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Abstract

Background: The recent Coronavirus Disease 2019 (COVID-19) pandemic has placed severe stress on healthcare
systems worldwide, which is amplified by the critical shortage of COVID-19 tests.

Methods: In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient
symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published
studies. We aim to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and
generate a computational classification model for discriminating between COVID-19 patients and influenza patients
based on clinical variables alone.

Results: We discovered several novel associations between clinical variables, including correlations between being
male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be
clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained
an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients
from influenza patients.

Conclusions: We demonstrated that computational methods trained on large clinical datasets could yield ever
more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously
unknown COVID-19 clinical variable correlations and clinical subgroups.
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Background
COVID-19 is a severe respiratory illness caused by the virus
SARS-CoV-2. The scientific community has focused on this
disease with near unprecedented intensity. However, the
majority of primary studies published on COVID-19 suf-
fered from small sample sizes [1, 2]. While a few primary
research studies reported on dozens or hundreds of cases,
many more studies reported on less than 20 patients [3, 4].
Therefore, there is an urgent need to collate all available
published data on the clinical characteristics of COVID-19
from different studies to construct a comprehensive dataset
for gaining insights into the pathogenesis and clinical char-
acteristics of COVID-19. In this study, we aim to perform a
large-scale meta-analysis to synthesize all published studies
with COVID-19 patient clinical data, with the goal of unco-
vering novel correlations between clinical variables in
COVID-19 patients. We will then apply machine learning
to reanalyze the data and construct a computational model
for predicting whether someone has COVID-19 based on
their clinical information alone.
We believe that the ability of predicting COVID-19

patients based on clinical variables and using an easily
accessible computational model would be extremely use-
ful to address the widespread lack of testing capabilities
for COVID-19 worldwide. Because many countries and
hospitals are not able to allocate sufficient testing re-
sources, healthcare systems are deprived of one of their
most effective tools for containing a pandemic: identifi-
cation of case hotspots and targeted action towards re-
gions and specific individuals with the disease [5]. The
scale of the testing shortage calls for methods for diag-
nosing COVID-19 that use resources local healthcare fa-
cilities currently have. We propose the development of a
disease prediction model based on clinical variables and
standard clinical laboratory tests.
A number of meta-analyses have been done on COVID-

19, but almost none of them comprehensively included data
from all published studies. Three different meta-analyses,
published in February, March, and April of 2020, included
data from 10, 8, and 31 articles, respectively [6–8]. We in-
cluded 151 articles, comprising 413 patients, in our analysis.
To the best of our knowledge, no study has performed a
large-scale machine learning analysis on clinical variables to
obtain a diagnostic model. We believe that our study will
be an important step towards leveraging the full extent of
published clinical information on COVID-19 patients to in-
form diagnosis of COVID-19, instead of relying on general
guidelines for symptoms that do not take into account the
association between different clinical variables.

Materials and methods
Literature search and inclusion criteria for studies
Patient clinical data were manually curated from a
PubMed search with the keyword “COVID-19.” A total

of 1439 publications, dating from January 17, 2020 to
March 23, 2020, were reviewed. All publications with no
primary clinical data, including reviews, meta-analyses,
and editorials, were excluded from our analysis. After
manual review, we found 151 studies with individual-level
data, encompassing data from 413 patients. All individual
patient data with 2 more clinical variables reported per pa-
tient were included. Clinical variables sought for included
demographics, signs and symptoms, laboratory test re-
sults, imaging results, and COVID-19 diagnosis. The com-
piled dataset with clinical variables for each patient, along
with a reference to the source study for each patient, can
be found in Table S4 and in the following repository:
https://github.com/yoshihiko1218/COVID19ML/projects.
For our machine learning classification task to dis-

criminate COVID-19 patients from influenza patients,
we used clinical variables for 21 influenza patients from
a study by Cheng et al. and 1050 patients from the Influ-
enza Research Database [9, 10]. Only H1N1 Influenza A
virus cases were included because of difficulties locating
data from other strains.

Correlational tests between pairs of clinical variables
We sought to uncover correlations that could yield crit-
ical insights into the clinical characteristics of COVID-
19 by correlating every variable to each other. For two
continuous variables, the Spearman correlation test was
applied. For one continuous variable and one categorical
variable, the Kruskal-Wallis test was applied. For two
different categorical variables, the chi-squared test was
applied. All statistical tests were considered significant if
the p-value is 0.05 or below.

Machine learning for classification of COVID-19 patients
into subtypes
A self-organizing map (SOM) is an artificial neural net-
work that constructs a two-dimensional, discretized depic-
tion (map) of the training set. We used the SOM
algorithm to cluster our patients based on similar patterns
of clinical variables. The SOMbrero package in R was used
[11]. Because clustering of neurons are performed using
Euclidean Distance, we first standardized each clinical
variable to ensure that they are equally weighted.
The trainSOM function was used to implement nu-

meric SOM on our data set, which is inputted as an N x
P matrix, with N = 398 patients and P = 48 variables.
From this, we selected 27 clinical variables with very
high significativity (p < 0.001) after running an ANOVA
test across all neurons and ran another iteration of train-
SOM with these variables. We generated SOMs from
the 3 × 3 neuron grid to 20 × 20 neuron grid and selected
the 9 × 9 SOM with 81 neurons as our final model based
on minimal topographic error. We then aggregated the
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neurons into super-clusters using the superClass method
in SOMbrero.

Preprocessing of data for machine learning classification
Data were preprocessed by combining data from COVID-
19 cases and influenza cases into a single matrix, followed
by removal of any clinical variables that were not present in
both the COVID-19 dataset and the influenza dataset.
Nineteen clinical variables were included as machine learn-
ing input. The variables include age, sex, serum levels of
neutrophil (continuous and ordinal), serum levels of leuko-
cytes (continuous and ordinal), serum levels of lymphocytes
(continuous and ordinal), result of CT scans, result of chest
X-rays, reported symptoms (diarrhea, fever, coughing, sore
throat, nausea, and fatigue), body temperature, and under-
lying risk factors (renal diseases and diabetes). Categorical
data were converted to dummy variables using the get_
dummies function in Pandas because non-numerical data
are not allowed in our machine learning algorithm.

Performing XGBoost classification
The eXtreme Gradient Boosting algorithm (XGBoost), an en-
semble machine learning method widely known for its superior
performance over other machine learning methods, was se-
lected for our study [12]. We first split our data into 80% train-
ing dataset and 20% testing dataset. 5-fold cross-validation was
then performed, with 70 boosting rounds (iterations), and fed
into a Bayesian optimization function for calculation of the best
hyperparameters for XGBoost. The hyperparameters tuned in-
cluded max depth, gamma, learning rate, and n_estimators.
Bayesian optimization was performed with an initial 8 steps of
random exploration followed by 5 iterations. The expected im-
provement acquisition function was used. We also performed
XGBoost classification on subgroups of COVID-19 patients,
stratifying them by gender, age, and SOM superclusters. For
each gender and age subgroup, only influenza patients of the
corresponding age and gender are included.

Evaluation of classification results
XGBoost results were evaluated by plotting a receiver op-
erating characteristic (ROC) curve and a precision recall
(PR) curve. The area under the curve (AUC) was also cal-
culated for both curves. We also performed classification
using three other machine learning models, LASSO,
RIDGE, and random forest, and compared results ob-
tained with that obtained by XGBoost. AUC of the ROC
curve was compared across the different models.

Results
Compilation of patient data and summary of clinical
variables
After compiling information from 151 published studies,
we present a total of 42 different clinical variables, in-
cluding 21 categorical and 21 continuous variables, that

are reported in more than 1 study. Discrete variables in-
clude nominal categorical variables like gender, which is
49.49% (194 patients) male and 50.51% (198 patients) fe-
male, and ordinal categorical variables like lymphocytes
level, of which 86 patients (48.86%) have low levels, 73
patients (41.47%) have normal levels, and 17 patients
(9.65%) have high levels. Continuous variables include
age, which has a mean of 38.91 years and variance 21.86
years, and serum neutrophil levels, which has a mean of
6.85 × 109 cells/L and a variance of 12.63 × 109 cells/L.
Certain variables, including all counts of blood cell pop-
ulations, have both ordinal and continuous components.
The continuous component describes the raw count of
these populations, while the ordinal component de-
scribes whether these counts are within normal range,
below normal range, or above normal range. A summary
for all data is shown in Table 1.
To evaluate heterogeneity of patient data between the dif-

ferent studies, we performed principle component analysis
(PCA) using all clinical variables as input (Figure S1).
Visualization of both PC1 vs. PC2 and PC2 vs. PC3 revealed
no significant heterogeneity between the different studies.

Relationship between pairs of clinical variables
We performed correlation between all possible pairs of
clinical variables to uncover potentially important associ-
ations (Table S1). If both variables are continuous, the
Spearman correlation test is applied (p < 0.05). Among
143 Spearman correlation tests, 27 show significant cor-
relation, with 9 of these involving age, corroborating re-
ports that age plays a critical role in the development of
COVID-19 [13]. We observed C reactive protein (CRP)
levels and serum platelets levels to be the variables with
the strongest correlations with age (Fig. 1a). CRP levels,
an indicator of inflammation, are positively correlated
with increasing age, while platelets levels are negatively
correlated with increasing age. Other than age, we ob-
served a negative correlation between the levels of CRP
and lymphocytes levels and a positive correlation be-
tween CRP levels and neutrophil levels (Fig. 1a). This re-
sult suggests that inflammation is most likely driven by
neutrophils. The serum levels of white blood cells are
also strongly correlated with neutrophils, further sug-
gesting that white blood cell counts are heavily influ-
enced by neutrophil levels (Fig. 1a).
For pairs of one continuous and one discrete variable,

the Kruskal-Wallis test is applied (p < 0.05). Among 319
Kruskal-Wallis comparisons, 36 correlations were signifi-
cant. Some of the significant pairs overlapped with corre-
lations between two continuous variables for variables
that have both ordinal and continuous components. Such
correlations are not displayed twice in Fig. 1. We found
again that age correlated significantly with multiple vari-
ables, including negative correlation with lymphocyte
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Table 1 Clinical Variables Summary of Meta-analysis

Continuous Variable

Clinical Variable # of Data mean median variance

Age 389 38.91306 39 21.85783

NumberOfFamilyMembersInfected 54 3.37037 2 2.6338

neutrophil 103 6.854078 3.31 12.62838

SerumLevelsOfWhiteBloodCell 130 7.031223 5.965 4.250785

lymphocytes 135 2.022841 0.98 4.207139

Plateletes 50 220.32 185.5 146.3334

CReactiveProteinLevels 139 31.18187 15 40.4953

Eosinophils 8 0.06125 0.01 0.070078

RedBloodCells 4 4.225 4.205 0.189011

Hemoglobin 24 45.5 14.5 49.99953

Procalcitonin 33 2.586394 0.07 12.54482

DurationOfIllness 88 14.06818 12 8.970653

DaysToDeath 3 12.66667 12 6.548961

DaysBeforeSymptomsAppear 38 7.368421 6 5.142297

NumberOfAffectedLobes 24 1.75 2 1.163687

TimeBetweenAdmissionAndDiagnosis 47 5.893617 6 4.116568

bodyTemperature 67 37.6209 37.5 0.972999

Hematocrit 7 0.320286 0.355 0.078175

ActivatedPartialThromboplastinTime 9 33.18889 33.4 3.642784

fibrinogen 9 3.685556 3.91 0.752184

urea 19 3.123158 3 0.863884

Discrete Variable

Variables Number Percentage

Sex

M 194 49.4898

F 198 50.5102

Community Transmission

Yes 93 37.5

No 46 18.54839

No/Wuhan 109 43.95161

Neutrophil

low 15 11.81102

normal 83 65.35433

high 29 22.83465

Serum Levels Of White Blood Cell

low 55 32.35294

normal 94 55.29412

high 21 12.35294

Lymphocytes

low 86 48.86364

normal 73 41.47727

high 17 9.659091

C Reactive Protein (CRP) Levels
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levels, positive correlation with neutrophil levels, and posi-
tive correlation with shortness of breath (Fig. 1b). Other
interesting associations were also discovered. Coughing
was found to be correlated with increasing fibrinogen
levels and decreasing lymphocyte levels. Those with lower

levels of serum white blood cells (leukocytes) are more
likely to report a positive CT scan result for pneumonia.
Females may experience a greater number of days before
symptoms appear. Finally, we found that sore throat de-
creases with increasing CRP levels (Fig. 1b).

Table 1 Clinical Variables Summary of Meta-analysis (Continued)

Continuous Variable

Clinical Variable # of Data mean median variance

normal 60 37.97468

high 98 62.02532

CT Scan Results

pos 124 89.20863

neg 15 10.79137

RT-PCR Results

pos 100 96.15385

neg 4 3.846154

X-ray Result

pos 35 74.46809

neg 12 25.53191

GGO

Yes 92 96.84211

No 3 3.157895

Diarrhea

Yes 30 45.45455

No 36 54.54545

Fever

Yes 261 91.25874

No 25 8.741259

Coughing

Yes 164 82.82828

No 34 17.17172

Shortness Of Breath

Yes 45 60

No 30 40

Sore Throat

Yes 37 60.65574

No 24 39.34426

Nausea/Vomiting

Yes 18 52.94118

No 16 47.05882

Pregnant

Yes 43 66.15385

No 22 33.84615

Fatigue

Yes 8 61.53846

No 5 38.46154
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For pairs of two categorical variables, a two-tailed chi-
square test is applied. 42 out of 309 comparisons showed
significant correlation, with few overlaps with former
tests. Gender is involved in 6 of the significant correl-
ation, indicating significant gender differences in
COVID-19. Contingency tables of selected significant
correlations are shown in Fig. 2. Males were found to

have higher lymphocyte and neutrophil levels than fe-
males (Fig. 2a,b). Females were found to be more likely
to have lower levels of serum white blood cells (Fig. 2c).

Clustering of patients into subcategories of COVID-19
We next aim to cluster COVID-19 patients based on
clinical variables using machine learning. We chose the

Fig. 1 Select correlations with continuous clinical variables for COVID-19 patients. a Correlations between two continuous variables (Spearman,
p < 0.05). b Correlations between one continuous and one categorical variable (Kruskal-Wallis test, p < 0.05)

Fig. 2 Correlations between gender and another categorical variable. a Correlation between lymphocyte level categories and gender. b
Correlation between neutrophil level categories and gender. c Correlation between serum leukocyte level categories and gender. A contingency
table and a bar plot of the number of patients in each level are displayed for each correlation
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well-known SOM algorithm for clustering. SOM is a
neural network that has a set of neurons organized on a
2D grid [14]. All neurons are connected to all input
units (individual patients) by a weight vector. The
weights are determined through iterative evaluations of
a Gaussian neighborhood function, with the result of
creating a 2D topology of neurons to model the similar-
ity of input units (individual patients). The algorithm
outputs a map that assigns each sample to one of the
neurons on the 2D grid, with samples in the same
neuron being the most similar to one another. Similarity
of samples decreases with distance between neurons on
the 2D map. Missing variables were ignored from the
SOM model when deriving a neural topology.
We generated square SOM neuron grids with side

lengths 3 through 20 using the trainSOM function in
the R package SOMbrero. The grids with side lengths 3,
4, 5, 7, and 9 all had topographic errors of 0 (Fig. 3a). Of
these, we chose the biggest grid (9 × 9 = 81 clusters) as
our model. After the patients were assigned to neurons,
an analysis of variance (ANOVA) test was performed to
test which variables actively participate in the clustering.
Of the 48 clinical variables we inputted, 27 were found
to have very high significativity (p < 0.001) (Table S2).
We then reran the SOM using the 27 variables on a 9 ×
9 grid. This grid is displayed on Fig. 3b and has a final
energy of 8.139248. The largest neuron has 39 patients,
the second largest has 37, the third largest has 21, and
the fourth largest has 20 (Fig. 3c).

Clinical characteristics of COVID-19 clusters
We then examined the defining features of patients
assigned to the same neurons. We investigated four neu-
rons associated with the largest number of patients and
identified the four variables with the smallest nonzero
standard deviations for each patient cluster. In the lar-
gest cluster, with 39 patients, the four smallest nonzero
standard deviations were for the variables region of in-
fection, sore throat, RT-PCR results, and coughing. In
the second largest cluster, with 37 patients, the variables
were baby death if pregnant, lymphocyte levels, fever,
and coughing. In the next largest cluster, with 21 pa-
tients, the variables were sore throat, duration of illness
in days, RT-PCR results, and coughing. In the fourth lar-
gest cluster, with 20 patients, the variables were sore
throat, fever, coughing, and age.
We next used the function superClass to compute the

relative Euclidean distances between the 81 patient clus-
ters and form superclusters. The relative distances be-
tween the individual clusters are shown in Fig. 3d-e. We
divided the 81 clusters into 4 superclusters, which are
represented in Fig. 3b by the color of the squares. Super-
cluster 1 was formed with 24 neurons, supercluster 2
had 28 neurons, supercluster 3 had 12, and supercluster

4 had 17 neurons. Visualizing distances between neigh-
boring neurons, we found that the distances are the
smallest at corners of the grid, especially the upper
right-hand corner (Fig. 3f). This corner corresponds to
supercluster 4, suggesting that patients within this clus-
ter may be especially similar.
Next, we sought to determine the clinical features that

effectively distinguish these superclusters. We performed
Kruskal-Wallis testing on the values of the 27 variables
across the four superclusters. Twenty-four variables were
significantly different between the superclusters (p <
0.05) (Table S3). We discovered that the clinical vari-
ables exhibit 3 main types of correlations with the super-
clusters: continuous increase in value from cluster 1 to
cluster 4 (Fig. 3g), clusters 1 and 3 exhibiting the same
distribution and clusters 2 and 4 exhibiting another dis-
tribution (Fig. 3h), and 3 clusters exhibiting the same
median (Fig. 3i). From these analyses, we could infer that
patients with low levels of CRP and serum immune cells
likely define cluster 1. Cluster 1 patients are also pre-
dominantly female. Cluster 2 contains patients with
slightly higher levels of CRP and serum immune cells
than cluster 1. Compared to cluster 1 patients, fewer clus-
ter 2 patient reported coughing and fever. Cluster 2 pa-
tients are predominantly male. Cluster 3 contains patients
with few reported symptoms, including less coughing,
shortness of breath, fever, and sore throat. Cluster 3 is
overwhelmingly female. Cluster 4 most likely contains pa-
tients not belonging to the other 3 clusters as it has few
distinguishing features and high levels of missing data.

Creation of a diagnostic model for COVID-19 based on
clinical variables
Because it can be difficult to distinguish influenza from
COVID-19, we downloaded clinical data collected for in-
fluenza from a study by Cheng et al. and from the Influ-
enza Research Database [9, 10]. Machine learning was
then used to perform a classification task to discriminate
between influenza and COVID-19. For machine learning,
we employed the algorithm Extreme Gradient Boosting
(XGBoost) using Python. XGBoost is a novel, state-of-the-
art machine learning algorithm that has been shown to
outperform other more traditional algorithms in its accur-
acy and efficiency [12]. It can also take both continuous
and discrete inputs and handle sparse data, in addition to
having highly optimizable hyper-parameters [15].
The datasets from non-COVID patients and COVID-

19 patients were merged and then split into training and
testing patient sets, with 80% and 20% of the patients,
respectively. Categorical variables were encoded as
dummy variables. We then tuned the model using the
Bayesian optimization method for hyperparameter
search. We found the best hyperparameters to be
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Fig. 3 Summary of COVID-19 patient clustering using SOM. a Plot of topographic error of the 2D SOM grid vs. size of the grid. b 2D plot of SOM
neurons after retaining only the most significant clinical variable for analysis. Each small grid represents a neuron, and the size of the square in
each grid represents the number of patients associated with each neuron. The color code corresponds to superclusters presented in panel (d). c
Plot of number of patients in each neuron. d 3D dendrogram summarizing the neurons into superclusters. e 2D dendrogram with the same
information as the dendrogram in panel (d). In both dendrograms, the vertical axis represents the relative distance between clusters, which can
be known between any two clusters by looking at the branch point where they diverge. f Gradient map where light blue regions of the SOM
depict higher similarity of neurons with each other. g Boxplots of immune-associated clinical variables that differentiate superclusters. h Boxplots
in which superclusters 1 and 3 display similar trends. i Boxplots in which only one supercluster has a median at a different value from the other
three. All variables have been previously normalized. For binary variables, only three possible positions on the vertical axis is possible: the bottom
one being no, the middle one being yes, and the top one being missing. For the gender (sex) variable, the bottom position is female, the middle
is male, and the top one is missing
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gamma = 0.0933, learning rate = 0.4068, max depth =
6.558, and n_estimators = 107.242.

Evaluation of XGBoost classification outcomes
From the ROC curve of prediction results, we obtained
an AUC of 0.990 (Fig. 4a). However, because there is an
imbalance of class in our input (i.e. we have significantly
more influenza patients than COVID-19 patients), the
precision recall (PR) curve may be better able to present
our model’s results. ROC curves could be significantly
influenced by skewing the distribution of classes in clas-
sification, while PR curves would not be impacted by
this action. We observed a slightly lower AUC of 0.977
in our PR curve and computed the F1 score to be 0.929
(Fig. 4b), which suggest that our model is still highly ac-
curate even when class imbalances are taken into ac-
count. The prediction result from XGBoost’s predict
function was used to plot a confusion matrix (Fig. 4c).
From the confusion matrix, we calculated a sensitivity of
92.5% and a specificity of 97.9%. We found the most im-
portant features in our prediction model to be age, CT
scan result, temperature, lymphocyte levels, fever, and
coughing, in order of decreasing importance (Fig. 4d).
We also provided a 6-level decision tree sample of our
XGBoost model (Fig. 4e), which is not a representation
of our full model.
We applied the XGBoost model to our 4 SOM super-

clusters to investigate whether classification results are
better for specific subtypes of patients. The ROC AUC is
over 0.9 for all 4 superclusters, with the best classifica-
tion performance seen for clusters 3 and 4 (Figure S2).
The high AUC for cluster 4 may not be accurate, how-
ever, because it contains more missing data fields.

Classification of COVID-19 vs. influenza patients using
other machine learning models
Since XGBoost could be prone to overfitting, which is an
inherent disadvantage of boosting models, we have also
fitted other machine learning classification models to our
data. Using RIDGE regression, random forest, and LASSO
regression, we have obtained an AUC of 96.6%, 95.3%,
and 96.3%, respectively, when trying to distinguish be-
tween influenza and COVID-19 patients (Fig. 5). With
RIDGE regression, the sensitivity was around 87%, and the
specificity was around 92%. With random forest, the sensi-
tivity was 100%, and the specificity was around 90%. How-
ever, based on the ROC curve, the random forest method
does not have great power. With LASSO, the sensitivity
was around 85%, while the specificity was around 93%.
While none of these models achieved as high of an accur-
acy as XGBoost, the reasonably high accuracy achieved by
these models suggested that XGBoost’s classification
power is likely not exclusively due to overfitting.

Classification performance based on gender and age
groups
We applied our classification models to five different
demographic groups: male, female, young (18–39 years
old), middle age (40–65 years old), and old (> 65 years
old). We discovered that XGBoost performs the best in
all classification tasks out of all our models, except for
when the model was used for old patients (Fig. 6). For
patients 65 years old or above, the classification power
was poor for all models. This is likely due to the rela-
tively fewer number of patients in our dataset who are
older than 65. Other than this cohort, we found a very
high ROC AUC for all other cohorts (Fig. 6).

Fig. 4 Summary of XGBoost classification of COVID-19 and influenza patients. a ROC curve of prediction. b Precision recall curve of prediction. c
Confusion matrix of prediction. d Variables most important for classification, listed by decreasing order of importance. e 6-level sample model of
SOM decision tree construction
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Discussion
As the recent pandemic of COVID-19 unfolds across the
world, the inability of countries to test their citizens is
heavily impacting their healthcare system’s ability to
fight the epidemic. Testing is necessary for the identifi-
cation and quarantine of COVID-19 patients. However,
the multi-step process required for the conventional
SARS-CoV-2 test, via quantitative polymerase chain re-
action (qPCR), is creating difficulties for countries to test
large numbers of suspected patients [16]. Testing begins
with a healthcare worker taking a swab from the patient.
The swab is sent to a laboratory, and viral RNA is ex-
tracted from the sample and reverse transcribed into
DNA. The DNA is tagged with a fluorescent dye and
then amplified using a qPCR machine. If a high level of
fluorescence is observed compared to control, the sam-
ple is positive with SARS-CoV-2. Each step of the testing
process is susceptible to severe shortages [17].
In this study, we aim to mine published clinical data of

COVID-19 patients to generate a new diagnostic frame-
work. We hypothesize that novel or complex associations
between clinical variables could be exploited for diagnosis
with the aid of machine learning. Not only may underlying
relationships between clinical variables in COVID-19 be
useful for the development of a computational diagnostic
test based on signs, symptoms, and laboratory results,
these correlations can also yield critical insights into the
biological mechanisms of COVID-19 transmission and
infection.
Using correlational tests, we corroborated previous

findings and expected results for COVID-19 patients but
also uncovered novel relationships between clinical vari-
ables. We found that age is correlated with CRP level, an
indicator of inflammation, and decreased platelet levels.
It is known that as age increases, the proinflammatory
response becomes stronger, leading to increasing CRP

and decreasing platelet levels [18]. However, we found
surprising correlations with gender, including higher
serum neutrophil and leukocyte levels in males com-
pared to females. According to the National Health and
Nutrition Examination Survey, with data from over 5600
individual, few differences exist between male and fe-
males in the serum levels of these cells [19]. Another
study with 200 samples found that neutrophils are gen-
erally higher in women [20]. Correlations with gender
observed here may offer a piece of the explanation for
why men infected with COVID-19 seem to experience
poorer prognosis, one of the important outstanding
questions of COVID-19 [21].
We also classified COVID-19 patients into different

clusters using the SOM machine learning algorithm. Two
of the clusters are defined by low vs. high levels of im-
munological parameters, including immune cell counts
and CRP levels. A third cluster is defined by a tendency
for fewer reported symptoms, including sore throat, fever,
and shortness of breath, and is predominantly female.
Finally, using the machine learning algorithm XGBoost,

we constructed a computational model that successfully clas-
sified influenza patients from COVID-19 patients with high
sensitivity and specificity. We believe that our model demon-
strated the feasibility of using data mining and machine
learning to inform diagnostic decisions for COVID-19. Such
a model could be extremely useful for more effective identifi-
cation of COVID-19 cases and hotspots, which could allow
health officials to act before testing shortages could be
addressed.
Interestingly, we have found age to be the most signifi-

cant determinant of the accuracy of our model. We
hypothesize that this could be due to the respective inci-
dence rates of COVID-19 and influenza for each age
group. While COVID-19 disproportionally affects the
elderly population, influenza affects the younger

Fig. 5 Classification of COVID-19 vs. influenza patients using RIDGE, random forest, and LASSO models. ROC curves and AUC for each model
were presented
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population much more. According to CDC data, people
aged 65 or above the only constitute 3.9% of all influenza
cases from 2010 to 2016 [22]. In contrast, people aged
0–4 years made up 13.2% of influenza cases, and those
aged 18–49 years made up 7.4% of influenza cases. For
COVID-19, however, only around 4% of cases affect
people 0–19 years of age, and 33% of cases affect those
60 or above [23].
Despite promising results, several limitations exist for

our study, all of which stem from the lack of large-scale
clinical data. First, our sample size is severely limited be-
cause most clinical reports published do not publish
individual-level patient data. Second, data on influenza
signs and symptoms are equally inaccessible. We were

only able to locate data for patients with H1N1 influenza
A, which is not one of the active strains in the current
influenza season. Third, many of our data sources are
case studies that focused on specific cohorts of COVID-
19 patients. This increases the chance of us capturing a
patient population that is not representative of the gen-
eral population, although this is an inherent risk of sam-
pling. We anticipate that as more data are made openly
available in the weeks and months to come, we will be
able to build a more robust computational model. There-
fore, we intend to provide the model we constructed as a
computational framework for computation-aided diagno-
sis of COVID-19 data rather than a ready-to-use model.
We also encourage researchers around the world to

Fig. 6 Classification of COVID-19 vs. influenza patients in different demographic cohorts. RIDGE, LASSO, random forest (RF), and XGBoost
classification models were applied to 5 different cohorts of patients
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release de-identified patient data to aid in data mining and
machine learning efforts against COVID-19.

Conclusions
In conclusion, we demonstrated the use of machine
learning models to predict COVID-19 presence using
only commonly recorded clinical variables. Specifically,
we successfully differentiated COVID-19 patients from
influenza A patients using these clinical variables alone.
Our machine learning models were constructed using
publicly available data in published literature. We also
conducted correlational analyses on this dataset and de-
termined that males with COVID-19 have higher serum
neutrophil and leukocyte levels than females with
COVID-19. Finally, we used this dataset to cluster
COVID-19 patients into 3 clinically relevant subtypes.
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