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Abstract

Coronavirus

SARS-CoV-2 is causing a pandemic with currently > 29 million confirmed cases and > 900,000 deaths worldwide.
The locations and mechanisms of virus entry into the human respiratory tract are incompletely characterized. We
analyzed publicly available RNA microarray datasets for SARS-CoV-2 entry receptors and cofactors ACE2, TMPRSS2,
BSG (CD147) and FURIN. We found that ACE2 and TMPRSS2 are upregulated in the airways of smokers. In asthmatics,
ACE2 tended to be downregulated in nasal epithelium, and TMPRSS2 was upregulated in the bronchi. Furthermore,
respiratory epithelia were negative for ACE-2 and TMPRSS2 protein expression while positive for BSG and furin,
suggesting a possible alternative entry route for SARS-CoV-2.
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Results & discussion
The current pandemic with the novel severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) that
causes coronavirus disease 2019 (COVID-19) is spread-
ing globally with more than 29 million cases and 900,
000 deaths worldwide [1, 2]. In a significant fraction of
patients, SARS-CoV-2 infection can take a severe course.
Especially in the elderly and in those with pre-existing
conditions including chronic lung diseases, severe pneu-
monia and even life-threatening diffuse alveolar damage
requiring intensive care and ventilation can occur [3, 4].
The primary infection site for SARS-CoV-2 is the
upper respiratory/digestive tract and conjunctival mu-
cosa. The expression and distribution of SARS-CoV-2
entry receptors and cofactors in the human respiratory
tract, and how their expression is altered in disease or
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by environmental and behavioral factors such as air pol-
lution and smoking, is therefore of great interest. This
will lead to a better understanding of SARS-CoV-2 biol-
ogy, the susceptibility of certain populations to COVID-
19, and potentially help to develop future therapies.

Angiotensin I converting enzyme 2 (ACE-2) and trans-
membrane serine protease 2 (TMPRSS2) have been de-
scribed as the main receptor and cofactor for SARS-
CoV-2 cellular entry [5-8]. In addition, emerging reports
point towards a role for basigin (BSG / CD147) as recep-
tor [9], and furin as a cofactor [10], in the pathogenicity
and virulence of SARS-CoV-2. Here, we examined RNA
and protein expression of ACE-2, TMPRSS2, basigin
and furin in the human respiratory tract in healthy non-
smokers, healthy smokers and asthma patients.

Six RNA microarray datasets of airway epithelial cell
brushings, all generated with the Affymetrix Human
Genome U133 Plus 2.0 Array, were downloaded from
the Gene Expression Omnibus [11-16]. Affymetrix data
files (Supplemental Information) were processed and
normalized using the robust multiarray average
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Table 1 Modeling differences in ACE2, TMPRSS2, BSG and FURIN expression accounting for proband age and sex

gene Adjusted p-value smokers vs. B smokers vs. non-smokers Adjusted p-value asthmatics B asthmatics vs. healthy
non-smokers vs. healthy

ACE2 6.80E-16 036 0.186 -0.074

TMPRSS2 0.00044 0.1 0.0156 0.13

BSG 0.31 —0.065 0.59 0.038

FURIN 0.31 0.047 0.29 0.048

Adjusted p-values and linear regression model coefficients (8), testing hypotheses whether expression of ACE2, TMPRSS2, BSG and FURIN differ between smokers
vs. non-smokers (columns 1,2) and asthmatics vs. healthy individuals (columns 3,4). The linear regression models were controlled for the linear effect of age, sex,

sample type, and dataset

expression measure method using affy and limma pack-
ages in R [17, 18]. For genes represented by multiple
probes, the probe with the maximum average expression
values in all samples was selected to represent that
gene’s expression. First, by plotting the first 2 principal
components computed on ACE2, TMPRSS2, BSG and
FURIN expression across smokers’ and asthmatics’ data-
sets, we verified that there were no detectable batch ef-
fects within each of the six microarray datasets we
sought to analyze (Figs. SIA-D and S2A-D). Next, differ-
ences in gene expression in smokers vs. non-smokers
and asthmatics vs. healthy individuals were modeled
using linear regression, including proband age, sex, sam-
ple type and dataset as covariates in the model. When
modeling the age effect with linear regression, the age of
probands for whom age information was not available
was set to the average age of all other probands (separ-
ately for smokers’ datasets GSE63127 and asthmatics’
dataset GSE4302; for age distribution, see Figs. S1E and
S2E). P values were next corrected for multiple hypoth-
esis testing using the Benjamini-Hochberg correction. In
post hoc analysis, log, transformed data not corrected
for age and sex were plotted with ggpubr [19], and two
sided Mann-Whitney U tests were performed using the
Wilcox.test function in R.

Older age is an important risk factor for adverse
COVID-19 outcomes [20]. Another risk factor is male
sex [21]. Since there is a very high smoking rate in Chin-
ese males compared to females—66.1% vs. 3.2% accord-
ing to Ma et al. [22]—it has been suggested that
smoking could be a risk factor for the more severe
COVID-19 disease course observed in males [20, 23];
however, this topic is controversially discussed [24-26].
In our analysis, we therefore removed possible con-
founding effects of age and sex on the status of receptor
mRNA expression by regressing the linear effects of age
and sex and testing our hypothesis on model residuals
(Table 1). For samples for which sex information was
not available, sex was predicted based on the expression
of both X inactive specific transcript (XIST; high expres-
sion in females) and ribosomal protein S4 Y-linked 1
(RPS4Y1; high expression in males) simultaneously. In
post hoc analysis, we also plotted log, transformed

expression values not corrected for age and sex (Fig. 1).
Consistent with previous reports [7, 27], we found sig-
nificantly higher ACE2 expression in airway epithelia
from healthy smokers vs. healthy non-smokers (Fig. 1a,
Table 1). Similarly, we found significantly higher TMPR
882 expression in smokers in one out of two datasets an-
alyzed (Fig. 1b, Table 1), whereas BSG and FURIN ex-
pression did not significantly differ between smokers
and non-smokers (Fig. 1c-d, Table 1). Taken together,
these results indicate that, independently of sex and age,
ACE2 and TMPRSS2 are upregulated in the airway epi-
thelia of smokers. In addition, our analyses establish that
BSG and FURIN, two alternate potential SARS-CoV-2
receptors, are expressed in the human respiratory tract.

We next examined four RNA microarray datasets for
ACE2, TMPRSS2, BSG and FURIN expression in airway
epithelia from patients with a common respiratory dis-
ease, asthma. Patients with chronic respiratory disorders
including asthma are considered a COVID-19 high-risk
category [3]. Interestingly, we found that ACE2 expres-
sion tended to be downregulated in nasal epithelium,
whereas TMPRSS2 was significantly upregulated in
bronchi and central airways of asthmatics (Fig. le-f,
Table 1). ACE2 was proposed to be an interferon-
stimulated gene [28]; therefore, a potential explanation
for ACE2 downregulation in asthmatics could be cor-
ticosteroid use. However, more recent data indicate that
a novel, primate-specific ACE2 isoform exists that is in-
capable of binding SARS-CoV-2, and that this isoform is
interferon-stimulated, whereas the canonical ACE2 is
not [29, 30]. Further research is needed to address these
highly interesting developments in more detail.

Additionally, we did not find any difference in BSG or
FURIN expression between healthy and asthmatic indi-
viduals (Fig. 1g-h, Table 1). These findings point towards
a possible differential regulation of ACE2 and TMPRSS2
expression in airway epithelia and warrant further inves-
tigation into the underlying mechanism.

We next aimed to compare RNA expression of these
receptors and cofactors to protein expression. Therefore,
we examined immunohistochemistry (IHC) images from
respiratory and other tissues on The Human Protein
Atlas [31]. ACE-2 IHC staining was strong in epithelial
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Fig. 1 Expression of ACE2, TMPRSS2, BSG and FURIN in respiratory epithelium of smokers, asthmatics and healthy individuals. a-d Microarray
datasets of bronchial brushings from healthy non-smokers and smokers. GSE17905: non-smokers small airways (n = 41), large airways (n = 21);
smokers small airways (n = 52), large airways (n = 31). GSE63127: non-smokers (n = 87); smokers (n = 143). Gene expression for a ACE2, b TMPRSS2,
¢ BSG, and d FURIN. e-h Microarray datasets of airway epithelial brushings from healthy controls (GSE41861, bronchial n=30 and nasal n=17;
GSE64913, central airway n =20 and peripheral airway n=17; GSE4302, n = 28; GSE67472, n =43) and asthma patients (GSE41861, bronchial n =51
and nasal n=40; GSE64913, central airway n=11 and peripheral airway n=11; GSE4302, n = 42; GSE67472, n = 62). Gene expression for e ACE2,
TMPRSS2, g BSG, and h FURIN. Data are shown as log, transformed expression values not corrected for proband age and sex. Multiple comparison
significance levels: *p < 0.002
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Fig. 2 Expression of SARS-CoV-2 receptor and cofactor proteins in respiratory epithelium as analyzed by immunohistochemistry. Representative
screenshots of immunohistochemistry (IHC) images from The Human Protein Atlas (www.proteinatlas.org). a-b ACE-2 IHC images from the
nasopharynx (n = 4), bronchi (n = 3), lungs (n =6), and oral mucosa (n =4). Positive control: duodenum tissue (n = 6). ¢ TMPRSS2 IHC images from
the nasopharynx (n = 3), bronchi (n = 2), lungs (n = 3), and oral mucosa (n = 3). Positive control: prostate tissue (n = 3). d-e BSG/CD147 IHC images
from the nasopharynx (n = 2), bronchi (n = 3), lungs (n = 6), and oral mucosa (n = 5). Positive control: heart tissue (n = 3). f Furin IHC images from
the nasopharynx (n = 3), bronchi (n = 3), lungs (n = 3), and oral mucosa (n = 3). Positive control: salivary gland tissue (n = 3). Red arrows indicate
IHC positive cells morphologically consistent with alveolar macrophages. Scale bars, lower left of respective images. Images were analyzed by a
board-certified surgical pathologist (CM.S.)
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cells of the duodenum and was found in other organs in-
cluding testis and kidney. In contrast, human respiratory
epithelial cells in samples from the nasopharynx, bronchi
and lungs, as well as squamous epithelial cells from the oral
mucosa, were completely negative for ACE-2 staining by
IHC with two different antibodies (Fig. 2a-b). Similar nega-
tive IHC staining results were also observed for TMPRSS2
protein (Fig. 2c). In contrast, basigin protein was widely
expressed in human tissues including heart muscle, brain,
liver and kidney, and, importantly, was positive in
respiratory epithelial cells from the nasopharynx and bron-
chi (Fig. 2d-e). Similar to ACE-2 and TMPRSS2, basigin
was negative in alveolar epithelial cells but showed multi-
focal positivity in cells morphologically consistent with al-
veolar macrophages (Fig. 2d-e). Furthermore, basigin was
strongly expressed in the oral mucosa, with a gradient from
basal to apical epithelial cells (Fig. 2d-e). Finally, furin IHC
stainings were positive in nasopharynx and bronchial epi-
thelial cells, and negative in alveolar epithelial cells, with
focal positivity in alveolar macrophages (Fig. 2f). In sum-
mary, basigin and furin protein were expressed in airway
epithelia of nasopharynx and bronchi, whereas ACE-2 and
TMPRSS2 protein stainings were negative.

Our findings are in line with and extend recent studies
addressing SARS-CoV-2 receptor and cofactor expres-
sion in the respiratory tract [32, 33], but are in stark
contrast to a 2004 study by Hamming et al. [34], who
found strong and widespread ACE-2 expression in alveo-
lar epithelial cells and basal epithelial cells of the naso-
pharynx and oral mucosa. Our study highlights the
discrepancies between RNA and protein expression of
these receptors and cofactors, and points towards poten-
tial issues with IHC staining reproducibility and anti-
body specificity, important factors that need to be
addressed in future investigations. One limitation of our
study was that in The Human Protein Atlas, only small
numbers of IHC stained samples for each tissue and
molecule analyzed were available. Therefore, further
studies exploring the protein expression and cellular
localization of SARS-CoV-2 receptors and cofactors in
each of these tissue types, ideally using tissue microar-
rays with large numbers of samples from multiple donor
cohorts, and using multiple different antibodies, are war-
ranted. In addition, these studies should use the recently
developed multiplexed microscopy technologies [35] to
address protein co-expression patterns and better delin-
eate the cellular subsets expressing these SARS-CoV-2
entry receptors and cofactors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512931-020-01521-x.
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