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Abstract
Accurate and fully automatic brain tumor grading from volumetric 3D magnetic resonance imaging (MRI) is an essential
procedure in the field of medical imaging analysis for full assistance of neuroradiology during clinical diagnosis. We propose,
in this paper, an efficient and fully automatic deep multi-scale three-dimensional convolutional neural network (3D CNN)
architecture for glioma brain tumor classification into low-grade gliomas (LGG) and high-grade gliomas (HGG) using the whole
volumetric T1-Gado MRI sequence. Based on a 3D convolutional layer and a deep network, via small kernels, the proposed
architecture has the potential to merge both the local and global contextual information with reduced weights. To overcome the
data heterogeneity, we proposed a preprocessing technique based on intensity normalization and adaptive contrast enhancement
ofMRI data. Furthermore, for an effective training of such a deep 3D network, we used a data augmentation technique. The paper
studied the impact of the proposed preprocessing and data augmentation on classification accuracy.

Quantitative evaluations, over the well-known benchmark (Brats-2018), attest that the proposed architecture generates the
most discriminative feature map to distinguish between LG and HG gliomas compared with 2D CNN variant. The proposed
approach offers promising results outperforming the recently supervised and unsupervised state-of-the-art approaches by achiev-
ing an overall accuracy of 96.49% using the validation dataset. The obtained experimental results confirm that adequate MRI’s
preprocessing and data augmentation could lead to an accurate classification when exploiting CNN-based approaches.

Keywords Classification . 3D convolutional neural network (CNN) . Magnetic resonance imaging (MRI) . Gliomas .

Classification . Deep learning

Introduction

Early and accurate detection of brain tumor grade has a direct
impact not only on the patient’s estimated survival but also on
treatment planning and tumor growth evaluation. Among the
central nervous system (CNS) primary brain tumors, gliomas
could be considered as the most aggressive [1]. Recently, the
World Health Organization (WHO), in its revised fourth edition
published in 2016 [2], has considered two categories of glioma
tumors: the low-grade (LG) and the high grade (HG) glioblas-
tomas. The LG gliomas tend to exhibit benign tendencies.
However, they have a uniform recurrence rate and could in-
crease in grade over time. The HG gliomas are undifferentiated
and carry a worse prognosis [3]. Among the recent sophisticat-
ed technologies, MRI could be considered as one of the main
modalities used to image brain tumors for diagnosis and eval-
uation. Accurate identification of the tumor grade could be
considered as a critical phase for various neuroimaging explo-
rations [4]. Such an operation could be considered a time-
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consuming task. Consciously, several machine learning [5–7]
and deep learning-based approaches [8, 9] have quickly
evolved during the past few years illustrating that today’s med-
icine depends a lot on advanced information technologies.
Several approaches have been proposed in the literature in order
to classify brain tumors through MR imaging. They could be
divided into two categories: supervised and unsupervised ap-
proaches. (1) The supervised approaches adopt a well “labeled”
data. In fact, these approaches learn from labeled training data
to predict results for unforeseen ones. (2) The unsupervised
approaches could be defined as machine learning ones which
do not need to supervise the model. Rather, we must permit the
model to labor on its own to collect information from unlabeled
data. The study [10] proved that the best classification accuracy
of glioma brain tumors was achieved using 3D discrete wavelet
transform (DWT) for feature extraction combined with random
forest (RF) classifier. A comparative study with several classi-
fiers such as multi-layer perceptron (MLP) [11], radial basis
function (RBF) [12], or naive Bayes classifier [13] has been
realized in order to attest the performance of the 3D DWT
[10]. Support vector machine (SVM) has been also widely used
for MR image classification [14, 15]. The study in [16] inves-
tigates a hybrid system based on genetic algorithm (GA) and
SVM with Gaussian RBF kernel. GA optimization has been
used to select the most relevant features. Experimental results
illustrate that the use of GA improves the SVM’s classification
accuracy.

Despite the significant potential of the supervised approaches
in glioma brain tumor classification, it required specific expertise
for optimal features extraction and selection techniques [17].
Over the past several years, unsupervised approaches [18] have
gained researchers’ interest not only for their great performances
but also because of the automatically generated features which
could reduce the error rate. Recently, deep learning (DL)-based
methods have emerged as one of themost prominentmethods for
medical image analysis such as classification [19], reconstruction
[20], and even segmentation [21]. Recently, Iram et al. [22]
discussed the use of a pre-trainedVGG-16model [23] for feature
extraction. Featuremap has been feed to long short-termmemory
(LSTM) recurrent neural network [24] to classify brain tumors
into high/low grade. Authors assume that the pre-trained CNN
models for feature extraction present better performance when
cascaded with LSTM and achieve higher accuracy compared
with GoogleNet [25], ResNet [26], and AlexNet [27]. Apparent
2D CNN limitations for brain tumors MRI classification have
been discussed in recent work [28]. As a solution, a voxelwise
residual network (VoxResNet) based on 3D CNN-based archi-
tecture for the identification of white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF) has been proposed [28].
Experimental results confirm the efficiency of brain tissues’ clas-
sification from volumetric 3D MR images. This algorithm has
been ranked first in the MR brain challenge in 2017,
outperforming 2D CNN’s state-of-the-art methods. Authors in

[29] have proposed an end-to-end 3-dimensional convolutional
neural network (3D CNN) with gated multi-modal unit (GMU)
fusion to integrate the information both in three dimensions and
inmultiplemodalities. ThewholeMRI images have been used in
order to be applied directly to 3D convolutional kernels using
differentMRI directions (sagittal, axial, and coronal). Inspired by
the potential success of such architecture, we were motivated to
implement a 3D CNN for brain glioma tumor classification.

The accurate glioma brain tumor classification has been
considered as a harmful task due to highly inhomogeneous
tumor regions composition. In fact, the tumor region includes
edema, necrosis, and enhancing/non-enhancing tumor.
Furthermore, some tumor sub-region intensities’ profiles
may overlap with healthy tissues.

We propose, in this paper, a novel glioblastomas’ brain
tumor grade classification approach based on deep three-
dimensional convolutional neural network (3D CNN) in order
to distinguish between HG and LG tumors. The principal re-
search contributions of this paper are mainly:

& The proposed approach presents an automated multi-scale
3D CNN-based architecture for brain MRI glioma tumor
classification on the basis of the World Health
Organization (WHO) standards.

& A preprocessing method [30] for volumetric MR images
has been used to improve the performance of CNN to
overcome the major problem in MR images such data
heterogeneity and low contrast.

& Using deep architecture through small 3D kernels size, the
proposed architecture has the potential to extract more
local and global contextual features with highly discrimi-
native power for glioma classification with reduced com-
putational and memory requirements.

& We have applied a data augmentation technique to gener-
ate new patches from the original ones to overcome the
lack of data and to tackle the large variation of brain tu-
mors heterogeneity.

& Comparison results over MICAII challenge “BRATS-
2018” prove that the proposed approach could yield the
best performance by presenting the highest classification
accuracy compared with supervised/unsupervised recent
state-of-art methods.

The remainder of this paper is organized as follows:
Proposed approach details the proposed approach. Results ex-
plores the experimental results and discusses the obtained re-
sults. Finally, conclusions are drawn in Discussion.

Proposed Approach

The proposed approach investigated a real 3D deep CNN
architecture for automatic MRI glioma brain tumor grading.
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For instance, a 2D deep learning model learns increasingly
complex features’ hierarchy, by implementing many trainable
filters’ layers and optional pooling operations. The majority of
these methods do not entirely examine the volumetric infor-
mation in MR images but explore only two-dimensional
slices. These slices could be considered independently or by
using three orthogonal 2D patches to merge the contextual
information [21]. Hence, our proposed approach, based on
employing 3D convolutional filters, takes advantage of gen-
erating more powerful contextual features that deal with large
brain tissues’ variations [13].

Furthermore, to boost the proposedmodel performance, we
adopted a preprocessing approach based on an intensity nor-
malization followed by a contrast enhancement technique for
MR images. Such a process could be considered as not con-
ventional (typical) in CNN-based classification approaches.
The proposed approach flowchart is illustrated in Fig. 1.

The proposed approach includes essentially the following
steps:

1. Data preprocessing: Normalization and contrast enhance-
ment, through T1-Gado MR scans, have been applied in
order to enhance the images’ quality, followed by a
resizing step of the input images to optimize the required
memory.

2. Data augmentation: A simple flipping method is per-
formed in order to fill the gap of data’s lack to ensure an
efficient CNN training.

3. 3D CNN architecture design and optimization: The hy-
per-parameters, such as the number of convolution layers,
pooling layers, and fully connected layers (FCLs) have
been settled.

4. Model training: Training the proposed model using the
augmented dataset and enhanced MR images.

Preprocessing

One of the major difficulties in MRI analysis is to deal with
the thermal noise and the artifacts caused by the magnetic field
and the small motions produced by the patient during the
scanning process. In fact, existing noise in the acquired MRI
scans could corrupt the fine details, blur tumor edges, and
even decrease the images’ spatial resolution [31]. Thus, it
could seriously degrade the performance of CNN-based
methods by making the feature extraction more complicated
[32]. For this reason, denoising and contrast enhancement [33]
techniques for MR images [4] have gained recently a lot of
interest and have been widely investigated by researchers to
ameliorate the quality of the data before engaging in MRI
brain tumors exploration such as classification and/or segmen-
tation [28, 34, 35].

Since the MRI scans could be collected from multiple in-
stitutions, the MRI scan intensities may vary significantly.
Therefore, the intensity normalization [21] based on linear
transformation in the range [0, 1] through the min-max nor-
malization technique is used to reduce intensities
inhomogeneity.

In this work, our preprocessing consists of 3 steps as illus-
trated in Fig.2: First, we apply intensity normalization of the
whole T1-Gado MRI scans followed by an MRI contrast en-
hancement method, previously developed in a previous work
[30]. Finally, we resize the input MR images for memory
optimization purposes. In fact, the size of the MR images in
the BraTS database is 250 × 250 × 155. The considered size is
then 112 × 112 × 94. The adopted image resizing is the cubic
B-spline method [36].

Data Augmentation

In computer vision, the data augmentation could be consid-
ered as an important key factor that is very effective in training
highly deep learning based-methods [37]. A variety of data
augmentation strategies have been proposed in the literature
[38] for deep learning in medical imaging such as random
crops, rotation, shears, and flipping. Recent studies [39] prove
that some augmentation strategies could capture medical im-
age features more effectively than others leading to better
accuracy. This study demonstrates that the flipping technique
is the optimal data augmentation strategy for medical imaging
classification that leads to more discriminative feature maps
compared with other techniques. Based on this study, we are
encouraged to adopt the only horizontal and vertical flipping
technique to generate new patches for each image in the train-
ing dataset.

Proposed Architecture: Deep Multi-scale 3D
Convolutional Neural Network

The proposed architecture, illustrated in Table 1, is built with
eight convolutional layers and three fully connected (FC)
layers. For accurate brain glioma tumor classification, our
proposed CNN model is based essentially on two principal
components:

1. Unlike 2D-CNN architecture, which does not entirely ex-
amine the volumetric information in MR images but ex-
plore only two-dimensional slices, we adopt a 3D
convolutional layer that provides a detailed feature map
exploiting the entire volumetric spatial information to in-
corporate both the local and global contextual
information.

2. Deep network architecture that produces a better quality
of local optima. The additional nonlinearity, in such ar-
chitecture, could yield highly discriminative power [40].
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Fig. 1 Flowchart of the proposed approach for glioma brain tumor classification

Fig. 2 Preprocessing steps
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As a result of the richer structures captured by the deeper
models, the deeper architectures have previously shown its
effectiveness for natural images’ classification. On 3D net-
works, its impact could be considered as more drastic [40]

However, 3D CNN is computationally and memory
exhausted as an increased number of trainable parameters are
required when compared with the 2D CNN variant. Thus, as a
solution, we proposed the exclusive use of 3 × 3 kernels at each
convolutional layer which could be considered as faster to con-
volve allowing stacking more layers with reduced weight.
Meanwhile, the pooling layers were used in order to reduce
the size of the intermediate layer. Another adopted solution to
deal with memory constraints is the use of reduced filters’
number per layer especially in the first two layers of the net-
work where the features have higher dimensionality (only32
filters in the first layer and 64 in the second layer).

Only eight convolutional layers were stacked to avoid that
the extracted features become more abstract with the net-
work’s increased depth. The next subsections detail the pro-
posed CNN architecture and the adopted hyper-parameters.

Activation function

The activation function could be considered as the responsible
of the nonlinearity which transforms the data. The rectifier
linear unit (ReLU) is deployed as an activation function in
the proposed model, defined in Eq. (1), where f (i) represents
the function of neuron’s output of an input called “i.”

f ið Þ ¼ Max 0; ið Þ ð1Þ

We adopt “ReLU” to achieve better performance consider-
ing its ability to faster train deep CNN alternately to classical
“sigmoid” or “hyperbolic tangent” functions given by Eq. 2.

f ið Þ ¼ tanh ið Þ ð2Þ

Pooling

Pooling is a down-sampling strategy on CNN.We could spec-
ify essentially two conventional forms for pooling such as
max pooling [41] and average pooling [42]. The average
pooling is characterized by the consideration of all elements
in a pooling region, even the parts which have low magnitude.
The combination between the average pooling and the
(ReLU) activation function leads to the creation of down-
weighting strong activations’ effect as a result of the average
computation takes into account many zero elements. Even
with hyperbolic tangent activation functions, which could be
considered as a worse case, the strong positive and the nega-
tive activation could cancel each other out, which could en-
gender then smaller pooled responses [43]. Fortunately, max
pooling does not present such drawbacks. For this reason, max
pooling has been used, in this work, since it extracts the most
relevant features for classification like tumor edges [21]. A
max filter has been applied to the max pooling process to
non-overlapping the initial representation’s sub-regions. Fig.
3

Regularization

For the fully connected (FC) layers, we have used the dropout
[44] as a regularization to boost the generalization ability and
to prevent overfitting. Dropout removes stochastically the net-
work’s nodes with probability for each region during training.
Therefore, all FC layers’ nodes have been forced to learn
better the data’s representations while preventing nodes from
co-adapting to each other. All nodes have been used at the test
time. Dropout could be then considered as a different

Table 1 Proposed architecture
Type Filter size # Number of filters Stride # FC units

Layer 1 Conv1 + BN 3 × 3 × 3 32 (2, 2, 2) -

Layer 2 Conv2 +Max Pooling + BN 3 × 3 × 3 64 (1, 1, 1) -

Layer 3 Conv3 +Max Pooling + BN 3 × 3 × 3 128 (2, 2, 2) -

Layer 4 Conv4 +Max Pooling + BN 3 × 3 × 3 256 (1, 1, 1) -

Layer 5 Conv5+ BN 3 × 3 × 3 256 (2, 2, 2) -

Layer 6 Conv6 + Up-sampling + BN 3 × 3 × 3 128 (1, 1, 1) -

Layer 7 Conv7 + Up-sampling + BN 3 × 3 × 3 64 (2, 2, 2) -

Layer 8 Conv8 3 × 3 × 3 32 (1, 1, 1) -

Layer 9 FC-1 - - - 256

Layer 10 FC-2 - - - 256

Layer 11 FC-3(Softmax) - - – 2

Conv refers to convolutional layer, BN refers to Bach normalization, FC refers to fully connected (FC) layers, Up-
sampling layer: it concatenates a repetition layer with a Conv + Max Pooling + BN layer with kernel size 3 × 3
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networks’ set and a banging’s form because each network has
been improved by a training data portion.

Training Step

For efficient data training, the owing parameters was
discussed: optimizer, loss function, and initialization

Optimizer

Adam is an optimization algorithm that could be used as a
substitute for the classical stochastic gradient descent (SGD)
procedure to refresh network weights. Such optimizer com-
bined two extensions of stochastic gradient descent’s advan-
tages specifically: adaptive gradient algorithm (AdaGrad) and
Root Mean Square Propagation (RMSProp) [45].

Loss Function

In this research, categorical cross-entropy is employed as a
loss function. This function is used to compare the predic-
tions’ distribution with the true one according to Eq. (3) where
ŷ and y represent respectively the predicted and the target
values.

L y;by
� �

¼ − ∑
M

j¼0
∑
N

i¼0
yij*log byij

� �� �

ð3Þ

Initialization

The Glorot normal called also Xavier normal has been used
since it could be considered as one of the most recommended
common initialization schemes for deep CNN architectures
[21]. We ensure then to maintain in control of the activations
and the gradients. Samples have been drawn from uniform
distribution within [− limit, limit] given by Eq. 4 where fin
and fout represent respectively the input’s number and the out-
put units in the weight tensor.

limit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

f in þ f out

s

ð4Þ

Results

This section is dedicated to the presentation of the experi-
ment’s results in order to justify the hyper-parameters choice
and to validate the real impact of the proposed approach’s
main contributions. Python 3.4 environment has been used
to construct the proposed 3D-CNN using the KERAS and
Tensorflow backend library on a workstation Intel-i7
2.60 GHz CPU, 19.5Go RAM equipped with NVIDIA GPU
Geforce GTX 1080 Ti 11Go RAM.

Dataset

The evaluation was carried out on the multi-modal Brain
Tumor Segmentation Challenge (BraTS 2018) [46] in con-
junction with the MICCAI conference. This challenge has
essentially been taken in order to compare among the current
state-of-the-art methods for the multi-modal segmentation
task. Nerveless, provided annotation into HG and LG glioma
tumors, approved by experienced neuroradiologists, inspired
us to use such database for the classification purpose. Each
subject case in BraTS-2018 has four volumetric MRI scans:
the native (T1), the post-contrast T1-weighted (T1-Gado), the
T2-weighted (T2), and the fluid-attenuated inversion recovery
(FLAIR). All data have been previously skull-stripped, co-
registered to the same anatomical template, and interpolated
to the same resolution (1 mm3).The BraTS-2018 training
dataset comprises 284 subjects that include 209 HG and 75
LG glioma tumors. The validation data comprise 67 mixed
grades glioma tumors. The neuroradiologists have assessed
radiologically the complete original TCIA glioma collections,
and the dataset has been updated with more routine clinically-
acquired 3TMRI scans. The BraTS-2018 is available through
the Image Processing Portal of the CBICA@UPenn (IPP, ipp.

Fig. 3 Max pooling concept with
2 × 2 filters and stride 2

908 J Digit Imaging (2020) 33:903–915

http://ipp.cbica.upenn.edu


cbica.upenn.edu). Figure 4 illustrates a HG and LG subject
case from the BraTS dataset.

Evaluation Metric

The accuracy has been used as an evaluation metric to assess
the proposed approach’s efficiency. The classification accura-
cy is defined as follows:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ

where the true positives (TP) represent the high-labeled data
that are correctly classified, while the true negatives (TN) are
the correctly predicted, although the false positives (FP) are
MR images that are classified wrongly and the false negatives
(FN) represent data that are correctly classified.

Validation of the Proposed Approach

In this section, we will firstly assess each processing step’s
effects on the final classification accuracy. Then, we will val-
idate the use of a deep architecture by making a comparative
study with shallower networks architecture.

Preprocessing’s Validation

The training dataset quality has a direct impact on CNN per-
formance. The publically available dataset (BraTS) could be
considered as highly heterogeneous since it has been collected
from multiple sites with different scanner technology and ac-
quisition parameter settings. Thus, it may affect the MR scan
qualities that could seriously limit the classification perfor-
mance of the CNN model. To reduce the data heterogeneity,
several researchers, such as Pereira et al. [21], found the main
gain (4.6%) in the overall accuracy of CNN-based architecture
after applying an intensity normalization using the same dataset
for brain tumors segmentation. Insipid by the positive effect of

intensity normalization on optimizing the performance of CNN
for the segmentation [47], we applied the min-max normaliza-
tion technique for voxels’ intensity normalization.

For contrast enhancement, we have applied an adaptive
contrast stretching technique based on the original image sta-
tistical information [30].This technique preserves the tumor’s
edge as well as the original image significant features. The
applied technique has achieved encouraging results in MR
images’ region of interest (ROI) contrast enhancing without
an over noise amplification of the entire image. The final step
of our proposed preprocessing is resizing the brain MR input
image in order to overcome the computational complexity.

To gauge the suggested preprocessing’s impact on MRI
glioma grading, we evaluate the accuracy with/without the
preprocessing step. Figure 5 illustrates the obtained accuracy
in the function of epoch’s number.

According to obtained results, one could notice that the
accuracy is clearly better when applying the preprocessing
confirming the effectiveness of the applied data preprocessing
and the efficient model training.

Data Augmentation’s Validation

Medical imaging benchmarks are often imbalanced which
could be considered as a serious problem especially when
deep CNN is established for a fully automatic classification
causing erroneous diagnosis guidance for the tumor grade
diagnosis [39]. For instance, in the used dataset, the number
of LG glioma brain tumor subject cases is much lower com-
pared with the number of HG glioma subject cases. To bal-
ance the number of each class samples, data augmentation
techniques are used. Moreover, the data augmentation is a
common solution to alleviate the deeper networks’ overfitting.
To evaluate such process impact on the proposed model per-
formance, we have computed the classification’s accuracy
with/without using data augmentation techniques. Figure 6
illustrates the effect of the data augmentation on the classifi-
cation accuracy in terms of number of epoch.

a b

Fig. 4 a High-grade (HG) glioma
subject case. b Low-grade (LG)
glioma subject case
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As illustrated in Fig.6, one could notice that the use of the
data augmentation’s techniques ameliorates clearly the classi-
fication’s accuracy from 0.8246 to 0.964. For this reason, we
have adopted this amelioration on the proposed classification
approach.

Deep Network Architecture’s Validation

To validate the real effects of the proposed deep CNN archi-
tecture on the classification accuracy, we changed each
convolutional layer of the proposed model with larger kernels
which have the equivalent effective receptive field. Two var-
iants of kernels size have been experimented using the pro-
posed architecture:

& (5 × 5) kernels size with maintaining the feature maps’
number as for the proposed architecture.

& (7 × 7) kernels size where we increased the CNN’s capac-
ity by augmenting the feature maps, namely, 64 in the first
convolutional layer, 64 in the second, and 128 in the third
and the fourth layers.

As illustrated in Figs. 7 and 8, one could notice that the
proposed architecture yields higher accuracy value on
testing and validation dataset compared with the
shallower networks of (5 × 5) and to a (7 × 7) kernels size.
These results confirm that our proposed architecture,
using small (3 × 3), could capture more details compared
with large kernels size even when increasing the feature
maps. One could conclude that the proposed architecture
has the advantage to maintain the effective receptive
fields of bigger kernels while reducing the number of
weights and allowing more non-linear transformations
on the data. For this reason, we have adopted the use of
(3 × 3) kernels size deep CNN.

Hyper-parameters’ Validation

In this section, we propose to study hyper-parameters’ effects
on the classification’s accuracy and more specifically the ef-
fects of the pooling, the activation function, the optimizer, and
the initializer.

Fig. 5 Preprocessing impact on classification’s accuracy

Fig. 6 Data augmentation technique’ impact on classification’ accuracy
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Pooling

We investigate average pooling versus max pooling. As illus-
trated in Fig. 9a, the max pooling has shown efficient perfor-
mance compared with average one. For this reason, we have
adopted the max pooling in the proposed CNN architecture.

Activation function

A comparative study between three activation function’s tech-
nique ReLu, selu, and tanh has been performed. As shown in
Fig. 9b, one could notice that the ReLu activation function
outperforms the two other activation function.

Optimizers

The Adam optimizer has been used to learn our network
weights.Moreover, a second optimizer, the stochastic gradient
descent (SGD), has been also tested in order to assess the
classification performance. During the experiments, the initial

learning rate for both optimizers was set to 0.001. As illustrat-
ed in Fig. 9c, the Adam optimizer provides much better per-
formance compared with SGD optimizer.

Initializer

In order to justify our initializer’s choice, we have compared
the performances of two different techniques: the Glorot nor-
mal and the Glorot uniform. As shown in Fig. 9d, the Glorot
normal presents higher accuracy value that is why this
initializer will be chosen in the proposed approach.

Discussion

In order to assess the proposed approach’s performances, a
comparative study has been performed with both hand-
crafted and deep learning-based approach from state of the
art. Table 2 reports the obtained classification accuracy with
the proposed approach as well as with the supervised

Fig. 7 Comparison of deep versus large kernels (5 × 5) based CNN architecture

Fig. 8 Comparison of deep versus (7 × 7) large kernels with augmented features maps
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approaches when applied to the BraTS dataset challenge for
brain glioma classification.

The approach proposed by [48] aims to classify glioma tu-
mors into HG and LG. The features have been extracted by a
fusion process between three modalities (MRI T1, T1-contrast,
and FLAIR) based on the histogram, the shape, and the gray-

level co-occurrence matrix (GLCM), and only forty-five sig-
nificant features have been selected using LASSOmethod. The
final classification is done by logistic regression (LR) using the
LASSO score. The method achieved an accuracy of 89.81%.

The algorithm proposed by Cho et al. [49] investigated two
types of classifiers mainly SVM and RF to distinguish

a b

c d
Fig. 9 Hyper-parameters’ validation. a Max pooling validation. b Relu activation function validation. c Adam optimize validation. d Glorot normal
validation

Table 2 Comparative study with supervised-based methods for brain MRI glioma classification (supervised method versus proposed approach)

Method/year Preprocessing Feature extraction Dim Classifier Accuracy (%)

[48]
(Hwan-ho, 2017)

- Histogram, shape/gray-level co-
occurrence matrix (GLCM)

2D LASSO coefficient 89.81%

[49]
(CHO et al., 2018)

- Histogram-based features GLCM
intensity size-zone [ISZ]

2D Random Forest (RF) 88%

[10]
(Ghazanfar et al., 2017)

Intensity normalization
filtering/histogram matching

3D DWT 3D Random Forest 89%

[49]
(CHO et al., 2018)

- Histogram-based features GLCM
intensity size-zone [ISZ]

2D SVM 87%

Proposed Intensity normalization/
contrast enhancement

Automatically 3D Deep CNN 96.49%
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between HG and LG through brain MRI. Qualitative evalua-
tions could attest that the RF classifier showed the best per-
formance (89%) compared with the SVM classifier (87%).
For feature extraction, the authors have used shape and tex-
tural features. The study in [10] investigates brain glioma tu-
mor’s classification into four classes (necrosis, edema, en-
hancing, and non-enhancing tumors). A 3D DWT has been
used for feature extraction. A comparative study has been
performed in order to evaluate different classifiers’ perfor-
mances such as naive Bayes (NB), MLP with one hidden
layer, and MLP with backpropagation, and the obtained accu-
racy was 60%, 70%, 76%, 80%, and 88%, respectively. RF
classifier achieved then the better performance.

Table 3 illustrates a second comparative study between the
proposed approach and the state-of-the-art CNN-based
methods using the same dataset (BraTS).

The 3D CNN is rarely explored in MRI processing. To the
best of our knowledge, only Iram et al. [22] have developed a
3D-based CNN model for MRI glioma grading. The feature’s
maps have been extracted from the volumetric MR images and
then are fed into the long short-termmemory’s (LSTM) temporal
direction network to classify brain tumors into HG and LG gli-
omas. In fact, thismethod is semi-automatic and does not explore
sufficiently the 3D volumetric contextual information. However,
automatic classification is highly desired in neurology’s practice.

In 2DCNN approaches, we have investigated two 2DCNN-
based architectures. The first one has been proposed by Pan
et al. in 2015 [51] which explore a pre-trained CNN model
mainly the LeNet-5. Nerveless, this approach suffers from lim-
ited representation using shallower CNN networks. On the oth-
er hand, the approach, proposed by Ge et al. in 2018 [50], offers
competing results for high- versus low-grade glioma classifica-
tion. To enhance the obtained performances, they deployed a
deep architecture exploiting multi-modality (multi-stream) fu-
sion using six convolutional layers followed by three FC layers

and data augmentation. However, the authors do not provide
any comparative study due to datasets heterogeneity.

We could conclude that the present study offers a powerful
approach for accurate glioma tumor classification
outperforming several recent CNN architectures. Based on a
fully 3D automatic deep CNN, it could harness the compli-
mentary volumetric contextual information and offers then
better results.

Conclusion

We presented in this study a multi-scale 3D CNN framework
for automatic gliomas’ tumor grade classification in which,
instead of patching the MR image, the whole 3D volumetric
MRI sequences are passed to the network. Evaluation analysis
shows that proposed architecture can learn high distinctive
features to separate between LG and HG subject cases com-
pared with the competitors using either variants of 2D CNNs
or relatively shallower networks. Furthermore, the use of a
preprocessing step has reduced significantly the dataset het-
erogeneity created by multi-scanner technologies and acquisi-
tions protocols; meanwhile, the intensity normalization has a
positive effect against to correct gliomas’ tissues large in-ho-
mogeneity. We found that data augmentation, through only a
flipping technique, could improve significantly the overall
accuracy especially when the dataset does not provide a satis-
factory MR scans to train a deep CNN.

The comparative study with supervised and unsupervised
state-of-the-art methods, using the same dataset, could attest
that the proposed approach outperforms several well-known
CNN-based architectures for glioma MRI classification. For
future works, we proposed to investigate the newly technique
of “capsule networks (CapsNet)” for MRI brain tumor
classification.

Table 3 Comparative study with
CNN-based approaches Method/year Preprocessing Auto/semi-

auto
Dimension Method Accuracy

[50]

(Ge et al. 2018)

- Auto 2D CNN 90.4%

[22]

(Iram et al.2018)

- Semi-auto 3D AlexNet-LSTM 71%

[22]

(Iram et al.2018)

- Semi-auto 3D ResNet-LSTM 71%

[22]

(Iram et al.2018)

- Semi-auto 3D VGGNet-LSTM 84%

[51]

(Pan,et al.,2015)

Intensity normalization Auto 2D CNN 60%

Proposed
approach

Intensity normalization/
contrast enhancement

Auto 3D Deep CNN 96.49%

Entries in bold indicate the proposed method
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