Skip to main content
. 2020 Sep 15;10:1151. doi: 10.3389/fonc.2020.01151

Table 2.

Results of the discriminative model in distinguishing GBM from PCNSL in the training and validation group.

Classifier Selection method Training group Validation group
AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity
LDA Distance correlation 0.992 0.993 0.996 0.990 0.978 0.979 0.982 0.976
RF 0.970 0.968 0.935 0.990 0.964 0.957 0.906 0.990
LASSO 0.997 0.996 0.992 0.995 0.977 0.971 0.955 0.989
Xgboost 0.791 0.810 0.995 0.740 0.750 0.789 0.995 0.735
GBDT 0.972 0.970 0.939 0.996 0.956 0.950 0.892 0.995
SVM Distance correlation 0.957 0.962 0.998 0.934 0.959 0.964 0.997 0.943
RF (over-fitting) 1 1 1 1 0.5 0.585 1 0.943
LASSO 0.843 0.835 0.747 0.966 0.822 0.789 0.671 0.965
Xgboost (over-fitting) 0.5 0.541 0.747 0.967 0.5 0.586 0.671 0.965
GBDT (over-fitting) 1 1 1 1 0.5 0.586 0.670 0.965
LR Distance correlation 0.977 0.956 0.961 0.949 0.933 0.927 0.941 0.911
RF (over-fitting) 1 0.547 1 0.592 0.511 0.515 0.551 0.596
LASSO 0.959 0.988 0.942 0.981 0.975 0.966 0.975 0.964
Xgboost (over-fitting) 0.959 0.988 0.942 0.981 0.5 0.5 0.542 0.586
GBDT (over-fitting) 0.951 0.562 0.954 0.592 0.538 0.515 0.577 0.596

AUC, area under curve; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, Gradient Boosting Decision Tree; LDA, linear discriminant analysis; SVM, support vector machine; LR, logistic regression.