Skip to main content
. 2020 Sep 28;3(9):e2018327. doi: 10.1001/jamanetworkopen.2020.18327

Table 2. Classification Models and EML Diagnostic Performance.

Enrollment Classification model % (SE) Likelihood ratio Accuracy
Sensitivity Specificity PPV NPV Positive Negative
Training set Decision tree 95.0 (3.4) 97.5 (1.7) 95.0 (3.4) 0.97.5 (1.7) 38.0 0.05 96.7
Naive Bayes 65.0 (7.5) 96.3 (2.1) 89.7 (5.7) 84.6 (3.8) 17.3 0.36 85.8
Random forest 87.5 (5.2) 100.0 (0.0) 100.0 (0.0) 94.1 (2.6) ND 0.13 95.8
k–Nearest neighbors 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) ND 0.00 100.0
Artificial neural network 92.5 (4.2) 100.0 (0.0) 100.0 (0.0) 96.4 (2.0) ND 0.08 97.5
Linear discriminant analysis 50.0 (7.9) 100.0 (0.0) 100.0 (0.0) 80.0 (4.0) ND 0.50 83.3
Support vector machine 55.0 (7.9) 100.0 (0.0) 100.0 (0.0) 81.6 (3.9) ND 0.45 85.0
Linear regression 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) ND 0.00 100.0
Deep learning 97.5 (2.5) 98.8 (1.2) 97.5 (2.5) 98.8 (1.2) 78.0 0.03 98.3
Partial least squares–discriminant analysis 92.5 (4.2) 100.0 (0.0) 100.0 (0.0) 96.4 (2.0) ND 0.08 97.5
EML 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) ND 0.00 100.0
Test set EML 100.0 (0.0) 99.9 (1.0) 88.9 (7.4) 100.0 (0.0) 707.0 0.0 99.9

Abbreviations: EML, ensemble machine learning; ND, not determinable; NPV, negative predictive value; PPV, positive predictive value.