

ependymomas) [35], the histogram and texture features ex-
tracted from ADC images were more predictive than the
CE-T1WI and T2WI images. According to a prognosis pre-
diction study on HGGs [36], ADC-derived texture features
have a similar predictive effect on age, tumor stage, and sur-
gical procedures. The value of ADC texture features was also
shown in other studies such as differentiating glioblastomas
and other tumors [37]. In general, while typical structural im-
aging sequences (T1 and T2) may be more vulnerable to some
of the image scanning parameters and reconstruction algo-
rithms [38], the diffusion-based imaging sequences reveal im-
portant capability in characterizing and grading the brain tu-
mors. The effects of these different imaging sequences and
their combination concerning specific tumor characterization
tasks merit further investigation in future work. Unfortunately,
as many cases in our study cohort had their structural MRI
scanning outside of our institution, those imaging sequences
are not fully available to us to do a comparative experiment.
Therefore, we mainly focused on the DTI sequences in this
work.

Table 4 The IDs of the selected features in classifying LGGs from
HGGs andWHO III fromWHO IV. Refer to Table 1 for the ID definition

ROI1 features’ IDs ROI2 features’ IDs

LGGs vs HGGs

FA 96,102,282 32 46

MD 54 57 135 136 64

FA+MD (average) 211 59 177 319

WHO III vs WHO IV

FA 220,253 215,317

MD 157 106,131,165

FA+MD (average) 58 67 99,317 51,189

Fig. 5 Weight distributions of the selected features in classifying LGGs from HGGs

Table 5 The classification performance in terms of accuracy,
sensitivity, and specificity for classifying LGGs from HGGs and WHO
III from WHO IV

Accuracy Sensitivity Specificity

ROI1 ROI2 ROI1 ROI2 ROI1 ROI2

LGGs vs HGGs.

FA 0.93 0.91 0.95 0.97 0.88 0.81

MD 0.91 0.94 0.88 1.00 0.95 0.86

FA+MD 0.94 0.94 0.98 0.94 0.86 0.93

WHO III vs WHO IV

FA 0.94 0.83 0.98 0.95 0.88 0.64

MD 0.89 0.83 0.88 0.98 0.92 0.60

FA+MD 0.98 0.97 0.98 0.98 1.00 0.96
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A unique aspect of this study is that we included the deep
convolutional features extracted from pre-trained deep learn-
ing models in our feature set. Usually, radiomics studies just
include conventional texture and shape/morphological fea-
tures. In the principal analysis, we extracted deep learning
features from the first three layers of the model. Our experi-
ments show that the deep features are overall more predictive
of glioma grades than the conventional texture and morpho-
logical features.We also compared the effects of using the first
four layers and found they are overall comparable to the first
three layers. Currently, it is not straightforward to directly
interpret these deep features, since they are generated indirect-
ly from complicated convolutional network processes. At the
concept level, this kind of deep feature can be considered as a
type of structural or “texture” feature, possibly characterizing
the tumor heterogeneity information. There are several studies
reported in the literature showing that this kind of offline deep

radiomic feature can do an excellent job in outcome predic-
tion. In principle, shallower layers of convolutional networks
generate more general and a higher number of features, while
the deeper layers carry more semantic but less generalizable
information and a relatively smaller set of features for classi-
fication. This kind of choice on how many layers to use for
feature extraction often rely on experience, actual model per-
formance, computational cost, and the nature of tasks. While
conventional radiomic features (such as textures) have been
well recognized in their predictive ability, the observations on
the performance of the features extracted from deep learning
models are exciting and worth further investigation in future
work.

There are several related studies on this topic in the litera-
ture. Because of the differences in exact study purpose,
dataset, sample size, patient population/race, and the specific
modeling method, a direct comparison of performance across

MD FA Ground truth 

WHO III 

Prediction 

WHO IV 

WHO IV 

WHO IIII 

Fig. 7 Examples of false-positive
and false-negative between WHO
III and IV grade

Fig. 6 ROCs for distinguishing
WHO III vs IV grade: a using
features extracted from ROI1; b
using features extracted from
ROI2
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these studies needs to be made with caution. Here we put the
related results in context for reference. To accurately classify
genetic mutations in gliomas, Chang [39] et al. used their own
data to train a CNN as a feature extractor, which was similar to
ours, and their classification accuracy values are 94% for
IDH1 mutation status, 92% for 1p/19q codeletion, and 83%
or MGMT promotor methylation status. Korfiatis [40] et al.
directly explored the ability of predictingMGMTmethylation
status without the need for a distinct tumor segmentation step.
They found that the ResNet50 (50 layers) architecture was the
best performing model, achieving an accuracy of 94.90% for
the test set. Zhou [41] et al. combined the conventional imag-
ing features with patient’s age to predict Isocitrate dehydroge-
nase (IDH) and1p/19q codeletion status, showing a promising
accuracy.

We also tested and compared the effects of two different
sizes of the brain tumor regions in terms of ROI1 and ROI2. In
both the two classification tasks, the results of the two ROIs
are close to each other when we use the combination of FA
and MD maps. However, when we make the comparisons
individually for FA or MD, the effects are mixed. In classify-
ing LGGs from HGGs, ROI2 is slightly better or comparable
to ROI1, indicating that the solid tumor region (ROI2) itself
may be already capable of such grading between LGGs and
HGGs. In contrast, in classifying WHO III vs IV grade, ROI2
performs lower than ROI1 when using FA or MD alone, indi-
cating that for a relatively more difficult grade classification

task, the region of only solid tumor may not be adequate;
interestingly, the effect becomes close between ROI1 and
ROI2 when we use the combined data of the FA and MD.
This may indicate that additional information from the two-
modality fusionmay be gained to complement the information
carried in the non-solid tumor regions (i.e., necrosis, cyst, and
peritumoral edema). This hypothesis, of course, will need fur-
ther studies to look into more profound on the relationship of
tumor regions and modalities for grade classification.

Our study has some limitations. First, the patient popula-
tion was relatively small and from a single institution.
Although we have used cross-validation to try to mitigate
potential over-fitting, our study is still at the risk of over-
fitting, as we do not have external data for an independent
test. In futurework,we plan to assemble a largermulti-center
dataset to further evaluate our findings. We welcome re-
searchers from the readers who have such data and interest
to collaborate for follow-up studies on this topic. Second, the
ROIsweremanually delineated slice by slice, which can also
be very time consuming and is susceptible to reader variabil-
ity. Ideally, fully-automated and accurate segmentation by
computerized methods is expected; we tested a couple of
existing automated methods on our dataset but the segmen-
tationeffectswerenot satisfactory thusnot used.Third,while
we found that the deep features play a dominant role in the
classification tasks we performed, it is not straightforward to
interpret the physical meanings of these features, whichmay
create obstacles in gainingclinical trust for using suchkindof
radiomic features in computerized decision-makingmodels.
Besides,weplan to test and compare the effects of someother
deep learning models in a future study. Finally, we expected
to make a comparison between the conventional MRI se-
quences and the DTI sequences for the grade classification;
we feel that this study provided essential basics and experi-
mental data to support our next-step research.

We would also like to point out that the molecular alter-
ations that have been shown predictive of prognosis values in

Fig. 8 Weight distributions of the selected features in classifying WHO III vs IV grade

Table 6 The classification AUCs using deep learning alone for
classifying LGGs from HGGs and WHO III from WHO IV

ROI1 AUC ROI2 AUC

LGGs vs HGGs

FA+MD 0.75 0.68

WHO III vs WHO IV

FA+MD 0.85 0.81
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recent years [2, 5], such as IDH mutation, 1p/19q codeletion,
were not involved in this preliminary study. At our institution,
the stratification of glioma patients is still mainly based on
grading. So this work serves as a foundation to enable us to
continue to investigate radiomic features for molecular level
analyses, such as distinguishing mutation statuses, in future
work.

Conclusions

In summary, we performed a quantitative radiomics study to
show that a set of brain DTI-derived imaging features can help
distinguish the different grades of brain gliomas. After further
evaluation, this kind of method and models may contribute to
developing a clinical-decision toolkit to assist physicians in
glioma grading.
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