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Abstract

Women of African ancestry have lower incidence of epithelial ovarian cancer (EOC) yet worse 

survival compared to women of European ancestry. We conducted a genome-wide association 

study in African ancestry women with 755 EOC cases, including 537 high-grade serous ovarian 
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carcinomas (HGSOC) and 1,235 controls. We identified four novel loci with suggestive evidence 

of association with EOC (p < 1 × 10−6), including rs4525119 (intronic to AKR1C3), rs7643459 

(intronic to LOC101927394), rs4286604 (12 kb 3′ of UGT2A2) and rs142091544 (5 kb 5′ of 

WWC1). For HGSOC, we identified six loci with suggestive evidence of association including 

rs37792 (132 kb 5′ of follistatin [FST]), rs57403204 (81 kb 3′ of MAGEC1), rs79079890 

(LOC105376360 intronic), rs66459581 (5 kb 5′ of PRPSAP1), rs116046250 (GABRG3 intronic) 

and rs192876988 (32 kb 3′ of GK2). Among the identified variants, two are near genes known to 

regulate hormones and diseases of the ovary (AKR1C3 and FST), and two are linked to cancer 

(AKR1C3 and MAGEC1). In follow-up studies of the 10 identified variants, the GK2 region SNP, 

rs192876988, showed an inverse association with EOC in European ancestry women (p = 0.002), 

increased risk of ER positive breast cancer in African ancestry women (p = 0.027) and decreased 

expression of GK2 in HGSOC tissue from African ancestry women (p = 0.004). A European 

ancestry-derived polygenic risk score showed positive associations with EOC and HGSOC in 

women of African ancestry suggesting shared genetic architecture. Our investigation presents 

evidence of variants for EOC shared among European and African ancestry women and identifies 

novel EOC risk loci in women of African ancestry.

Keywords

ovarian cancer; African ancestry; genome wide association study; gene expression; eQTLs

Introduction

Epithelial ovarian cancer (EOC) is a rare but deadly disease that has a slightly higher 

incidence in women of European ancestry compared to the women of African ancestry.1 

However, in the United States, the 5-year relative survival is much worse for African 

American women at 35% compared to 47% for European ancestry women.1 To date, 

genome-wide association studies (GWAS) have identified 30 common, low penetrant EOC 

susceptibility alleles,2 but due to small sample sizes of other ethnic groups, most published 

GWAS studies of EOC have been restricted to European ancestry women. There have been 

no GWAS in women of African ancestry. Although there are 30 confirmed GWAS single 

nucleotide polymorphisms (SNPs) that have been reported in European ancestry women, it is 

unknown whether there is any concordance among women of African descent.

The Genetic Associations and Mechanisms in Oncology (GAME-ON) network designed a 

custom Illumina array, the OncoArray, in order to replicate previous GWAS findings and 

identify new cancer susceptibility loci.3 The OncoArray includes ~533,000 variants (of 

which 260,660 formed a GWAS backbone) and was used for coordinated genotyping of over 

400,000 cancer cases and controls, including EOC case–control studies of the Ovarian 

Cancer Association Consortium (OCAC) and the multicenter African American Cancer 

Epidemiology Study (AACES).4 The present study conducted a GWAS in 755 EOC cases 

and 1,235 controls of African ancestry from the OCAC and AACES. To increase the sample 

size, additional genotype data were combined from the OCAC Collaborative Oncological 

Gene-Environment Study (COGS) and three EOC GWAS5 to evaluate the concordance of 

confirmed GWAS SNPs found in women of European ancestry. We present the results of 
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these association analyses together with expression quantitative trait locus (eQTL) analyses 

for SNPs reaching a suggestive threshold of p < 1 × 10−6. The functional annotation of the 

EOC susceptibility loci in women of African Ancestry is described.

Materials and Methods

Study samples

All subjects included in this analysis were of African descent and provided written informed 

consent as well as data and blood samples under ethics committee-approved protocols.

The GAME-ON OncoArray data set comprised 63 OCAC studies and the AACES.4 The 

analyses for our study were restricted to 32 studies that contributed samples from individuals 

of African descent (Supplementary Table S1).

Genotype data and quality control (QC)

Genotyping was performed at five genotyping centers: University of Cambridge, Center for 

Inherited Disease Research, National Cancer Institute (NCI), Genome Quebec and Mayo 

Clinic. OncoArray sample QC for the genotypes received from Cambridge was similar to 

that carried out for the other projects that used the OncoArray as described in Pharoah et al.3 

Samples were excluded if the genotyping call rate was <95%, for high or low 

heterozygosity, if the individual was not female or had ambiguous sex, or were duplicates. 

SNP QC was carried out according to the OncoArray QC guidelines.3 Sample level QC 

included restriction to female samples, as well as check for call rate >95%, heterozygosity 

(either too big or too small), removal of ineligible samples and relationship inference to 

check for unexpected first-degree relatives. SNP level QC included filter on call rate >95% 

and Hardy–Weinberg Equilibrium p-value >1 × 10−5. After applying these filters for QC, 

there were 466,142 SNPs remaining for 2,088 samples (832 EOC cases and 1,255 controls).

Genetic ancestry analysis

Intercontinental ancestry was calculated for the OCAC and AACES samples using the 

software package FastPop6 (http://sourceforge.net/projects/fastpop/) that was developed 

specifically for the OncoArray Consortium. Only the African ancestry samples, defined as 

having >50% African ancestry, were used for the GWAS reported here (755 EOC cases and 

1,235 controls). Among the cases, 537 were high-grade serous ovarian carcinoma (HGSOC), 

21 low-grade serous, 31 endometrioid, 24 clear cell, 51 mucinous 12 mixed cell, 65 other 

EOC and 14 with missing histotype. Principal components computed using FastPop6 were 

further used to adjust for population structure in our GWAS.

Genome-wide imputation of genotypes

Using the genotyped SNPs that passed QC, haplotypes were phased with SHAPEIT v27 

followed by imputation to the 1,000 Genomes Phase 3 v5 reference set8 using Minimac3.9

Association analyses in ovarian cancer cases and controls of African descent

Genome-wide association analysis was performed by logistic regression with adjustment for 

two principal components of ancestry using a score test to account for genotype uncertainty 
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as implemented in SNPTESTv2.5.2.10 For genotyped SNPs, we included results only for 

those SNPs with Hardy–Weinberg Equilibrium p-value >1 × 10−5 and heterozygosity count 

(HC) >30, where HC is defined as N × MAF × (1-MAF) for each SNP, N represents the 

sample size (either the number of cases or the number of controls), and MAF represents the 

SNP minor allele frequency. For imputed SNPs, we included those SNPs with imputation R-

squared >0.5, and effective heterozygosity count (effHC) >30, where effHC is defined as the 

imputation R-squared × HC. Note that we applied QC filters separately for cases and 

controls to select SNPs carried forward for genetic association analysis, such that a 

minimum HC (or effective HC) of 30 was observed among each of the case and control 

groups. After applying these filters, there were 12,486,624 and 11,083,029 SNPs remaining 

in the GWAS of EOC and HGSOC, respectively. We examined quantile–quantile plots for 

the SNPs remaining after applying filters (Supplementary Fig. S1), and obtained lambdas of 

1.01 in both the EOC and HGSOC analyses, indicating that our analyses were free from 

obvious inflation in the distribution of observed p-values. We calculated Bayesian false-

discovery probabilities (BFDPs) for associated SNPs assuming prior probabilities of 

association 1:1,000 and 1:10,000 to facilitate interpretation of the reported SNP associations.
11

Expression quantitative trait locus (eQTL) analysis for selected GWAS SNPs

We pursued eQTL analysis using gene expression measurements from formalin-fixed 

paraffin-embedded (FFPE) tissue specimens collected from the facility where the 

cytoreductive surgery was performed for 260 African ancestry HGSOC cases in the AACES 

and a case–control study in OCAC, the North Carolina Ovarian Cancer Study (NCOCS). 

RNA was extracted using the Qiagen AllPrep DNA/RNA FFPE isolation reagents in 

conjunction with the Qiagen GeneRead kit, and RNA was assayed on Affymetrix Human 

Transcriptome 2.0 ST GeneChips. R (version 3.5.2) Bioconductor (version 3.8) was used to 

quantitate expression levels for targeted genes. We used robust multi-array average from the 

oligo package (target = “core”) to normalize the expression intensities12 and ComBat 

(Bioconductor-sva) to remove batch effects.13 We then mapped probe intensity 

measurements to gene identifiers14 before generating box plots of expression distributions 

by genotype. For each of the 10 SNPs identified in the GWAS of EOC and HGSOC (Table 

1), we examined genes and transcripts within the region of identified GWAS SNPs for eQTL 

evidence using an additive model with adjustment for age and the first two principal 

components of ancestry. For the selected transcripts, we report all eQTL associations 

demonstrating nominal statistical significance at p < 0.05 for available transcripts falling 

within the region of identified GWAS SNPs.

Examination of pleiotropy of GWAS SNPs associated with EOC in women of African 
ancestry with breast and prostate cancer in African ancestry individuals

Because we were unable to identify other GWAS of EOC in women of African ancestry, 

independent validation of GWAS results was not possible. Therefore, we examined the 

association of the 10 SNPs identified in the present African ancestry GWAS of EOC or 

HGSOC at p < 1 × 10−6 (Table 1) with previously completed studies of breast cancer 

(overall, ER positive and ER negative) and prostate cancer in populations of African descent. 

Genetic associations in breast cancer were determined from 3,007 cases, of which 987 are 
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ER negative and 1,518 are ER positive, and 2,720 African ancestry controls from the African 

American Breast Cancer Consortium (AABC), using the Illumina Human 1M-Duo 

BeadChip.15 The genotype associations for prostate cancer were from 4,853 cases and 4,678 

controls in the African American Prostate Cancer Consortium (AAPC), using the Illumina 

Infinium 1M-Duo.16 For the selected SNPs, evidence of association from the studies of 

breast and prostate cancer is reported at a nominal level (p < 0.05) without adjustment for 

multiple comparisons.

Concordance of associated SNPs across women of African and European ancestry

We examined whether susceptibility genes for EOC previously identified in European 

ancestry women2 were associated with EOC among women of African ancestry as well as 

whether the loci identified among women of African ancestry in this analysis were 

associated with EOC among European ancestry women.

Fine mapping of gene regions was performed for (i) the loci previously identified as 

significantly associated with EOC in European ancestry women among African ancestry 

women and (ii) the loci identified as significantly associated with EOC in those of African 

ancestry in the present analysis among European ancestry women. Plots were generated for 

each region defined by the position of the most strongly associated SNP +/− 400 kb using 

the LocusZoom software with the hg19/1000 Genomes Nov 2014 AFR (or EUR depending 

on the ethnic population) as the reference panel for linkage disequilibrium information. 

Significance for each region of interest was defined by both a Bonferroni threshold (alpha-

level of 0.05/number of SNPs tested in that region) and a more conservative, suggestive 

threshold (alpha-level of 0.05/[number of SNPs tested in that region/3]). To further examine 

the global genetic architecture in the two populations, we calculated a polygenic risk score 

using 24 SNPs from published GWAS of ovarian cancer in European ancestry women, 

excluding SNPs associated only with mucinous tumors.3,17

Data availability

The majority of the GWAS data set used during the current study are available at the 

database of Genotypes and Phenotypes (dbGaP) under accession number phs001882.v1.p1 

(OncoArray – FOCI data). Other portions are not publicly available due to privacy or ethical 

restrictions, but will be made available upon reasonable request.

Results

Genome-wide association of EOC and HGSOC in African ancestry women

Genetic association analyses were performed using genotype data from 755 invasive EOC 

cases (537 HGSOC) and 1,235 controls of African ancestry from OCAC and AACES. The 

numbers of participants by study for OCAC are shown in Supplementary Table S1. The 

Manhattan plots from the GWAS in African ancestry women for both overall EOC and 

HGSOC are shown in Supplementary Figure S2. We did not observe any genetic markers 

that were statistically significantly associated with EOC or HGSOC risk at the standard 

genome-wide significance level of p < 5 × 10−8.
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Using a suggestive threshold of p < 1 × 10−6, we identified four distinct loci for association 

with EOC and six distinct loci for HGSOC (Table 1). The four loci associated with EOC 

included 10p15.1 (lead SNP rs4525119, intronic to AKR1C3, p = 4.9 × 10−7, effect allele 

frequency [EAF] = 0.33), 3p25.3 (lead SNP rs7643459, intronic to LOC101927394, p = 8.4 

× 10−7, EAF = 0.36), 4q13.3 (lead SNP rs4286604, 12 kb 3′ of UGT2A2, p = 8.5 × 10−7, 

EAF = 0.27) and 5q34 (lead SNP rs142091544, 5 kb 5′ of WWC1, p = 9.4 × 10−7, EAF = 

0.03). Of these four loci, none reached the threshold of p < 1 × 10−6 for HGSOC, although a 

p-value of 1.4 × 10−6, just below this threshold, was found for rs764359 (odds ratio [OR] = 

1.45; 95% confidence interval [CI] = 1.25–1.68). The six loci associated with HGSOC 

included 5q11.2 (lead SNP rs37792, 132 kb 5′ of FST [follistatin], p = 6.0 × 10−8, EAF = 

0.34), Xq27.2 (lead SNP rs57403204, 81 kb 3′ of MAGEC1, p = 1.7 × 10−7, EAF = 0.06), 

10p15.1 (lead SNP rs79079890, LOC105376360 intronic, p = 3.0 × 10−7, EAF = 0.03), 

17p25.1 (lead SNP rs66459581, 5 kb 5′ of PRPSAP1, p = 5.1 × 10−7, EAF = 0.23), 15p12 

(lead SNP rs116046250, GABRG3 intronic, p = 8.7 × 10−7, EAF = 0.05) and 4q21.21 (lead 

SNP rs192876988, 32 kb 3′ of GK2, p = 9.2 × 10−7, EAF = 0.05). The regional association 

plots for these 10 SNPs are shown in Supplementary Figures S3 (EOC) and S4 (HGSOC). 

For the four loci associated with EOC overall, the BFDP ranged from 5% to 8% assuming a 

prior of 1:1,000 (Table 1) For the six loci associated with HGSOC, the BFDP ranged from 

<1% to 8% assuming a prior of 1:1,000 (Table 1). Assuming a prior probability of 1:10,000, 

we identified one locus for HGSOC with a BFDP < 5% (FST rs37792, BFDP = 4%; 

Supplementary Table S2).

Expression quantitative trait locus (eQTL) analysis for GWAS SNPs

Results of eQTL analyses on 260 HGSOC tissue samples from women of African ancestry 

for each of the 10 EOC- and HGSOC-associated regions of interest are in Figure 1. We 

identified the set of genes lying within a ±100 kb region of the most strongly associated SNP 

for each locus to pursue for the eQTL analysis. For one SNP, rs37792, there were no genes 

or transcripts identified within a ±100 kb region, so we expanded consideration to a ±500 kb 

region that included FST and three other genes (Supplementary Table S3). Among the gene 

and transcript targets selected for follow-up, expression data were available for 21 genes and 

transcripts falling within the regions of seven GWAS SNPs. We note that we did not have 

expression data available for the noncoding transcripts identified within the regions of two 

SNPs (rs7643459 and rs79079890), so these SNPs and transcripts could not be carried 

forward for eQTL analysis. Among the SNPs and transcripts examined in eQTL analyses, 

we identified a significant association for rs192876988, where carriers of allele C showed 

decreased expression of GK2 (p = 0.004, Fig. 1 and Supplementary Fig. S5). We also 

identified a nominally significant association for rs37792 (p = 0.03).

Breast and prostate cancer associations for selected SNPs identified in the GWAS of EOC 
and HGSOC

As evidence for pleiotropy has been observed in Europeans,2 we evaluated pleiotropy with 

ovarian cancer-associated SNPs among African Americans diagnosed with breast and 

prostate cancer in the AABC and AAPC, respectively. For selected SNPs from the GWAS of 

EOC and HGSOC in African ancestry women (Table 1), we examined evidence of 

association with breast and prostate cancer in individuals of African ancestry. The EOC-
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associated LOC101927394 region SNP rs7643459 allele T demonstrated nominal evidence 

of association with increased risk of ER negative breast cancer (p = 0.029) with an OR of 

1.13 (95% CI = 1.01, 1.26) (Supplementary Table S4) showing consistent direction with that 

reported for EOC. The same SNP rs7643459 allele T also showed nominal association with 

prostate cancer in African Americans (p = 0.034; Supplementary Table S5). Within the 

region of UGT2A2, SNP rs4286604 allele A was associated with increased risk of prostate 

cancer (p = 0.025). We note that the A allele for this SNP was identified as having a 

protective association for EOC (Table 1), indicating a discordant direction of association 

comparing the relationship with EOC vs. prostate cancer. SNP rs142091544 allele T within 

the WWC1 region, associated with EOC, demonstrated evidence of association with ER 

negative breast cancer (OR = 1.55, 95% CI = 1.19, 2.02; p = 0.001) indicating a consistent 

direction compared to the association with EOC. The LOC105377300/GK2 region SNP 

rs192876988 allele C demonstrated nominal association with increased risk of ER positive 

breast cancer (OR = 1.32, 95% CI = 1.03, 1.69; p = 0.027; Supplementary Table S4), 

showing a consistent direction of effect with that reported for HGSOC (Table 1).

Concordance of associated SNPs across women of African and European ancestry

One of the 10 SNPs (LOC105377300/GK2 region SNP rs192876988) identified to be 

associated in women of African ancestry was found to be significantly associated (p = 

0.002) with HGSOC at the Bonferroni threshold among European ancestry women, although 

the direction of the association was discordant with that among African ancestry women 

(Table 1). Of the 30 previously identified GWAS SNPs detected in European ancestry 

women, four SNPs were significantly associated with EOC among African ancestry women 

(p < 0.05): 19p13.11 (rs4808075, p = 0.013), 5p15.33 (rs7705526, p = 0.014), 17q21.32 

(rs1879586, p = 0.018) and 17q12 (rs7405776, p = 0.026) (Table 2). Combining the 24 

published European ancestry GWAS SNP associations (omitting mucinous associated SNPs 

due to the small number of cases in the data set), the association of the resulting polygenic 

risk score with EOC was 1.20 per standard deviation in polygenic risk score (95% CI = 1.09, 

1.31; p = 4.46 × 10−9) and 1.26 per standard deviation in polygenic risk score (95% CI: 1.13, 

1.39; p = 3.02 × 10−11) for HGSOC, demonstrating a positive association of this European 

ancestry-derived risk score with EOC risk in women of African ancestry. These are weaker 

in comparison to the recently reported polygenic risk score for East Asian women of 1.76 

per standard deviation for HGSOC (p = 8.6 × 10−6).18

The results from fine mapping of the gene regions of the 30 previously identified SNPs3 

associated with EOC and HGSOC in European ancestry women among the sample of 

African ancestry women identified one risk region in African ancestry women that was 

significantly associated with EOC after Bonferroni correction, 18q11.2 (p = 1.84 × 10−5) 

(Table 3 and Supplementary Table S6). The lead SNP in that region (chr18:21555816, 

rs1258109, 8 kb 5′ of LOC105372023) is located ~150 kb from the LAMA3 region variant 

previously reported in European ancestry (chr18:21405553, rs8098244). Notably, rs8098244 

demonstrates differences in MAF across ethnic groups with MAFs of 0.28 and 0.03 in the 

1,000 Genomes European vs. African ancestry populations (source: HaploReg v4.1), 

respectively, corresponding to markedly reduced power to detect associations with this 

variant in African ancestry women. Four loci were associated with EOC at a suggestive 
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threshold: 9p22.2 (chr9:16978052, rs373094273, p = 2.67 × 10−5, 36 kb 5′ of 

LOC105375983), 8q21.13 (chr8:82866267, rs1839897, p = 1.44 × 10−5,104 kb 3′ of 

LOC105375928), 10q24.33 (chr10:105375295, rs138417137, P = 3.40 × 10−5, SH3PXD2A 
intronic) and 3q22.3 (chr3:138839642, rs75623154, p = 3.34 × 10−5, BPESC1 intronic). In 

examination of association with HGSOC, we identified one Bonferroni-significant 

association at 8q21.13 (chr8:82866267, rs1839897, p = 3.98 × 10−6, 104 kb 3′ of 

LOC105375928) located ~200 kb from the previously reported CHMP4C region variant 

(chr8:82668818, rs76837345). Additionally, a locus in region 12q24.31 reached the 

suggestive threshold (chr12:121113096, rs111546208, CABP1 intronic, p = 2.51 × 10−5) for 

association with HGSOC among African ancestry women.

Of the 10 SNPs newly identified in GWAS of African ancestry women, one, the GK2 region 

SNP rs192876988, showed evidence a protective association (p = 0.002) in the OCAC 

European ancestry GWAS that included up to 23,543 EOC cases and 29,444 controls (Table 

1). Fine mapping of these gene regions in European ancestry women provided no evidence 

of another SNP within the region associated with EOC or HGSOC at the Bonferroni 

significance threshold; however, a SNP in the 4p13 region reached statistical significance at 

the suggestive threshold, p = 1.14 × 10−5 (Supplementary Table S7). The lead SNP in this 

region was rs2292092 (chr4:70592790), a variant in the 3′ UTR of the SULT1B1 gene.

Discussion

Here, we report on the first GWAS of EOC and HGSOC in women of African ancestry. Due 

to the limited number of EOC cases of African ancestry available for our study, we applied a 

suggestive threshold of p < 1 × 10−6 for the current investigation. At this suggestive level of 

statistical significance, we identified four loci associated with EOC in women of African 

descent and six distinct and novel loci associated with HGSOC in women of African 

descent. Although one SNP was observed to be associated with HGSOC among European 

ancestry women, the direction of the association was not concordant with that of African 

ancestry women. Below, we review the functional relevance of these genes to ovarian cancer 

and other cancers.

The variant with the smallest p-value associated with EOC in women of African descent 

(rs4525119) is in an intron of AKR1C3, a gene which encodes an enzyme of the aldo-keto 

reductase superfamily.19 AKR1C3 plays a role in androgen biosynthesis20 and has been 

linked to benign gynecologic conditions, endometriosis and polycystic ovary syndrome 

(PCOS),21–24 which are risk factors for ovarian cancer. Consistent with a possible 

relationship with a predisposition to endometriosis, an OR of 1.78 (95% CI = 1.09–2.90) for 

the association between a history of endometriosis and invasive EOC risk among African 

Americans was recently reported in the AACES.25 Another locus associated with EOC is 

near the WWC1 gene, which encodes the WW domain-containing protein 1 (WWC1), also 

known as KIBRA, and is likely a regulator of the tumor suppressive Hippo signaling 

pathway.26 While WWC1 has been primarily linked to episodic memory and Alzheimer’s 

disease,27–30 a recent candidate gene study31 observed an association between WWC1 
variants and risk of estrogen-receptor positive breast cancer in women of African ancestry. 

Likewise, WWC1/KIBRA has been linked to breast cancer outcomes, including recurrence-
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free survival and metastasis.32,33 In the current study, we found an association with ER 

negative breast cancer for the SNP nearest to the WWC1 gene. To our knowledge, the other 

two loci associated with EOC in women of African descent at the suggestive threshold, 

LOC101927394 and UGT2A2, have not been reported in association with cancer or other 

diseases. However, when we assessed whether the rs7643459 allele T in LOC101927394 
was associated with cancer in individuals of African descent using data from the AABC and 

AAPC consortium, we demonstrated a nominal association with risk of ER negative breast 

cancer and prostate cancer in African ancestry individuals.

The variant with the smallest p-value for HGSOC was observed for a SNP upstream of FST 
(rs37792). The FST gene encodes a gonadal protein that inhibits the release of follicle-

stimulating hormone,34 and is consistent with the suspected hormonal etiology of ovarian 

cancer.35 Polymorphisms of FST have been linked to PCOS36 or markers for PCOS,37 a risk 

factor for ovarian cancer.38 With potential importance to cancer risk, progression and 

survival, the second most significant HGSOC-associated gene, MAGEC1, is a member of 

the melanoma-associated antigen (MAGEs) gene family and encodes tumor-specific 

antigens that can be recognized by autologous cytolytic T lymphocytes.39 Due to these 

properties, the MAGE gene family has garnered attention as possible target for cancer 

immunotherapy.40 MAGEC1 expression has been linked to an improved ovarian cancer 

progression-free survival.41 Recently, a missense variant in MAGEC3 was reported to have 

an X-linked pattern of inheritance in ovarian cancer families.42

Several of the SNPs associated with EOC and HGSOC were long noncoding RNA (ncRNA) 

genes, LOC101927394, LOC105376360 and LOC105377300 (GK2). Little is known about 

these specific ncRNAs, but ncRNAs are increasingly reported by GWAS studies and are 

thought to play important roles in gene regulation.43 SNPs in long ncRNAs have been shown 

to contribute to the development of ovarian cancer, where a variant within the exonic region 

of a long ncRNA gene (rs17427875, HOXA11-AS) was marginally associated with reduced 

risk of serous ovarian cancer.44 We also demonstrated that LOC105377300/GK2 region SNP 

rs192876988 allele C was associated with an increased risk of ER positive breast cancer in 

African ancestry women from AABC, and inversely associated with HGSOC in European 

ancestry women from OCAC. The rs192876988 allele C also showed association with 

reduced expression of GK2 in HGSOC tissue samples from women of African ancestry. 

GK2 encodes glycerol kinase 2, a key enzyme in the regulation of glycerol uptake and 

metabolism, and has been associated with glycerol kinase deficiency.45 It remains unclear 

whether the association between rs192876988 and GK2 expression is mediated by the 

nearby ncRNA.

A few SNPs were identified through fine mapping of loci previously reported in European 

ancestry-based GWAS of ovarian cancer3 that may be of importance to ovarian cancer risk 

among African ancestry women. Four of these SNPs were near or in long ncRNA genes 

(LOC105372023, LOC105375983, LOC105375928 and BPESC1), while two SNPs lie in 

protein coding sequences for SH3PXD2A and CABP1. The SH3PXD2A gene encodes an 

adaptor protein involved in formation of invadopodia and degradation of the extracellular 

matrix, which both contribute to tumor invasion.46 The CABP1 gene encodes a calcium 

binding protein that is highly expressed in the brain and retina, and is important in calcium 
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mediated cellular signal transduction.47 Through the fine mapping of gene regions among 

European ancestry women, we identified one SNP in the 3′ UTR region of the SULT1B1 
gene. The SULT1B1 gene encodes a sulfotranferase enzyme that catalyzes the sulfate 

conjugation of estradiol, thyroid hormones and drugs.48 Overall, although we identified 

limited statistical significance in examining the specific genetic variants previously reported 

in GWAS of European ancestry individuals, our fine mapping effort underscores the 

possibility of shared genes, pathways and biological mechanisms underlying risk of ovarian 

cancer in European and African ancestry women.

The OCAC and AACES provided a unique opportunity to evaluate genetic associations in 

African ancestry women with EOC as no individual study alone has enrolled enough 

subjects. That said, even with data pooled from 32 individual studies, the sample size was 

underpowered for detection of genome-wide significant associations. As shown in Table 2, 

the power to detect associations of SNPs confirmed among European ancestry in those of 

African ancestry was limited for most SNPs and ranged from 0.015/0.16 to 0.819/0.982 

(based on power calculations with/without consideration for multiple comparisons).

There are very few existing studies that were not included in our analysis that have enrolled 

women of African descent with ovarian cancer. However, the Black Women’s Health Study 

(BWHS), the Women’s Health Initiative (WHI) and the Southern Community Cohort Study 

(SCCS) have EOC cases diagnosed in women of African descent that were not included in 

our analyses. Since none of these three studies has participated in OCAC or GAME-ON, 

genotype data generated from the OncoArray project were not available. Thus far, neither 

the SCCS nor the BWHS have genotyped ovarian cancers in their cohorts. Although the 

WHI has conducted genome-wide genotyping, a different genetic platform (Affymetrix 6.0 

array) was used. When we attempted to add a small number of cases and many African 

ancestry controls from WHI, there were systematic differences in allele frequencies 

observed across the two platforms that precluded merging WHI samples with our OCAC and 

AACES samples without introducing false positives.49 Due to lack of available GWAS 

efforts for ovarian cancer in African ancestry women, we were unable to pursue formal 

replication of our selected GWAS SNPs. Although we successfully identified some signals 

of association for our identified SNPs in examination of independent samples of African 

ancestry from case–control studies of breast and prostate cancers, we emphasize that these 

efforts only allowed us to identify SNPs with shared effects across cancer types, without the 

ability to confirm any SNPs that have mechanisms specific to ovarian cancer. These 

observations underscore the need for new genotyping initiatives and new data collection that 

target minority populations with ovarian cancer. Our study included a GWAS backbone in 

the OncoArray that was designed for women of European ancestry, and therefore has 

reduced power for GWAS analysis in women of African ancestry.

This GWAS is the first to report genome-wide associations for ovarian cancer in African 

ancestry women. Our findings provide suggestions of genetic association for ovarian cancer 

in African ancestry women. Only 1 of the 10 SNPs associated with ovarian cancer in African 

ancestry women was found to be associated in European ancestry women, although the 

direction of the association was not consistent across ethnic groups, perhaps reflecting 

differences in linkage disequilibrium across groups. Our data show that the suggestive SNP 
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associations for ovarian cancer among women of African ancestry are not generally 

replicated among women of European ancestry, which have been similarly observed for 

other cancers and disease states, such as breast cancer.50 Our results demonstrate that some 

ovarian cancer GWAS variants identified in women of European ancestry may be associated 

with ovarian cancer in women of African ancestry. This finding is further underscored by 

our report of statistically significant association of the polygenic risk score derived from 

published European GWAS hits with risk of EOC in women of African ancestry. These 

findings suggest there may be some shared genetic architecture of EOC between women of 

European and African ancestry in susceptibility to ovarian cancer. Additional genetic studies 

leveraging larger sample sizes will be needed to refine genetic risk prediction and elucidate 

the underlying biology of EOC in African ancestry women.
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What’s new?

Women of African ancestry have lower incidence of epithelial ovarian cancer (EOC) yet 

worse survival compared to women of European ancestry. To date, genome-wide 

association studies (GWAS) have identified 30 common, low-penetrant EOC 

susceptibility alleles. However, most studies were restricted to European ancestry 

women, and it remains to be determined whether there is any concordance among women 

of African descent. In this first GWAS conducted in women of African ancestry, the 

authors report ten novel associated SNPs. The results also suggest there may be some 

shared genetic architecture between women of European and African ancestry for 

susceptibility to ovarian cancer.
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Figure 1. 
Leading eQTL analysis results in 260 ovarian tissues from AACES and NCOCS participants 

for SNPs in GK2 and ITGA2. These boxplots represent the distribution of measured 

expression vs. genotype (rounded to the nearest whole number for imputed dosage 

variables). p-Values are reported from additive models with covariate adjustment for age and 

two principal components of ancestry.
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