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ABSTRACT

The false negative rate of the diagnostic RT-PCR test for SARS-CoV-2 has been reported to be
substantially high. Due to limited availability of testing, only a non-random subset of the population
can get tested. Hence, the reported test counts are subject to a large degree of selection bias. We
consider an extension of the Susceptible-Exposed-Infected-Removed (SEIR) model under both
selection bias and misclassification. We derive closed form expression for the basic reproduction
number under such data anomalies using the next generation matrix method. We conduct extensive
simulation studies to quantify the effect of misclassification and selection on the resultant estimation
and prediction of future case counts. Finally we apply the methods to reported case-death-recovery
count data from India, a nation with more than 5 million cases reported over the last seven months.
We show that correcting for misclassification and selection can lead to more accurate prediction of
case-counts (and death counts) using the observed data as a beta tester. The model also provides
an estimate of undetected infections and thus an undereporting factor. For India, the estimated
underreporting factor for cases is around 21 and for deaths is around 6. We develop an R-package
SEIR-fansy for broader dissemination of the methods.
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1 Introduction

The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), was first identified in
Wuhan, China in December 2019. The World Health Organisation declared the outbreak a Public Health Emergency of
International Concern on 30 January 2020. On 11 March, 2020, the outbreak was classified a pandemic. As of August
15, 2020, more than 21 million cases of COVID-19 have been reported in 188 countries and territories. More than
775,000 deaths have been reported worldwide [25].

Ramping up rapid testing for COVID-19 is an important component of proposed non-pharmaceutical intervention
strategies to control an outbreak [21]. Presence of an active COVID-19 infection can be confirmed by using reverse
transcription polymerase chain reaction (RT-PCR) tests of infected secretions (typically obtained via a nasopharyngial
swab) or CT imaging of the chest [1]. Evidence-based clinical understanding of diagnostic test results is essential
to garner insight about COVID-19 management through effective contact tracing and isolation, ultimately leading to
mitigated transmission risk [27].

There has been growing concern about false negative RT-PCR tests in patients with COVID-19-like symptoms. A
preprint [31] describes a study of 213 patients hospitalized with COVID-19. In the week following onset of disease for
the patients, 11% of sputum-, 27% of nasal- and 40% of throat-based samples were deemed as false negatives. Studying
publicly available time-series data of laboratory tests of SARS-CoV-2 viral infection, another article [6] aims to better
understand misclassification errors in the identification of true COVID-19 cases using Bayesian methods. A systematic
review [2] of five studies (enrolling a total of 957 patients) reports a range of 2 to 29% of false negatives. The authors
note that the certainty of evidence is suspect, because of the heterogeneity of sensitivity estimates among the studies,
lack of blinding to index test results in establishing diagnoses, and failure to report key RT-PCR characteristics. The
general consensus on the issue of false negatives is that the evidence, while limited, raises serious concerns about
negative RT-PCR results. In particular, false negative results are worrisome because they might provide false assurance
to someone with a true infection and lead to further spread of the disease [29].

Models for projecting infectious disease spread have become widely popular in the wake of the pandemic. Some popular
models include the ones developed at the Institute of Health Metrics (IHME)[7] (University of Washington, Seattle) and
at the Imperial College London (ICL)[9]. The IHME COVID-19 project initially relied on an extendable nonlinear
mixed effects model for fitting parametrized curves to COVID-data, before moving to a compartmental model to
analyze the pandemic and generate projections. The ICL model calculates backwards from observed deaths to estimate
transmission that occurred several weeks previously, allowing for the time lag between infection and death. A Bayesian
mechanistic model is introduced - linking the infection cycle to observed deaths, inferring the total population infected
(attack rates) as well as the time-varying reproduction number R(t) - an important public health metric. With the onset
of the pandemic, there has been renewed interest in multi-compartment models, which have played a central role in
modeling infectious disease dynamics since the 20th century [23]. The simplest of compartmental models include
the standard SIR [13] model, which has been extended [22] to incorporate various types of time-varying quarantine
protocols, including government-level macro isolation policies and community-level micro inspection measures. Further
extensions include one which adds a spatial component to this temporal model by making use of a cellular automata
structure [32]. Larger SEIR models incorporate different states of transition between susceptible, exposed, infected
and removed compartments and have been used in the early days of the pandemic in the Wuhan province of China
[30]. The SEIR model has been further extended to the SAPPHIRE model [12], which accounts for the infectiousness
of asymptomatic [4] and presymptomatic [24] individuals in the population (both of which are crucial transmission
features of COVID-19), time varying ascertainment rates, transmission rates and population movement. All these
models use the daily time series of susceptible, infected, recovered (and sometimes fatalities) to model the full course
of disease transmission. None of the models mentioned above address the potential issue of false negatives, which also
contribute to the unreported cases (along with those untested infectious cases).

An auxiliary concern surrounding testing is selection bias, introduced by the selection of individuals (or sub-groups) that
are prioritized for receiving testing. The testing guidelines are often driven by severity of symptoms. Sometimes tests
are offered based on occupation, as a routine check prior to undergoing any medical procedure, or based on pre-existing
health conditions. The sample tested is, therefore, not representative of the population intended to be analyzed, and
predicted case-counts and estimated parameters can deviate from the truth. While it may be possible to estimate the
underlying selection model or run sensitivity analyses, it is difficult to prove that bias has been reduced or eliminated
[10, 5]. In the context of COVID-19 testing, such biases will continue to impact estimates of disease prevalence and the
effective reproduction number until a random sample of the population is tested and/or testing becomes abundantly
available. Moreover, false positive/negative rates of tests interact with selection bias in complex ways. A preprint
[8] discusses such interaction in greater detail, noting that current statistical models do not simultaneously account
for selection bias and measurement error. The author also puts forth several suggestions on how to improve current
case-count reporting after addressing these two issues.
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In this paper, we first propose a Bayesian compartmental epidemiological model which accounts for false negatives in
RT-PCR tests assuming a known value of the test sensitivity. We introduce compartments for false negatives and untested
individuals into the structure of the SEIR model. A system of differential equations connecting each compartment
is presented, and we derive expressions for estimating the basic reproduction number R0 [11] after accounting for
imperfect tests. The model provides an estimate for total number of cases and deaths (both reported and unreported)
after accounting for the false negatives. Uncertainty estimates for each quantity of interest are provided via Markov
chain Monte Carlo draws from the posterior distribution of the model parameters. Simulation studies are used to assess
the accuracy of estimation and prediction. We note that though estimates of R0 remains relatively robust to various
choices of FN (False Negative probability of the RT-PCR tests), modeling daily new cases, recoveries, and deaths
simultaneously after accounting for FN when it truly exists leads to better estimates of the current number of active
cases. From a public health perspective, this quantity is more important than estimating total number of cases as this is
directly related to health care needs on a daily basis. Further, we attempt to quantify the effect of selection where tests
are offered based on symptoms. Finally, we illustrate our methods by analyzing the transmission patterns of COVID-19
in India to provide national estimates/projections along with state-level estimates for the Indian states of Maharashtra
and Delhi, two hotspots for the outbreak. While our method is not country or state specific, we have chosen to analyze
the data from India for two main reasons - firstly, the number of daily new cases in India has been steadily increasing
from March, and the virus curve has not turned the corner even in August. With 1.38 billion susceptible individuals,
India now stands 3rd in the world in terms of the total number of cases and is contributing the highest number of cases
and deaths to the Global tally in August. The second reason is that the stages of national lockdowns in India are well
defined and the public health policies were roughly uniform throughout the country, which align with the assumptions
in our model.

The rest of the paper is organized as follows. In Section 2, we introduce the basic notations and compartments in our
model followed by the assumed transmission dynamics. We consider two likelihoods: (1) a binomial/Poisson likelihood
using only the data on daily cases and (2) a multinomial likelihood where we jointly model daily cases, recoveries, and
deaths. We describe estimation strategies and uncertainty quantification of model estimates. We provide an R-package
SEIR-fansy(faLSE nEGATIVE rate and syMPTOM) to implement our model. In Section 3, we present extensions of
this core model structure to incorporate (i) time varying fatality rates, changing through the course of the pandemic,
(ii) symptom-based testing of the infected and (iii) the selection bias related to who gets tested. Section 4 contains
analysis of the data from India. In Section 5, we conduct an extensive simulation study to assess the performance of our
model under misclassification and symptom-related selection. We also use simulations to characterize the influence of
increasing the number of available tests and its impact on the peak and duration of the pandemic. Section 6 provides
concluding discussion.

2 Methods and Notation

Compartmental models are mathematical vehicles to study the spread of an infectious disease. At a given time,
members of the population fall into various model compartments based on their current status (e.g. Susceptible-S,
Exposed-E, Infectious-I, or Recovered-R for the SEIR structure). The model structure describes the flow patterns of
individuals between compartments over time. In this framework, temporal dynamics of the disease process can be
viewed as continuous or occurring in discrete time intervals. Many compartmental models have been applied to model
SARS-CoV-2 infections, and the SEIR model is particularly population, since it incorporates an infection incubation
period. Recent study has proposed [16] further extensions incorporating separate compartments for asymptomatic and
pre-symptomatic cases.

In this paper, we further extend the SEIR model to incorporate testing and errors in testing as visualized in Figure 1 The
novelty of this paper is in the direct incorporation of the high false negative rates of COVID-19 RT-PCR tests into the
model structure. We break the infectious compartment in two, separating out untested and tested infectious cases. It
will be natural to assume that the a large proportion of the untested node consists of the asymptomatic individuals. But
it also contains a proportion of symptomatic people also. But the majority of the untested node is the asymptomatic
people. For tested individuals, we consider separate compartments for positive (“Tested Positive") and negative (“False
Negative"–truly infected by falsely reported as negative) test results. We assume that only people that have been
exposed will test positive, so the Tested Positive compartment corresponds to true positives. Our model specification
excludes a small fraction of people who are diagnosed based on only symptoms, without ever having a diagnostic
test. After disease exposure and possibly testing, infectious people will then either die or recover from disease. These
two outcomes are separated out into compartments corresponding to reported and unreported cases. We include both
untested individuals and individuals with false negative tests in the unreported compartments.
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We divide the entire population into 10 main compartments as described in Figure 1: S (Susceptible), E (Exposed), T
(Tested), U (Untested), P (Tested positive), F (Tested False Negative), RR (Reported Recovered), RU (Unreported
Recovered), DR (Reported Deaths) and DU (Unreported Deaths).

To avoid any confusion we briefly describe our compartments as follows :

• Susceptible (S) : Individuals not yet exposed to the disease.
• Exposed (E) : Individuals who have been exposed to the virus but have not started spreading infection.
• Untested (U ) : After a certain time (incubation period), infected individuals start spreading the disease.

Infectious individuals who are never tested after their incubation period are called Untested.
• Tested (T ) : Infectious individuals who undergo laboratory testing.
• Positive (P ) : Tested infected individuals who are reported as COVID positive, called positives.
• False negative (F ) : Tested infected individuals who are not reported, called false negatives.
• Recovered unreported (RU ) : Unreported patients who recovered from COVID-19.
• Recovered reported (RR) : Reported patients who recovered from COVID-19.
• Deceased unreported (DU ) : Deaths due to COVID-19 among unreported cases.
• Deceased reported (DR) : Deaths due to COVID-19 among reported cases.

2.1 Compartmental Parameters:

We assume that the time a person stays in a particular compartment/node follows an exponential distribution with a
rate. In theory, transitions can happen in continuous time, but for practical implementation we discretize time into days.
Below, we define the main parameters of our model (shown in Figure 1):

• � : Rate of transmission of infection by false negative individuals.
• ↵p : Ratio of rate of transmission by tested positive patients relative to false negatives. We have assumed

↵p < 1, since patients who are tested positive are likely to adopt isolation measures, where the chance of
spreading the disease is less than that of false negative patients who are mostly unaware of their infectious
status.

• ↵u : Scaling factor for the rate of transmission by untested individuals. ↵u is assumed to be < 1 as compartment
U mostly consists of asymptomatic or mildly symptomatic cases who are on average likely to be less contagious
than those having symptoms.

• De : Incubation period (in number of days).
• Dr : Mean number of days till recovery for those who test positive.
• Dt : Mean number of days for the return of test result.
• µc : Death rate due to COVID-19 infection which is equivalent to the inverse of the average number of days

from disease onset to death times the true infection fatality rate.
• �, µ : Natural birth and death rates in the population. These are assumed to be equal for the sake of simplicity.
• r : Probability of being tested for infection, akin to the ascertainment rate used in other comparable SEIR-type

models.
• f : False negative probability of RT-PCR test.
• �1 and 1

�2
: Scaling factors for rate of recovery for undetected and false negative individuals respectively. Both

�1 and �2 are assumed to be less than 1. The severity of symptoms in untested individuals is assumed to be
less than those tested positive. Consequently, untested individuals are assumed to recover faster than those
who tested positive. The time to recovery for false negatives is assumed to be larger than those who tested
positive since their absence of diagnosis and consequently formal hospital treatment.

• �1 and 1
�2

: Scaling factors for death rate for untested and false negative individuals respectively. Both �1
and �2 are assumed to be less than 1. The untested individuals are assumed to have a smaller probability of
dying relative to those who test positive, since untested people are mostly asymptomatic. False negatives are
assumed to have a higher probability of dying relative to those who test positive due to absence of diagnosis
and consequently formal hospital treatment.
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Figure 1: Compartmental model incorporating false negative test results

We briefly describe the transmission dynamics of our model. First, the Susceptible (S) people are coming in contact
with one infected individual at a given time at the four infectious compartments/nodes U, T, F and P with rates ↵u�,
↵p�, � and � respectively. After getting infected they move to the Exposed Node. After the incubation period, they
move into the Untested (U) and the Tested (T) node with rates (1�r)

DE
and r

DE
. Those who are tested are reported to

be positive or negative after Dt days with rate (1�f)
Dt

and f

DT
. Those in the Untested compartment move to the the

Recovered Unreported Node (RU) and the Death Unreported Node (DU) with rates 1
�1Dr

and �1µc while the Tested
positive people move to the Recovered Reported Node and Death Reported Node with rates 1

Dr
and µc respectively.

Finally, the Tested False Negative people (F) move to the the Recovered Unreported (RU) and Death Unreported (DU)
with rates �2

Dr
and µc

�2
respectively. Let S(t), E(t), T (t), U(t), F (t), RR(t), RU(t), DR(t) and DU(t) denote the

number of people in each the compartments described above at the time-point t.

2.2 Differential Equations

The number of individuals at time-point t at each node follows the set of differential equations described below. To
simplify our model, we assume that there is no delay in receiving test results once a person becomes infectious (so
Dt = 0). The differential equations corresponding to non-instantaneous testing have been given in the section 1 of
Supplementary materials. The following are the differential equations corresponding to instantaneous testing which we
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have used for our analysis.

@S

@t
= ��S(t)

N

⇣
↵PP (t) + ↵UU(t) + F (t)

⌘
+ �N � µS(t)

@E

@t
=

�S(t)

N

⇣
↵PP (t) + ↵UU(t) + F (t)

⌘
� E(t)

De

� µE(t)

@U

@t
=

(1� r)E(t)

De

� U(t)

�1Dr

� �1µcU(t)� µU(t)

@P

@t
=

(1� f)r E(t)

De

� P (t)

Dr

� µc P (t)� µ P (t)

@F

@t
=

f r E(t)

De

� �2 F (t)

Dr

� µc F (t)

�2
� µ F (t)

@RU

@t
=

U(t)

�1Dr

+
�2 F (t)

Dr

� µ RU(t)

@RR

@t
=

P (t)

Dr

� µ RR(t)

@DU

@t
= �1µcU(t) +

µc F (t)

�2
@DR

@t
= µcP (t)

(1)

2.3 Basic reproduction number

The basic reproduction number (or reproductive ratio) is defined as the number of infections that are expected to occur
on average in a homogeneous population as a result of infection by a single infectious individual when the entire
population is susceptible at the start of the pandemic. We calculate the basic reproduction number for the above model
using the Next Generation Matrix Method shown in [26]. In the next generation matrix method, we start by calculating
the next generation matrix and the spectral radius of the next generation matrix gives us the basic reproduction number.
The expression for R0 comes as

R0 =
� · S0

µDe + 1

0

BB@
↵u(1� r)

1

�1Dr

+ �1µc + µ
+

↵pr(1� f)
1

Dr

+ µc + µ
+

rf
�2

Dr

+
µc

�2
+ µ

1

CCA (2)

where S0 =
�

µ
= 1 since we have assumed natural birth and death rate to be equal within this short period of time. The

detailed derivation is given in the Section 2 of the Supplementary Materials.
Special Cases- We develop an intuitive understanding of the above expression by studying some special cases as
follows:

• SIR model :

In the SIR model, there are only 3 compartments : S (Susceptible), I (Infectious) and R (Removed). To obtain
the R0 for SIR model using the expression in (2), we assume r = 1, f = 0, birth rate (�) = natural death rate

(µ) = 0 and
1

Dr

+ µc = ⌫ is the removal rate. Here, the death and recovered compartments are merged into

one compartment called R (Removed). In the SIR model, there is only one infectious component I (which is
our P component), so we assume ↵p = 1. With these assumptions, our model reduces to SIR model, and we
can simplify the expression in (2) as follows

R0 = �S0

✓
↵p

⌫ + µ

◆
=

� · S0

⌫
=

�

⌫
( * S0 = 1)

We recover the well-known form of R0 for the SIR model as derived in [26] as a special case.
• SEIR model :

In the SEIR model, we have 4 compartments : S(Susceptible), E(Exposed), I(Infectious) and R(Removed).
To obtain the expression of R0 for SEIR model, we make all the assumptions as we just made for SIR model
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except the incubation period De = 0. Here we take De =
1
k

. We can also assume non-zero natural birth and
death rates � and µ.
Under these assumptions, the expression of R0 in (2) becomes

R0 =
�S0

µDe + 1
· ↵p

⌫ + µ
=

k�S0

µ+ k
· 1

⌫ + µ
=

k��

µ(µ+ k)(⌫ + µ)

✓
* S0 =

�

µ

◆

This is the expression of R0 for the SEIR model as derived in [26] as a special case.

2.4 Estimation

Typically, one can solve the system of equations by assuming initialization constraints/values, then fixing certain key
parameters and allowing parameters of interest to be estimated based on data. We assume there are two key time varying
parameters � and r in this model capturing transmission rate and ascertainment rate over time. This assumption reflects
the natural progression of the pandemic coupled with changes in prevention/testing strategies in the population under
study. The steps for estimating the parameters are outlined as follows.

2.4.1 Solving the system of Differential Equations

The Differential Equations that have been described in the previous section are for continuous time modelling. We have
represented the system at discrete time points by approximating the rate of change/derivative in counts corresponding to

any general compartment X with respect to time t given by
@X

@t
by the difference between that compartment counts on

the (t+ 1)th day and the tth day, i.e. (X(t+ 1)�X(t)). Starting with initial counts at each node on Day 1 and using
the discrete time recurrence relations, we can find the counts for each of the compartments at time t. Some of these
discrete time recurrence relations are shown below:

E(t+ 1)� E(t) =
�S(t)

N

⇣
↵PP (t) + ↵UU(t) + F (t)

⌘
� E(t)

De

� µ E(t)

U(t+ 1)� U(t) =
(1� r)E(t)

De

� U(t)

�1Dr

� �1µcU(t)� µ U(t)

P (t+ 1)� P (t) =
(1� f)r E(t)

De

� P (t)

Dr

� µc P (t)� µ P (t)

F (t+ 1)� F (t) =
f r E(t)

De

� �2 F (t)

Dr

� µc F (t)

�2
� µ F (t)

2.4.2 Distributional Assumptions and Likelihood

We assume that the joint distribution of the counts transitioning to each compartment at a given time follows a
Multinomial distribution. For example, from the Exposed node, one can move to the Positive, False Negative, or
Untested nodes, or they may die due to natural causes. Let ⇣X!Y denote the number of individuals moving from X to
Y compartment at time t with ⇣X!0 denoting the number of individuals in compartment X dying at time t. Thus, for
the exposed node we have the following stochastic distribution:

�
⇣E!U ,⇣E!P , ⇣E!F , ⇣E!O, ⇣E!E

�

⇠ Multinomial
✓
E (t� 1) ,

(1� r)

De

,
r(1� f)

De

,
rf

De

, µ, 1� pE!U � pE!P � pE!F � µ

◆

The complete model with the distributions of latent nodes have been described in details in section 5 of Supplementary
materials.

We now write down the likelihood that underlies any estimation procedure.

Case I: Only using data on daily new cases: For this situation, we assume that given the parameters, the number
of new confirmed cases on the the tth day depends only on the number of exposed individuals on the previous day.
Let the number of newly reported cases on day t, Pnew(t), say, follow a distribution with probability mass function
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(pmf) h
�
x | �, r,E(t� 1)

�
. Then, we can write the likelihood of � = {�1,�2, ...,�s} and r = {r1, r2, ..., rs} where s

denotes the number of disjoint time periods, as :

L(�, r) =
dY

t=1

h(xt | E(t� 1),�, r)

Here, d denotes the last day used in model-fitting. We assume that Pnew(t) follows a Binomial distribution with

size E(t � 1) and probability
r(1� f)

De

. This is a natural corollary of the assumption that counts corresponding

to all the compartments jointly follow a Multinomial distribution. Thus the daily number of positive cases
marginally will follow a binomial distribution. Alternatively one can assume that Pnew(t) follows a Poisson distri-

bution with rate
r(1� f)

De

E(t�1), where E(t�1) is the conditional expectation of the number of exposed at day (t�1).

Case II: When daily data on new cases, recoveries and deaths are available. Marginally, the distribution
for the daily number of positive cases remains the same as before. For the Recovered and Death nodes, the joint
distribution is again a multinomial distribution given P (t� 1). If Pnew, Rnew, and Dnew follow the distribution with
pmf h

�
x, y, z | �, r,E(t � 1)

�
. Then, we can write the likelihood of � = {�1,�2, ...,�s} and r = {r1, r2, ..., rs}

where s denotes the number of time periods as follows:

L(�, r) =
dY

t=1

h(xt, yt, zt | E(t� 1), P (t� 1),�, r)

This expression follows from the relationship
P(Pnew(t), RRnew(t), DRnew(t)| E(t� 1), P (t� 1))

= P(Pnew(t)| E(t� 1), P (t� 1)) ·P(RRnew(t), DRnew(t)| E(t� 1), P (t� 1))

= P(Pnew(t)| E(t� 1)) ·P(RRnew(t), DRnew(t)| P (t� 1))

The simplifications in the above equation are consequences of model assumptions. We have

Pnew(t)|E(t� 1) ⇠ Binomial
✓
E(t� 1),

r(1� f)

De

◆

RRnew(t), DRnew(t)|P (t� 1) ⇠ Multinomial
✓
P (t� 1),

✓
1

Dr

, µc, 1�
1

Dr

� µc

◆◆

The values of E(t� 1) and P (t� 1) are obtained from solving the discrete time differential equations that have been
described in Section 2.4.1. Prediction of the number of active cases is critical from a public health perspective. However,
in many countries data on Recoveries and Deaths is not very reliable. In that case, it is better to go with the simpler
Poisson or Binomial likelihoods. Following are the respective counts that we are interested in predicting.

Counts of Interest Notation (at time t)

Reported Active Cases P(t)
Unreported Active Cases U(t)+F(t)
Total Active Cases P(t)+U(t)+F(t)
Reported Cumulative Cases P(t)+RR(t)+DR(t)
Unreported Cumulative Cases U(t)+F(t)+RU(t)+DU(t)
Total Cumulative Cases P(t)+RR(t)+DR(t)+ U(t)+F(t)+RU(t)+DU(t)
Reported Deaths DR(t)
Unreported Deaths DU(t)
Total Deaths DR(t)+DU(t)

Table 1: Variables of interest and their expressions in terms of model compartments

Table 1 shows the variables of interest and how they can be obtained from our model. It is important to note that we are
modelling the number of active cases, recoveries and deaths first and using them we obtain estimates of cumulative cases.
So, predicting active cases, recoveries and deaths accurately is sufficient to obtain good estimates of cumulative cases.
Further, the parameters which we estimate (� and r) determine the number of active cases which in turn determine the
number of deaths and recoveries. So, the dependence of deaths and recoveries on the parameters which we estimates is
through the number of active cases. Hence, we will judge our models primarily based on their performance in predicting
active cases.
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2.4.3 Choice of Priors

We use a Bayesian estimation technique supported by Markov chain Monte Carlo (MCMC) sampling for estimating �
and r. For the parameter r, we have assumed a U(0, 1) prior distribution while for �, we have assumed an improper
non-informative flat prior given by :

⇡(�) / I(� > 0)

Instead of a non-informative prior, we could have taken a more informative prior. We could alternatively assume a
lognormal prior for � and R0. This will induce an implicit prior distribution on r by virtue of the relationship between
R0, � and r. We opt to induce a non-informative prior on r because we do not have enough information on r, the
ascertainment rate.

2.4.4 Posterior Sampling Using MCMC

After specifying the likelihood and the prior distribution, we sample from the posterior distribution of the parameters
using an iterative Markov Chain Monte Carlo (MCMC) algorithm. Within each iteration, parameters are drawn using
the Metropolis-Hastings method with a Gaussian random walk proposal distribution. We run the algorithm for 100,000
iterations with a burn-in period of 100,000 using RStudio [18]. To reduce autocorrelation of the sampled observations,
we use thinning bins of size 100. Finally, the mean of the posterior draws is used as a Bayes estimate of � and r for the
different time periods. For every posterior sample we get am estimated value of � and r. The counts corresponding to
the different compartments at each time point t are obtained by draws from their sampling distribution conditional on
the sampled values of � and r. We repeat this for all t in our interval. To obtain a 95% Bayesian credible interval for all
parameters we use the 2.5% quantile and 97.5% quantile of the posterior distribution.

3 Extensions

With the above structure as our primary analytic foundation, we extend this estimation approach in three primary
directions to make the method adapt to real data better based on what we are observing during this pandemic.

3.1 Extension 1. Time varying Case-Fatality Rate (mCFR)

After exploring this base model across countries, we observe that the death rates and in turn the case-fatality rates are
also changing during the course of this pandemic between and within countries. The usual case fatality rate (CFR) is
defined as:

Case fatality rate (CFR) =
Reported Deaths

Reported Cumulative
The modified CFR or mCFR includes only the removed cases (deaths+recoveries) in the denominator as the outcomes
are known only for this subset of individuals.

Modified case fatality rate (mCFR) =
Reported deaths

Reported deaths + Reported Recoveries

Figure S1 of the Supplementary Section shows that while countries like Belgium, USA, Italy, Spain have very high
mCFR, India and Russia have comparatively much lower mCFR. We also note that initially most countries experience a
high mCFR and it gradually settles to a lower value as the case counts and recoveries rise. Hence, we hypothesize that
modeling mCFR as a time varying quantity will improve the prediction of active cases and deaths.

Thus we introduce a third time varying parameter called the mCFR along with � and r in a three parameter multinomial
model. With this change, the differential equations in (1) will remain the same. We use mCFR as opposed to CFR
because in our model we use it to determine what is the probability that an infected person from node P moves to the
death node (DR). The remaining will go to the recovered node RR. The new recovery rate will be (1�mCFR)

Dr
, while

the new death rate will be mCFR⇥µc.

3.2 Extension 2. Testing of infectious people based on symptoms

The problem with the base model is that we have implicitly assumed that the probability of a person being tested is equal
for all infected individuals. However, that is not the case in reality. The probability of being tested for a truly infected
person largely depends on symptoms. On an average, a person with severe symptoms will have the highest probability
of being tested followed by the mildly symptomatics and the asymptomatics. We extend the previous misclassification
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model accounting for symptom dependent testing. We split the Exposed(E) compartment into three nodes Severe

Symptomatic (Se), Mild Symptomatic (Mi) and Asymptomatic (As).

We will here assume that the individuals with severe symptoms will be tested with probability 1 while the mild and
asymptomatic ones will be tested with probability t1 and t2 respectively. We will also assume the probability of an
infected person having severe, mild or no symptoms are p1, p2, p3 respectively. Figure S2 of the Supplementary Section
presents the different compartments and their corresponding dynamics for this model.

Now, all the differential equations remain the same except the ones corresponding to the nodes P, U and F. The new set
of differential equations corresponding to these three nodes are:

@xU

@t
=

(p2(1� t1) + p3(1� t2))xE(t)

De

� xU (t)

�1Dr

� �1µcxU (t)� µxU (t)

@xP

@t
=

(p1 + p2t1 + p3t2)(1� f) xE(t)

De

� xP (t)

Dr

� µc xP (t)� µ xP (t)

@xF

@t
=

f (p1 + p2t1 + p3t2) xE(t)

De

� �2 xF (t)

Dr

� µc xF (t)

�2
� µ xF (t)

Due to identifiability issues, all the parameters described above cannot be estimated. We assume known values for p1,
p2 and p3 that can be obtained from existing data. We also assume that t1 = kt2 where k is greater than 1 and known.
This assumption implies that the probability of receiving a test for a person with mild symptoms is more than a person
with no symptoms. We run a sensitivity analysis for different values of k.

This model is more or less equivalent to the multinomial two parameter model. The only additional information that we
are obtaining here is the allocation of tests conditional on symptoms. We essentially have expressed the probability of
getting tested or r as the sum of three different probabilities by using the theorem of total probability. Namely,

r = (p1 + p2t1 + p3t2) (3)
r = (p1 + kp2t2 + p3t2) (4)

Our main parameters of interest that we are going to estimate now is � and t2 instead of � and r. Since this model is a
simple reparameterization of our original model we do not discuss this any further.

3.3 Extension 3. Selection model: Who is getting tested?

So far we have been concerned with only the testing of truly infected individuals. However, symptoms may manifest
in an infected individual or an uninfected individual. The cause of symptoms (both mild and severe) in susceptible
individuals may be due to respiratory diseases such as influenza and the common cold.

It may be reasonable to assume that each individual, regardless of their underlying true disease status, has a probability
of being tested that depends on the symptoms they have (or don’t have). This probability could also depend of other
covariates such as job types or pre-existing co-morbidities. For simplicity we will only consider symptoms determining
testing for both diseased and disease-free. We want to create an analytic framework to study the selection bias due to
testing in the population.

To this end, we consider testing strategies that mandate that individuals with severe symptoms are always tested provided
sufficient tests are available. After all the individuals with severe symptoms are tested the remaining tests are divided
among those with mild symptoms and asymptomatics according to some given allocation rule that is independent of
their true disease status given observed symptoms. We also assume that the number of tests to be performed in a given
day does not depend on the true infection counts and is an external input. One advantage of using the number of tests as
an input to the model is that we can study how the number of available tests influences the population infection rate in
the long term. Figure 2 provides a visualization of this expanded model.

The new compartments are summarized as follows:

• Se1 : Those who have developed severe symptoms and have a true COVID-19 infection.
• Mi1 : Those who have developed mild symptoms and have a true COVID-19 infection.
• As1 : Those who have developed no symptoms and have a true COVID-19 infection.
• Se0 : Those who have developed severe symptoms and do not have a true COVID-19 infection.

10
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Figure 2: Selection Model

• Mi0 : Those who have developed mild symptoms and do not have a true COVID-19 infection.
• As0 : Those who have no symptoms and no COVID-19 infection.
• UI : Those who are untested with an active COVID-19 infection
• UNI : Those who are untested without an active COVID-19 infection.

The differential equations corresponding to this model have been provided in section 6 of Supplementary materials.
Though conceptually appealing and pragmatic, this model has identifiability issues, and estimation requires substantial
additional information. In particular, we need to know the mechanism by which people are tested including the
corresponding probabilities of testing. Additionally, we need to know the true symptom distributions for the exposed
and susceptible people. It will be often quite hard to obtain this information as part of regularly released data sources by
countries across the world. Thus, implementation of this model may be wrinkled with too many subjective choices.
However, we still think this is a valuable formulation as it helps us to understand, analytically and intuitively, how
selection bias can influence our estimates of interest. For example we derive an expression for R0 under this complex
structure. Basic Reproduction number : We calculate R0 using the same Next Generation Matrix Method as in Basic
reproduction number. For this new framework that includes uninfected individuals as well as false negatives, we have
derived an expression for the basic reproduction number as follows :

R0 =
S0�✓

µ+
1

De

◆

0

BB@

↵u

✓✓
p12 + p13

De

◆
� T0 � (1� µ)Se0

De(1� µ)

✓
t1p12
Mi0

+
t2p13
As0

◆◆

✓
µ+ �1µc +

1

�1DR

◆ +

↵p

✓
(1� f)p11

De

+
(1� f)(T0 � (1� µ)Se0)

De(1� µ)

✓
t1p12
Mi0

+
t2p13
As0

◆◆

✓
µ+ µc +

1

DR

◆ +

✓
f p11
De

+
f (T0 � (1� µ)Se0)

De(1� µ)

✓
t1p12
Mi0

+
t2p13
As0

◆◆

✓
µ+ µc +

1

DR

◆

1

CCA

(5)

Decoupling the effect of selection and misclassification on R0: To provide some intuition about the effect of selection
bias and misclassification on the value of R0, we consider an example setting where we first compute the value of
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R0 from equation (5) with f = 0 (no misclassification, selection), f = 0.3 (misclassification+selection) using the
same set of parameters. To isolate the effect of selection, we consider a model where selection is random (for further
details refer to section 8 of supplementary materials) and evaluate R0 when f = 0 (no misclassification or selection)
and f = 0.3 (only misclassification, no selection). We consider a hypothetical population of 1 million people. We set
� = 0.25, r = 0.1, p0 = (10�6, 10�5, 1� 10�6 � 10�5) p1 = (0.02, 0.18, 0.8), t1 = 0.7 and t2 = 0.3. We consider
three different values of the number of tests per thousand population (0.1, 0.5, 1.0, 2.0). These values are consistent
with what we have seen across the world. For example, as on June 30, India and US are doing 0.15, 1.82 daily tests per
thousand population. The rest of the parameters are same as in (4.1). The following table (2) shows the values of R0

for the four configurations. From table (2), we conclude that under random selection, R0 is not sensitive to the total

Number of tests
per thousand

Model
No Selection Bias Selection Bias
f = 0 f = 0.3 f = 0 f = 0.3

0.1 1.54 1.53 1.64 2.09
0.5 1.54 1.54 2.02 4.08
1.0 1.54 1.54 2.50 6.56
2.0 1.54 1.55 3.45 11.54

Table 2: Effect of misclassification and selection bias on R0

number of tests and false negatives and remains around 1.54, the true value. The values in the 3rd column are inflated,
which indicates a substantial effect of selection bias on R0, especially when the number of tests are large, even when
the tests are perfect. The fourth column underpins the key issue that the R0 can be very far from the true value with
both selection bias and misclassification, especially with large number of tests being distributed in a non-uniform way.

4 Analysis of COVID-19 Pandemic in India

Now that we have described our models and methods, we proceed to assess their performance with real and simulated
data. For this purpose, we fit our models to daily new reported case, recovery and death-counts in India from 1st April
to 30th June. We have chosen India because the pandemic has been prevailing in India for a very long time and the
incidence curve has not turned corner as of August 31. With more than 3.5 million total reported cases, approximately
75,000 new cases and 1000 deaths reported per day at the end of August, India presents a unique setting to assess our
models. Another important feature for India is that the national lockdown periods are clearly defined, which helps us to
define the time changes in �. For most of the analysis, we have used our Multinomial 2 parameter model with only
misclassification, since symptom-dependent testing data are not available for India. We have used the data for the whole
country as well as for the states with some of the highest incidence of the disease namely Delhi and Maharashtra to
characterize the heterogeneity. The data are available at a crowd-sourced dashboard covid19india.org. We compare our
models’ prediction with reported counts for total cumulative, reported deaths and reported active cases in India. The
unreported compartments cannot be validated with real data. We split the data into train and test sets with 1st April to
30th June serving as our training period and 1st July to 31th August serving as our test period. The period is divided into
time intervals based on public health interventions rolled out in India (see Table 3).

12

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2020. .https://doi.org/10.1101/2020.09.24.20200238doi: medRxiv preprint 

www.covid19india.org
https://doi.org/10.1101/2020.09.24.20200238
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - SEPTEMBER 22, 2020

Phase From To Salient features

Lockdown 1 1st April 14th April Complete lockdown in 82 district across the country where confirmed
cases were reported. Inter state movement was closed

Lockdown 2 15th April 3rd May Extension of lockdown with relaxations in regions with lower spread
from 20th April

Lockdown 3 4th May 17th May Imposition of strict nationwide lockdown
Lockdown 4 18th May 31st May NMDA extends lockdown till end of May in all states
Unlock 1.0 1st June 30th June Lockdown lifted from many regions while strict lockdowns imposed

in containment zones. Services were resumed from 8th June.
Unlock 2.0 1st July 31st July Lockdown measures were only imposed in containment zones. In all

other areas, most activities were permitted.
Unlock 3.0 1st August 31st August Unlock 3.0 for August 2020 removed night curfews from 5th August.

Educational institutions will remain closed till 31st August.

Table 3: Phases of public health interventions in India

4.1 Initial values and parameter setting:

We use observed counts on April 1 as P (0), RR(0) and DR(0), the initial values for the reported compartments while
the counts in the unobserved compartments are set proportionately to the observed ones. Namely, we have assumed
that E0 = 3(U0 + P0 + F0). The false negative rate is set at f = 0.3 and initial value of the ascertainment rate r
is set at 0.15. The value of f is taken based on the reported false negative rates for RT-PCR tests [14]. We assume
all the parameters in our model except r and � remain constant through the entire course of the disease. We set the
latency period De = 5.2 days assuming that the latency period is equal to the incubation period. This value has been
taken from the estimates in Wuhan [15]. We assume Dr = 17.8 days following the report by WHO and set this as the
average time till death for deceased COVID patients. We set µc =

0.047
17.8 considering the proportion of deaths among

the removed persons is about 4.7% in India on June 30. The natural birth and death rates are assumed to be equal.
� = µ = 1

69.416·365 using the fact that average life span of Indians is 69.416 years. The various scaling factors were set
as ↵p = 0.5, ↵u = 0.5, �1 = 0.6, �2 = 0.7, �1 = 0.3, �2 = 0.7. With these values and the time periods described in
Table 3, we estimate the R0 in each period and also predict the counts in the test period using the parameters estimated
in the last time period in the training set. We study the effect of these choices for initial values and fixed parameters
on our estimable quantities of interest through an extensive sensitivity analysis in the Section 6(Sensitivity Analysis)
section.

4.2 Basic Reproduction Number

Here Extension 1 and 2 are the Multinomial 3-parameter and Multinomial Symptoms models respectively. We begin
with estimates of R0 by the different models. From Table (4), we note that estimates of R0 from all of the models are
qualitatively similar though there are numerical differences. The estimates of R0 decreased steadily with time from

Model
Basic Reproduction Number

1-14 Apr 15 Apr-3 May 4-17 May 18-31 May 1-30 Jun

Poisson 3.36 2.24 1.69 1.76 1.63
Binomial 3.42 2.25 1.69 1.76 1.63

Multinomial-2-parameter 3.74 2.36 1.75 1.70 1.61
Multinomial-3-parameter 3.22 2.25 1.75 1.75 1.73
Multinomial symptoms 3.30 2.18 1.64 1.59 1.52

Table 4: Estimates of R0 by different models

3.74 in the 1st period to 1.61 in the 5th period. This shows that the lockdown has been effective in reducing the rate of
spread of the disease. The estimated R0 with accompanying 95% credible intervals from the Multinomial-2-parameter
models are shown in Figure 3. The green line indicates R0 = 2. We observe that from 3rd period onwards the value of
R0 remains below the green line indicating slowing down of the spread of the disease. However it still remains above 1
which means India is yet to achieve herd immunity.
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Figure 3: Estimates of R0 in India across phases. The mean and 95% credible intervals (in parentheses) are provided
under the Multinomial-2-parameter model

4.3 Prediction accuracy for reported counts

To assess the performance of different models, we compare their predictions of reported active and reported cumulative
cases and reported deaths with observed data. We consider the following metric.

Mean Squared Relative Prediction Error (MRPE) : The number of reported cumulative start at a number below
5000 on 1st April and increase to 3 million in August. As such, we need a measure of error which is scale independent.
One such measure is MRPE which is defined as

MRPE =
nX

i=1

✓
1� v̂i

vi

◆2

for observed data v = (v1, v2, ..., vn) and predicted vector v̂ = (v̂1, v̂2, ..., v̂n).

We present MRPE for each of the models evaluated both on the training and test set. The MRPE is multiplied by a
factor of 10, and the lower the value the better.

Reported Cumulative Cases Reported Deaths Reported Active Cases

Model
Train Test Train Test Train Test

Poisson 0.066 0.098 0.948 1.235 0.357 0.749
Binomial 0.069 0.100 0.961 1.222 0.363 0.737

Multinomial-2-parameter 0.206 0.087 1.248 1.270 0.569 0.705

Multinomial-3-parameter 0.127 0.017 0.396 1.516 0.445 1.096
Multinomial symptoms 0.120 0.019 1.188 1.867 0.437 1.232

Table 5: MRPE of different models on training and test set

Table 5 presents the values of MRPE for Total Cumulative, Reported Deaths and Reported Active cases for all the
five models. The column-wise minimum are indicated in bold letters for the training set and the minimum in columns
corresponding to testing set are highlighted in red. Following is a summary:

• The Poisson and Binomial models perform very similarly. This is expected with large case-counts, the
Binomial likelihood approaches the Poisson likelihood.
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• We can note that the Multinomial models are doing better in test data in predicting reported cumulative Cases,
while in the training data, the Poisson and Binomial models are doing better. The Multinomial 3-parameter and
the Multinomial Symptoms models are doing the best in predicting reported cumulative cases in the test data.

• The Multinomial-2-parameter is doing well in predicting reported cumulative cases, reported deaths and
reported active cases. The Multinomial-2-parameter model predicts reported active cases better than rest of the
models. In the test data, the Multinomial-2-parameter model outperforms the Multinomial-3-parameter model.
Though it might seem surprising at first, if we take a deeper look at this matter, we can find a reasonable
explanation. If we look at Figure S1 of the Supplementary Section, we can observe that the mCFR for
India is almost constant for a large number of days. So we do not need to model mCFR as a time varying
parameter as we have done in the Multinomial-3-parameter model. While Multinomial-3-parameter model
does well in the training period in case of deaths, the Multinomial-2-parameter model with constant mCFR
outperforms the former in the test period. Again, Multinomial-3-parameter model is doing better than the
Multinomial-2-parameter in case of Reported Cumulative, but it is doing much worse than the same in case
of Reported Active. As reported active is of more importance from the perspective of health care and the
Multinomial-2-parameter not only has the least MRPE in predicting reported active cases in the test period, but
also does reasonably well in all the test data, we have chosen the Multinomial-2-parameter model for further
analysis.

Figure 4: Reported Active Cases in India - Comparison between different models

Figure 4 provides the daily prediction trajectories for reported active cases and reported deaths from April 1 to August
31. We focus on reported active cases as the accuracy of this prediction can ably inform health care needs on a daily
basis.

4.3.1 Prediction of reported and unreported counts

Figure 5 presents the daily composition of active and cumulative COVID cases in India in terms of reported and
unreported infections. This figures shows the actual number (left) and proportion (right) of cases who are reported,
false negatives or remain untested. We can see from sub-figures (B) and (D) that the proportion of reported active cases
and reported cumulative cases with total active and total cumulative cases have increased on an average from April 1 to
August 31. The proportion of reported cases among active cases has decreased from 0.12 on 1st April to 0.045 around
15th April. From then, we see it remains fairly constant and increased slightly to 0.048 on 31st August. It is important to
note that in spite of enhancing testing and contact tracing, our estimates suggest that about 95% of cases in India remain
unreported as of 31st August. In other words, roughly one out of twenty cases is reported. The predicted proportion of
reported deaths is roughly 0.17 on August 31, meaning approximately 1 in 6 deaths is reported in India.

4.3.2 Effect of misclassification on prediction

For our main analysis, we assumed the false negative rate of RT-PCR tests to be 30%. Since there is uncertainty in this
false negative rate for the different tests rolled out in India, we study how the predictions change for different values of
false negative rates (f = 0, f = 0.15 and f = 0.3). From sub-figure (B) in Figure 6, we note that predictions from
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Figure 5: COVID cases in India with number of Reported, False Negative and Untested cases. (A) Total active COVID
cases in India from April 1 to August 31 including reported active cases, false negatives active and untested active cases.
(B) Proportion of reported active cases among Active COVID cases in India (C) Total cumulative cases in India from
April 1 to August 31 including reported cumulative cases, cumulative false negatives and untested cumulative cases.
(D) Proportion of reported cases among total cumulative COVID cases in India . (E) Total deaths in India from April 1
to August 31 including reported and unreported deaths. (F) Proportion of reported deaths among total deaths in India.
The dotted line in subfigures A, C and E represent the observed data.
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all the 3 models with different false negative rates coincide with each other for reported active cases as expected. We
also note that each of them fit the observed data quite well up to 1st August. Sub-figure (A) of Figure 6 shows that the
estimates of total active cases (reported+false negatives+untested) vary substantially across the three assumed values of
f . As expected, the model with f = 0.3 estimates the highest number of unreported cases as it considers the highest
false negative rate. The estimates from the model with f = 0 are about two thirds of that of model with f = 0.3. On
the other hand, the predictions of model with f = 0.15 are only slightly higher than that of model with f = 0.

Figure 6: Effect of misclassification on estimates for India (A) Estimates of Total Active Cases for f = 0, 0.15 and 0.3
(A) Estimates of Reported Active Cases for f = 0, 0.15 and 0.3 with the observed data

4.4 Results for Delhi and Maharashtra

There is tremendous heterogeneity in the virus curves across time in India. In fact, the 10 states Maharashtra, Tamil
Nadu Delhi, Telengana, Karnataka, Andhra Pradesh, Uttar Pradesh, Gujarat, West Bengal and Bihar constitute 90% of
the total cumulative cases of India as of August 31, 2020. We focus on two of the worst-hit states in India - Delhi and
Maharashtra.

The state of Maharashtra has nearly 0.8 million reported cumulative cases by 31st August which is more than 20% of
total cases in India by that date. On the other hand, New Delhi (national capital of India) had 174,748 cases by 31st

August, but the curve turned the corner in June.

We estimate the basic reproduction number for Maharashtra and Delhi and also provide a 62 day prediction of reported
active cases. We note that in both the states, the estimates of R0 have decreased with time. The estimates of R0 for
Delhi have decreased from 5.89 in the 1st period to 1.22 in the 6th period. For Maharashtra, the estimates of R0 have
decreased from 3.58 in the 1st period to 1.51 in the 5th period.

Figure 7 shows the 62-day predictions of reported active cases of Delhi and Maharashtra. Figure 7 shows that our
model fits the training data for both the states reasonably well. However, in the test data, we observe that our model
overpredicts number of reported active cases for Delhi and Maharashtra. This is due to the sudden decrease in the
number of new cases in July and August. Subfigure (A) shows that though our model is overpredicting, it has been able
to capture the peak of reported active cases in Delhi in the first week of July.

Table 6 presents a comparison of the under-reporting factors in India, Delhi and Maharashtra for cases and deaths. There
is tremendous heterogeneity between states, with case underreporting factors of approximately 20, 53, and 14 and death
underreporting factors of 6, 12, and 4 in India, Delha, and Maharashtra respectively. With f = 0 these underreporting
factors reduce to 12, 35 and 11 for cases and 3, 8 and 3 for deaths in India, Delhi and Maharashtra respectively. This
shows that even without accounting for false negatives there possibly exists a large degree of underreporting for case
and death counts in India.

5 Simulations

Since the underlying truth is unknown in an actual study and the number of true latent infections are unobservable,
we study the effect of selection bias and misclassification on the estimation of R0 and the predicted case counts via
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Figure 7: 62 day predictions for (A) Delhi and (B) Maharashtra

simulation studies where we know the true values. Each simulation is repeated 1000 times and average values/curves
are reported.

5.1 Effect of Misclassification

We quantify the effect of incorporating false negative tests in our model by characterizing the differences in estimated
R0 and predicted counts in various compartments (observed and unobserved) when we consider misclassification and
when we do not. We first simulate counts from a model where the tests have false negatives and then estimate the
quantities of interest using three models - one which considers the correct f , another which considers an incorrect f
and the last one which considers f = 0 or no false negatives. For this simulation we do not consider selection bias. We
assume that all individuals are equally likely to be tested.

Generation Model: We generate the data using our 2 parameter Multinomial model with f = 0.3. The other parameters
are fixed as in the data analysis for India: N = 1.341 billion, � = µ = 1

69.416·365 , ↵p = 0.5, ↵u = 0.5, �1 =

0.6, �2 = 0.7, �1 = 0.3, �2 = 0.7, De = 5.2, DR = 14, µc =
(1� mCFR)

14
where mCFR = 0.054. We generate the

data for a period of 101 days. The entire period was divided into five time periods which are days 1 � 10, 11 � 31,
32� 50, 51� 64, 65� 101.

The values of � across the five periods are set at 0.8, 0.65, 0.4, 0.3, 0.3 and the corresponding values of r are set at 0.1,
0.2, 0.15, 0.15, 0.2. The chosen true values closely mimic the estimates for India from 15th March to 23rd June and the
periods mimic the lockdowns in India.

Estimation Model: We choose the 2-parameter Multinomial model for estimation. We fit the model using the same
parameters as in the model used for generating the data except �, r and f . We consider f = 0, 0.15 and 0.3 respectively
for prediction in the 3 scenarios. The values of � and r are then estimated in each of the 3 scenarios for the 5 time
periods. The entire process is repeated 1000 times. Results: Estimation of R0: The values of R0 for the five periods
used to generate the data were 3.99, 3.65, 2.12, 1.59 and 1.69. The mean of predicted values of R0 for the model with
f = 0 across the 1000 iterations were 3.64, 3.51, 1.97, 1.48 and 1.65 for the 5 periods while those for model with
f = 0.15 were 3.52, 3.64, 2.01, 1.51 and 1.69 and for model with f = 0.3 were 3.83, 3.73, 2.04, 1.53 and 1.71. All the
models have very low MRPE in predicting R0. The mean MRPE across 1000 simulations were 0.004, 0.004 and 0.001
for models with f = 0, 0.15 and 0.3 respectively. We will now look at predicted case count.

Prediction accuracy for total active case-counts: Figure 8 shows the variation of predicted values of total active cases
(reported + false negatives+untested) across different models with varying rates of false negatives in a random instance
of the simulation. We can observe that the model with f = 0.3 performs best in predicting the total active cases followed
by the model with f = 0.15. As expected, the model which does not consider false negatives, i.e. with f = 0 performs
worst. When we calculate the mean of MRPE of the predicted number of reported active cases relative to that of the
simulated true data across 1000 simulations, we note that the mean MRPE for the model with f = 0.3 is lowest with
mean MRPE = 0.012 while the mean MRPE for the model with f = 0 is highest with mean MRPE = 0.13. The mean
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Nation/State 1st July 15th July 1st August 15th August 1st September

Predicted Reported 555507 887695 1525812 2340948 3851986

Predicted Total 11699406 18492195 31540186 48207158 79100190

Observed 605221 970156 1752171 2589208 37766108
Cases

Underreporting Factor 21.06 20.83 20.67 20.59 20.53

Predicted Reported 15872 26110 45924 71489 119625

Predicted Total 97527 157424 273180 422314 702503

Observed 17847 24919 37408 50084 66460

India

Deaths

Underreporting Factor 6.14 6.03 5.95 5.91 5.87

Predicted Reported 97211 131042 159618 176812 190340

Predicted Total 5054087 6937746 8527011 9481820 10231800

Observed 89802 116993 136716 151928 177060
Cases

Underreporting Factor 51.9 52.9 53.4 53.6 53.7

Predicted Reported 2373 3941 5560 6692 7700

Predicted Total 30758 50867 69900 82440 93050

Observed 2803 3487 3989 4188 4462

Delhi

Deaths

Underreporting Factor 12.9 12.9 12.5 12.3 12

Predicted Reported 205934 313504 508034 737161 1115710

Predicted Total 2813508 4382880 7219336 10557714 16066113

Observed 180298 275640 431719 584754 808306
Cases

Underreporting Factor 13.66 13.98 14.21 14.32 14.40

Predicted Reported 7622 11837 19547 28840 44741

Predicted Total 32919 51921 86709 128523 199695

Observed 8053 10928 15316 19749 24903

Maharashtra

Deaths

Underreporting Factor 4.32 4.39 4.44 4.46 4.46

Table 6: Predicted Cumulative Cases and Deaths (Reported and Total) of India, Delhi and Maharashtra along with
observed counts and predicted underreporting factors

MRPE for model with f = 0.15 lies in the middle with mean MRPE = 0.068. Thus we notice that there is a large gain
in prediction accuracy if one incorporates the false negative rate of the test and it matches the true rate. We also note
that the MRPE for reported active cases are considerably less. All the 3 models have a mean MRPE of 0.01 for reported
active cases. This shows that different levels of misclassification only influences the estimates of total active cases
substantially but not that of reported active cases. We see a similar trend in other counts as well. For cumulative cases,
we have mean MRPE of 0.13, 0.066 and 0.012 for models with f = 0, 0.15 and 0.3 respectively. For total recoveries ,
we have mean MRPE of 0.12, 0.065 and 0.013 for models with f = 0, 0.15 and 0.3 respectively. Finally, for total
deaths, we have MRPE of 0.06, 0.01 and 0.02 for models with f = 0, 0.15 and 0.3 respectively.

5.2 Effect of Selection

In Section 3.3(Extension 3), we propose an extended model incorporating symptom-dependent testing. To study the
effect of ignoring this testing mechanism, we generate data following this and estimate model parameters using a model
that incorrectly ignores selection/testing(that is our misclassification model)
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Figure 8: Variation of predictions with different rates of misclassification

Generation Model: We generate data using Extension 3 model with most of the parameters same as the above previous
simulation except : ↵u = 0.7, µc = 0.047 · 1

14 , De = 5.2, Dr = 14/0.953. For Selection Model we have some extra
parameters. They are set as p0 = (10�6, 10�5, 1� 10�6 � 10�5) and p1 = (0.02, 0.18, 0.8). As before, the data are
generated for a period of 101 days with 5 periods 1� 10, 11� 31, 32� 50, 51� 64 and 65� 101. The � values for
the 5 periods were (0.6, 0.4, 0.3, 0.25, 0.2).

Estimation Model: Predictions are based on the Multinomial-2-parameter misclassification model, where the prob-
ability of being tested is assumed to be independent of symptoms with f = 0.3 (the simulation truth). Ignoring the
misclassification will lead to even larger biases but we chose to decouple the effect of the two.

Results: Estimation of R0 The true values of R0 for the 5 periods used to generate the data were 2.22, 2.51, 1.89, 0.52
and 1.29. In presence of selection, we find that the estimated values of R0 differ substantially from the actual values.
The means of estimated values across all the 1000 simulations for the 5 periods were 0.24, 2.40, 2.92, 2.56 and 2.10.
Hence, we observe that the estimated value of R0 for the first period was much smaller compared to the actual value
while the rest of the estimates were much better. The 2.5% quantiles of the estimates of R0 for the 5 periods across
1000 simulations were 0.02, 1.57, 2.64, 2.37 and 2.06 while the 97% quantiles were 0.78, 3.08, 3.18, 2.80 and 2.20.

Figure 9: Effect of selection on (A) Total and (B) Reported Active Cases

Prediction accuracy of active case-counts: Figure 9 shows the predictions of Total and Reported Active cases in a
random instance among the 1000 simulations. The blue band indicates the 95% CI of estimated counts in that particular
simulation. The figure indicates that under selective testing, the counts predicted by the model may be very different
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than the true simulated data. The model incorporating misclassification and ignoring selection failed to capture the
overall trend in the simulated data for the active cases (reported+unreported). This is more evident from the value
of MRPE of the total active cases which has a mean of 0.56 with 0.32 and 1.54 as the 2.5% and 97.5% quantile
respectively. While, for reported active cases, however, the misclassification model obtained fairly accurate predictions
and successfully captured the trend in the data. The mean MRPE for the reported active cases is much lower than
that of the total active cases. The mean MRPE for the reported active cases came out to be 0.085 with 0.044 and 0.15
as the 2.5% and 97.5% quantile respectively. Thus the effect of selection is more pronounced on the prediction of
asymptomatic cases and what fraction of those cases get tested.

This simulation demonstrates that selection bias has substantial impact on our estimates. Ignoring selection could lead to
erroneous inference, particularly for predicting total number of true cases. Though we articulated this problem, we did
not quite posit a solution in this paper as any solution will require accurate specification of the selection probabilities,
which may not be known in practice or hard to estimate. The advantage of having a conceptual framework is that you
can fix the selection probabilities and characterize this bias.

5.3 Effect of number of tests

In this section, we study the effect of increasing testing on the course of the pandemic. We expect that with increasing
number of tests we have a better chance of identifying the infectious people, which might result in a faster end to the
pandemic. To test this hypothesis, we use our Selection Model(Extension 3) to explore the population infection rates
as a function of the number of available tests. Generation Model: We use the same Selection model for generating
these data as in the previous section. To generate the data, we use five different scenarios where values of all the
parameters except the number of tests is the same as in the previous simulation. The data are generated for a period of
1000 days with 5 periods 1� 10, 11� 31, 32� 50, 51� 64 and 65� 1200. The values of � for the 5 periods were
(0.6, 0.4, 0.3, 0.2, 0.05) for all the models. The only difference between the models is the number of tests. For the first
scenario, we generated the number of tests such that the number of test increases exponentially from 20,000 on the first
day to 1 million on the 1200th day. We used the following equation for generating such a sequence :

T (t) = start ⇥ e(t�1) log(�) 8t 2 {1, 2, ..., 1200} where � =
log

⇣ start
end

⌘

1200� 1
Let us denote the sequence of no of tests generated by T . Now, for the 5 scenarios, we generated data using number
of tests equal to 1, 2, 3, 4 and 5 times T respectively. We repeat the process 1000 times and take analyze the mean
predictions of total active cases.

Figure 10: Effect of test : Plot showing the number of total active cases over time for different number of tests. The
numbers above the arrows indicate the multiplication factor of number of tests

Results: Figure 10 shows the mean number of total active cases across 1000 simulations as a function of time since
pandemic onset. With a higher number of tests, the pandemic ends faster. We observe that the number of days before the
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first time the number of total active cases comes below the 1 million mark (after attaining the peak) for the models with
number of tests = 3T and 4T is 1.14 and 1.06 times that of model with with number of tests = 5T . For the models with
number of tests = T and 2T , we note that cases do not come below the 1 million mark withing the 1200 day period.

We also note that all the predictions in the 5 scenarios predict the existence of a 2nd peak. This is a proof of concept
illustration with our formulation. We further observe that with higher number of tests, the gap between the first and
second peak becomes smaller. Here, for the models with number of tests equal to 2, 3, 4 and 5 times T , we have the
gap between the 2 peaks as 0.77, 0.64, 0.56 and 0.49 times that of model with number of tests equal to T . We should
note that while the actual values presented in this simulation do not bear any resemblance with those of any country or
state, the relative orders and findings convey important insights regarding effect of the number of tests on the number of
infections.

6 Sensitivity Analysis

We now refer back to our simulation studies in Section 5.1. Since we fixed many parameters in the SEIR-fansy model
and only estimate � and r, we consider an exhaustive framework of sensitivity analysis focusing on certain key inputs
listed below.

1. E0 : We have tried 4 different values of E0 and check how the estimates of R0 and Reported Active cases
vary across different values of E0. We have taken E0 = 1, 2, 3 and 4 times (U0 + P0 + F0) in the 4 models
for sensitivity analysis.

2. ↵U : The value of ↵U had been taken as 0.5 in the main analysis. We also assumed ↵P = 0.5. So, we try 4
different values of ↵U here which are ↵U = 0.3, 0.5, 0.7 and 1.

3. De : We have taken De = 5.2 days which is same as the incubation period. Here we have considered 3 values
of De for sensitivity analysis. They are De = 6.4, 5.2 and 4.1.

4. k : For Multinomial Symptoms model, one important parameters is k which is the ratio of probability of a
mildly In our main analysis, we assumed k = 4. Here we have tried 4 different values of k : k = 3, 4, 5 and 6
and look at the different estimates.

We examine the estimates of the basic reproduction number for the different periods as well as the total active number
of cases for the different periods. The basic findings from the sensitivity analyses are summarized as follows:

• As expected, the predictions for the Reported Active cases (P) remains same.
• The estimates for R0 mainly differs in the first (and slightly in the second period) but are almost same for the

later stages of the pandemic in the different models.
• For the untested cases, in some of the cases there are substantial deviations from the generated cohort for a

particular parameter. The total number of active cases, which includes both the unreported and the reported
cases, varies substantially with different parameter values. This shows that estimation of unreported cases
is quite sensitive with respect to different choices for the parameter values. In particular, we see the highest
variation with different values of E0 and the least variation for De.

For detailed discussion on the sensitivity analysis, please refer to the Section 12 of the Supplementary Methods.

7 Conclusion

In this paper we have considered a mathematical framework for incorporating selection bias and misclassification in a
traditional SEIR model and illustrated the methods with reported COVID case, recovery and death counts in India from
April 1-August 31. The study has several limitations.

• Like all compartmental models, our model also assumes a structure for the dynamics of disease transmission.
When the model assumptions do not hold, resulting estimates may be inaccurate.

• Unlike other compartmental models, we do not assume homogeneous mixing of the population. We assume
different rates of infection from individuals in U , P and F . However, we assume that the probability of
contracting the virus is the same for all individuals in a particular compartment. This does not reflect the
realistic scenario where contact happens within individualized local networks. When this assumption is not
tenable, it is better to apply the model to smaller sub-populations and add them up to obtain prediction for the
larger population. Alternatively, one could decompose each compartment into sub-compartments based on
age-sex-job specific contact network and impose a hierarchical structure.
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• Our model also assumes that the values of � and r remain constant over chunks of time and that other
parameters remain constant through the entire course of the pandemic. However, such an assumption might not
be true in real life. The value of these parameters vary over time and change almost everyday. Nevertheless,
when public health measures remain invariant and under the absence of any disruptive event like a large
superspreader event, the variation in values in minimal and hence, we can assume them to be constant.

• In this paper, we have mainly focused on the accuracy of predicted reported cases with less attention given to
prediction of reported recoveries and deaths. This is mainly because of the model structure and the dichotomy
between what parameters are estimated and what parameters are assumed to be known. In the Multinomial-2-
parameter model, we estimated the parameters � and r that are directly related to the active number of cases.
If we are precise in terms of predicting this count, our predictions of all other compartment counts improve
given that our assumptions regarding the other fixed parameters are compatible with the data. We have chosen
reasonable values of the parameters related to Recoveries and Deaths. The success of estimating the counts in
R and D relies largely on our assumptions and our estimation of active case counts. There is an extensive
body of work starting from the death data [9] that adopts the reverse strategy, and future comparison of our
method with this genre of work is warranted.

• For predicting future cases, we assume values of � and r remain the same as in the last period. This might not
be true with changes in human behavior and public health measures to control the virus. One possible solution
is to replace � by �⇡(t) as done by Ray et al. [17]. Here, ⇡(t) is a time varying intervention modifier which
takes values in [0, 1] for stricter lockdown relative to the last period in the training data. Similarly, it takes
values greater than 1 for less stringent lockdown relative to the last period or when lockdown is lifted.

• Our treatment of the selection component is largely incomplete as it relies on knowing/estimating a selection
model for testing. While in some regional levels this may be well-characterized, it will be hard to know this at
scale for an entire country.

In spite of all these limitations, our SEIR-fansy method has some major strengths.

• Our model accounts for misclassification in the form of false negatives. We have shown that misclassification
has a substantial effect on the number of total cases (reported + unreported). Kucirka et al. [14] show that the
sensitivity of RT-PCR tests for COVID-19 can be as low as 0.7, which translates to a 30% false negative rate
(FNR). We show that accounting for 30% FNR can result in the estimates of total active cases to be about 50%
higher than estimates under perfect testing.

• Our model also considers a compartment for Untested individuals, which is very important when modelling
COVID-19. Recent serological surveys in Delhi [19, 20, 3] have shown that only 2.4% of the cases are being
reported (Underreporting factor of about 42). In our model U (Untested) and F (False Negatives) together
represent the number of unreported active cases while RU and DU represent the number of unreported
recovered and deaths respectively.

• We have derived a neat expression of the R0 under complex design and data quality issues, which provides
intuition regarding the influence of these processes on inference from a compartmental model.

• Unlike the conventional SEIR model, we use Bayesian modelling, which enables us to quantify uncertainties in
model parameters. We have presented 95% credible intervals of model parameters as well as average posterior
compartmental counts.

• Our selection framework allows us to fix the selection probabilities and study their effect on the estimates and
quantify the resultant bias. This can serve as an excellent sensitivity analysis tool.

• We have provided open-source code for implementing our method.

The paper has both theoretical and practical significance. The SEIR-fansy method proposes a comprehensive framework
to conceptualize incorporation of false negatives and selective testing in a SEIR model, which has broader methodolog-
ical significance for modeling any infectious disease transmission where testing/diagnostic strategies are imperfect.
We have fit our model on India and two of its states, Delhi and Maharashtra. We estimate that the underreporting

factors for cumulative cases in India, Delhi, and Maharashtra are approximately 21, 54, and 14 respectively, while
that for cumulative deaths are 6, 12, and 4 respectively as of 1st September. The implications of these results are both
positive and negative. While a large number of unreported cases indicates failure in detecting a large number of covert
infections, it also implies a considerably lower infection fatality rate (IFR) (which is defined by total no of deaths
divided by the total number of cases). The estimates of IFR for India, Delhi and Maharashtra as of 1st September are
0.88%, 0.91% and 1.24% respectively. The WHO [28] reports the value of IFR for COVID-19 to be between 0.5 to
1%. The case-fatality rate (CFR) for India, Delhi, and Maharashtra are 1.74%, 2.46%, and 3.08% respectively. Thus
the estimates of IFR are considerably lower than CFR which show that the virus is less lethal than it initially appeared.
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Apart from these results in the context of India, we have also conducted an extensive simulation study to characterize
the effects of misclassification, selection and number of tests on case counts and model parameters. We observe that
misclassification alone does not have a substantial effect on estimates of R0 but has a strong effect on projected counts.
Selection bias, on the other hand, has a strong effect on estimates of R0 and case counts. However, the effect of selection
on estimates of R0 is not as pronounced as on case counts. We also perform a simulation study to understand the effect
of number of tests on pandemic duration. We observe that with higher number of tests, the pandemic is declining at a
faster rate, which shows the importance of increasing number of tests. Finally, we have performed elaborate sensitivity
analyses for different parameters in our models, indicating that the estimates of R0 are relatively robust with respect to
different choices of parameters but that estimates of the number of cases are sensitive to these choices. In particular, the
estimated counts for the latent/unobserved compartments heavily rely on these assumptions.
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1 Differential Equations for Non-Instantaneous Testing
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2 Calculation of R0 for Misclassification Model

We calculate the basic reproduction number R0 using the The Next Generation Matrix Method as described by
van den Driessche [3]. Suppose the whole population is divided into n compartments in which there are m < n infected
compartments. Let xi, i = 1, 2, ..,m be the number of infected individuals in the ith infected compartment at time t.
Now, the epidemic model is:

@xi

@t
= Fi(x)� Vi(x)

Here, Vi(x) = [V �
i
(x) � V +

i
(x)], where V +

i
(x) represents the rate of transfer of individuals into compartment i

from all other components containing individuals infected with the disease (here E, U , P and F ) and where V �
i
(x)

represents the rate of transfer of individuals out of compartment i. Here, Fi(x) represents the rate of appearance of
new infections in compartment i. Let x0 denote the disease free equilibrium. Now F and V are m⇥m matrices such that :

Fij =
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@xj

(x0) Vij =
@Vi

@xj

(x0)

Now, FV�1 is called the Next Generation Matrix. The basic reproduction number R0 is calculated by the spectral
radius or the largest eigenvalue of FV�1. For our case,
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Now, we calculate the jacobian of F and V at the Disease Free Equilibrium (DFE).
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Now, we need to find the inverse of V̇ . Since it is a lower triangular matrix, it is easy to find the inverse.
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Now, we multiply Ḟ and V̇�1. The spectral radius of ḞV̇�1 gives the basic reproduction number. Note that the matrix
ḞV̇�1 has only one non-zero row, which is the first one. All other rows of ḞV̇�1 are 0. Hence, the spectral radius is
given by

⇣
ḞV̇�1

⌘
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3 Motivation Behind the 3-parameter Multinomial Model

We can observe from figure (S1) that mCFR varies widely across countries and also across time. Now note that while
countries like Belgium, USA, Italy, Spain have very high mCFR, India and Russia have comparatively much lower
mCFR. Also, we observe that initially most countries experience high mCFR and it gradually settles to a comparatively
lower value in most countries as the case counts and recoveries rise. This supports modeling mCFR as a time-varying
quantity.
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Figure S1: Variation of mCFR with time

4 Transmission Dynamics Diagram for Symptoms Model

Figure S2: Misclassification Model with Symptoms

The only difference in this model from the Multinomial 2-parameter model is that, from the Exposed Node, an infected
person can enter into one of three possible nodes: Severe Symptomatic Infectious(Se), Mild Symptomatic Infectious(Mi)
and Asymptomatic Infectious(As) with probabilities p1 , p2, and p3 respectively. Now, we assume people with severe
symptoms (people in Se) are tested with probability 1. While the Mi people and the As people are tested with
probabilities t1 and t2.

5 Misclassification model - complete distributional assumptions

In the main paper, we have given the distribution of observed nodes given the other nodes and parameters. Here, we
describe the distribution of the latent nodes also. After getting the estimates of the parameters using MCMC, we want to
obtain model-based forecasts. In order to predict the future counts, we use the following multinomial random sampling
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strategy:

⇣S!E , ⇣S!O, ⇣S!S ⇠ Multinomial (S(t� 1), pS!E , µ, 1� pS!E � µ)
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⇣RU!O, ⇣RU!RU ⇠ Multinomial (RU(t� 1), µ, 1� µ)

⇣RR!O, ⇣RR!RR ⇠ Multinomial (RR(t� 1), µ, 1� µ)

where ⇣X!Y denotes the number of individuals moving from compartment X to compartment Y at time t. ⇣X!0

denotes the number of individuals in compartment X that die at time t. The counts in each compartment at time t are
given by,

S(t) = ⇣S!S

E(t) = ⇣E!E + ⇣S!E

U(t) = ⇣U!U + UE ! U

P (t) = ⇣P!P + ⇣E!P

F (t) = ⇣F!F + ⇣E!F

RU(t) = ⇣RU!RU + ⇣U!RU + ⇣F!RU

RR(t) = ⇣RR!RR + ⇣P!RR

DU(t) = ⇣DU!DU + ⇣U!DU + ⇣F!DU

DR(t) = ⇣DR!DR + ⇣P!DR

Given the parameters and the counts at time (t� 1), we obtain the predicted counts for time t. Using this approach, we
obtain the posterior means of the future predicted counts at each of the 9 compartments using the MCMC estimated
parameters. For the purpose of future prediction beyond the training period, we use the parameter estimates from the
last time period.

6 Differential Equations for the Selection Model
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� µ xRU

@RR

@t
=

P (t)

DR

� µ RR

@DU

@t
= �1µcUI(t) +

µc F (t)

�2
@DR

@t
= µcP (t)

7 Selection Model : Complete Distributional Assumptions

To generate data using the test model, we perform the following steps.

⇣S!E , ⇣S!O, ⇣S!S ⇠ Multinomial(S(t� 1), pS!E , µ, 1� pS!E � µ)

Now, we assume the probability of an individual being severely symptomatic, mildly symptomatic or asymptomatic
given he/she is susceptible is given by the probability vector p0 = (p01, p02, p03). The probability for an infected
individual is given by p1 = (p11, p12, p13). To obtain the number of individuals in the groups Se0,Mi0, andAs0, we
assume that the outgoing individuals from the susceptible group follow the distribution given by p0.

Se0
new

(t), Mi0
new

(t), As0
new

(t) ⇠ Multinomial(⇣S!S ,p0)
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Now, from our assumption that the individuals in E follow the distribution given by p1, we can write,

⇣E!Se1 , ⇣E!Mi1 , ⇣E!As1 , ⇣E!O, ⇣E!E ⇠ Multinomial

✓
E(t� 1),

✓
p1

De

, µ, 1� 1

De

� µ

◆◆

Recall, we assume that all individuals with severe symptoms are tested provided adequate tests are available. This
implies

Se0
tested

= Se0(t) Se1
tested

= Se1(t) Setested = Se0
tested

+ Se1
tested

In the case when number of test T (t) is less than that of severe individuals, we assume that the number of tested Se1

and Se0 individuals is proportional to their respective counts.

Se0
tested

, Se1
tested

⇠ Multinomial

✓
Se(t),

✓
Se0(t)

Se0(t) + Se1(t)
,

Se1(t)

Se0(t) + Se1(t)

◆◆

If the total number of remaining tests is greater than or equal to the number of mild and asymptomatic individuals, then
all of them are tested i.e :

Mi0
tested

= Mi0(t), Mi1
tested

= Mi1(t), As0
tested

= As0(t), As1
tested

= As1(t)

If number of tests are not adequate for all the mild symptomatic and asymptomatic people to be tested, then the
remaining tests (after testing the severe symptomatic people) are distributed among the mildly symptomatic and
asymptomatic individuals in the ratio t1 : t2.

Mitested, Astested ⇠ Binomial (T � Setested, (t1, t2))

As we did in the case of severely symptomatic, we allocate the tests among infected and uninfected mildly symptomatic
(and also asymptomatic) individuals randomly.

Mi0
tested

,Mi1
tested

⇠ Binomial

✓
Mitested,

✓
Mi0(t)

Mi0(t) +Mi1(t)
,

Mi1(t)

Mi0(t) +Mi1(t)

◆◆

As0
tested

, As1
tested

⇠ Binomial

✓
Astested,

✓
As0(t)

As0(t) +As1(t)
,

As1(t)

As0(t) +As1(t)

◆◆

⇣UI!RU , ⇣UI!DU , ⇣UI!O, ⇣UI!UI ⇠ Multinomial(UI(t� 1),��1
1 D�1

r
, �1µc, µ,

1� ��1
1 D�1

r
� �1µc � µ)

⇣P!RR, ⇣P!DR, ⇣P!O, ⇣P!P ⇠ Multinomial(P (t� 1), D�1
r

, µc, µ, 1�D�1
r

� µc � µ)

⇣F!RU , ⇣F!DU , ⇣F!O, ⇣F!F ⇠ Multinomial(F (t� 1),�2D
�1
r

, ��1
2 µc, µ,

1� �2D
�1
r

� ��1
2 µc � µ)

⇣RU!O, ⇣RU!RU ⇠ Multinomial(RU(t� 1), µ, 1� µ)

⇣RR!O, ⇣RR!RR ⇠ Multinomial(RR(t� 1), µ, 1� µ)

We also assume the false negative probability = f . The numbers of new individuals to P and F states are given by :

Pnew, Fnew ⇠ Multinomial
⇣
Se1

tested
+Mi1

tested
+As1

tested
, (1� f, f)

⌘

Finally we write the number of people in each state at time t as follows :

UI(t) = ⇣UI!UI + Se1
untested

+Mi1
untested

+As1
untested

P (t) = ⇣P!P + Pnew

F (t) = ⇣F!F + Fnew

RU(t) = ⇣RU!RU + ⇣UI!RU + ⇣F!RU

RR(t) = ⇣RR!RR + ⇣P!RR

DU(t) = ⇣DU!DU + ⇣UI!DU + ⇣F!DU

DR(t) = ⇣DR!DR + ⇣P!DR
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Figure S3: Special case of Selection Model : Uniform testing

8 Special case of Selection Model : Uniform testing

To understand the effect of selection bias on R0, we consider a special case of the Selection model where we assume
uniform testing. Here, uniform testing means tests are offered independently of symptoms. The model is represented
diagrammatically in Figure (S3).

The transmission dynamics of this model are very similar to the Selection model. We provide the differential equations
describing the dynamics of the nodes S,E, UI, P and F . The rest of the nodes (RU,RR, DU and DR) have differential
equations exactly same as in Selection Model.

@S

@t
= ��

S(t)

N

⇣
↵PP (t) + ↵UU(t) + F (t)

⌘
+ �� µS(t)

@E

@t
= �

S(t)

N

⇣
↵PP (t) + ↵UU(t) + F (t)

⌘
� E(t)

De

� µE(t)

@UI

@t
=

E(t)

De

� T
E(t)

S(t) + E(t)
� UI(t)

�1Dr

� �1µcUI(t)� µUI(t)

@P

@t
= (1� f)T

E(t)

S(t) + E(t)
� P (t)

Dr

� µc P (t)� µ P (t)

@F

@t
= f · T E(t)

S(t) + E(t)
� �2 F (t)

Dr

� µc F (t)

�2
� µ F (t)

Now that we have all the differential equations governing the dynamics of this model, we calculate the basic reproduction
number using Next Generation Matrix method [3]. Using calculations similar to what we did for the Misclassification
model, we arrive at the following expression of R0 for Uniform testing model.

R0 =
�

µ+ 1
De

2

4
↵u

⇣
1
De

� T
⌘

1
�1Dr

� �1µc � µ
+

↵p (1� f)T
1
Dr

� µc � µ
+

fT
�2

Dr
� µc

�2
� µ

3

5 (2)
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9 Real Data Analysis for India

9.1 Table for Initial Values of the Different Compartments for India

Variable Value Justification

S(0) 1340933446 N-(E(0) + U(0) + P(0) + F(0) + RU(0) + RR(0) + DU(0) + DR(0)) (N = 1341 million)

E(0) 48780 Thrice the number of current infected

U(0) 13821 1�r

r
(P(0) + F(0))

P(0) 1829 Reported current infected on 1st April

F(0) 610 f

1�f
P(0)

RU(0) 958
⇣

1�r

r
+ f

1�f

⌘
RR(0)

RR(0) 169 Reported recovered on 1st April

DU(0) 329
⇣

1�r

r
+ f

1�f

⌘
DR(0)

DR(0) 58 Reported deceased on 1st April

Table S1: Initial Values of the Different Compartments

Now for India, we have fitted data from 1st April to 30st June. So for our prediction, we need the counts of the different
compartments on the initial date, that is on 1st April. So the table S1 presents the counts of the compartments for India
on 1st April.

9.2 Additional Plots for India

We have done our estimation using the MCMC Metropolis Method and predicted the counts for the different com-
partments by using the posterior means conditional on the estimated parameters. So the large number of iterations of
MCMC provide a 95% credible interval for the parameters as well as for the predictions of the compartments. So the
following figure shows the credible regions for the Reported Active, False negative active and Untested Active cases.

Figure S4: 95% Credible Intervals of estimates of Current Active Cases in India

Figure (S4), shows the 95% CI’s of the estimates of Current Active cases in India from 1st April to 31st August. Here,
we have fit the model using the data from 1st April to 30th June dividing the training period into 5 parts as described

9
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earlier. The estimates of � and r for the last period (1st June to 30th June) was used to predict the cases from 1st July
to 31th August. As it is easily visible from Figure (S4), the CI’s for estimates of untested cases is the highest. This is
expected due to the much higher estimated number of untested cases than tested positives or false negatives.

10 Additional Plots for Maharashtra and Delhi

(a) Basic Reproduction Number for Delhi (b) Basic Reproduction Number for Maharashtra

Figure S5: Basic reproduction number of Delhi and Maharashtra

From Figure (S5b), we observe that the estimates of basic reproduction number for Maharashtra have been strictly
decreasing throughout the training period. The value of R0 started at 3.58 in the first 2 weeks of April and eventually
dropped to 1.51 in June. The value of R0 dropped below 2 first time in lockdown 3 which was from 4th to 17th May.
From figure (S5a), we note that the basic reproduction number was quite high (> 3) in 1st, 2nd, 4th and 5th periods and it
decreased to 1.22 in the 6th period.

11 Results for Simulations - Effect of Misclassification

In the main paper we have shown the effect of misclassification on number of total active cases. We concluded that the
effect of misclassification on total active cases was substantial, but it was negligible on reported active cases. Here, we
provide the mean estimates of R0 obtained by the 3 different models with 3 different false negative rates f = 0, 0.15
and 0.3.

Basic Reproduction Number MRE
R01 R02 R03 R04 R05 Lower C.I Mean Upper C.I

Actual 3.99 3.65 2.12 1.59 1.69 - - -
Predicted Using f = 0 3.64 3.51 1.97 1.48 1.65 0.0036 0.0041 0.0045
Predicted Using f = 0.15 3.52 3.64 2.01 1.51 1.69 0.0035 0.004 0.0044
Predicted Using f = 0.3 3.83 3.73 2.04 1.53 1.71 0.0009 0.0012 0.0015

Table S2: Effect on Basic Reproduction Number

It is quite evident from the table S2 that the R0 is quite robust with the change of the value of false negative rate (f ).
Under all the false negative rates, the estimation of R0 is quite accurate which is evident from the MRE provided in the
table S2.

10
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12 Sensitivity Analysis

Since we have not estimated the values of quite a few parameters, a sensitivity analysis is necessary. Now, as doing
sensitivity analysis of all the parameters and initial values is impractical, we will do sensitivity analysis for the following
parameters only.

1. E0 : The initial value of Exposed had been chosen as 3 times the sum of initial values of Untested, Confirmed
and False Negative cases. Such a choice might seem arbitrary. Hence, we try 4 different values of E0 and
check how the estimates of R0 and Current Active cases vary across different values of E0.

2. ↵U : The value of ↵U had been taken as 0.5 in the main analysis. We also assumed ↵P = 0.5. So, we effectively
assumed that the rate of transmission of disease by untested and tested positive individuals was same. Some
things to consider when choosing the value of ↵U and ↵P were that individuals who were tested positive
are quarantined and/or hospitalized reducing their rate of transmitting the disease. And untested cases are
predominantly asymptomatic cases whose rate of spreading the virus is much less than symptomatic cases.
So, we have ↵U < 1 and ↵P < 1. However, we do not know if ↵U > ↵P or ↵U < ↵P . So we try 4 different
values of ↵U here which are ↵U = 0.3, 0.5, 0.7 and 1.

3. De : We stated in the beginning of this paper that we have assumed the Incubation period equals the Latency
period (= De). We have taken De = 5.2 days following the results by Lauer et al. [2]. However research
by other groups suggest different values of incubation period like 6.4 days by Becker et al. [1] etc. So we
consider 3 values of De for sensitivity analysis. They are De = 6.4, 5.2 and 4.1 (lower limit of 95% CI of
estimates of incubation period by Lauer et al. [2])

4. k : For Multinomial Symptoms model, one important parameters is k which is the ratio of probability of a
mildly symptomatic person being tested to that of an asymptomatic person being tested. Since the probability
of testing is higher for a mildly symptomatic person than an asymptomatic person, so k > 1. In our main
analysis, we assumed k = 4. The choice of k was not supported by any data. So, we try 4 different values of k
: k = 3, 4, 5 and 6 and look at the different estimates.

12.1 Effect of initial value of Exposed

We start with the initial value of Exposed individuals. Throughout our analysis we have assumed that the number of
exposed individuals on the starting day i.e. 1st April was thrice the number of total expected infected up to that day. So
we check how much our estimates vary if we vary the starting value of Exposed (E0). So, we use 4 starting values for
E0:

1. E0 = U0 + P0 + F0

2. E0 = 2(U0 + P0 + F0)

3. E0 = 3(U0 + P0 + F0)

4. E0 = 4(U0 + P0 + F0)

Figure S6: Variation of estimates of R0 with different values of E0
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We can observe from subfigure B of Figure (S6) that our estimates of R0 are relatively robust with respect to choice of
initial values of exposed. The only substantial variation is observed in the first time period - 1st - 14th April. Now, let
us look at how the estimates of number of active cases change with different initial values.

We can observe from subfigure A of Figure (S6) that all the estimates for total active cases increases with increasing
values of E0. The estimate of total active cases on 30th June for E0 = 4(U0 + P0 + F0) was more than 2 times that
for E0 = (U0 + P0 + F0). Hence we observe that though the estimates of total active cases vary substantially with
different initial number of Exposed people, the estimates of Basic Reproduction Number are much more robust to such
variations. Now we look at the effect of ↵U on our estimates.

12.1.1 Effect of ↵u

In our main analysis we assumed ↵U = 0.5. Here, we try 4 different values of ↵U , ↵ = 0.3, 0.5, 0.7 and 1. First, we

Figure S7: Variation of estimates of R0 with different values of ↵U

look at the estimates of R0. Similar to the previous section, from subfigure B of (S7), we observe that the estimates of
R0 are more or less similar for different values of ↵U . Once again, the only R0 that substantially varies with different
values of ↵U is the first one i.e. R01. Now, we look at the estimates of total active cases.

Subfigure A of (S7) shows that the estimated value of total active cases decreases with increasing value of ↵U . The
reason behind this is if the value of ↵U is higher, then a smaller number of untested cases will spread the same amount
of infection as a larger number of cases would have if the value of ↵U had been lower.

So, once again, we observe that while the estimates of the number of active cases are influenced heavily by ↵U , the
estimates of R0 remain relatively unaffected by the change.

12.2 Effect of De

For our main analysis, we had assumed De = 5.2. Here, we try 2 more values of De and check how our estimates vary
with different values of De.

Again, we observe from subfigure B of (S8), that estimates of R0 are very robust with respect to different values of De.
From subfigure A of Figure (S8), we note that the predicted number of active cases vary with the different values of De.
However, unlike the previous cases, we do not substantial variation with different variation of De. Now, we move on to
our last sensitivity analysis which is for the value of k in multinomial symptoms.

12.3 Effect of k

In Multinomial symptoms model, we defined k as the ratio of the probability of a mildly symptomatic individual getting
tested to the same for an asymptomatic individual. We chose the value k = 4 for our main analysis. We had argued why
the value of k should be greater than 1 but could not provide any justification for choosing that particular value. So, we
try 4 different values of k : k = 3, 4, 5 and 6. We will start with the estimates of R0.

Figure subfigure B (S9) shows that similar to previous cases, the estimates of R0 do not vary much with different values
of k. We now look at the estimates of total active cases. From subfigure A of Figure (S9), we note that the estimates of
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Figure S8: Variation of estimates of R0 with different values of De

Figure S9: Variation of estimates of R0 with different values of k for multinomial symptoms model

total active cases vary with different values of k and with higher values of k we have lower predictions of number of
total active cases.

To summarize, we observe that the estimates of the Basic Reproduction number are not substantially influenced by
these parameters with an exception of the first Reproduction number. We also note that the estimated number of active
cases varies with different values of parameters in most of the cases. It is clearly visible that the sensitivity of the total
active case predictions vary across parameters. While it does not vary much with De, there is substantial variation with
different values of E0.
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