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Abstract

Motivation: Reliable identification of expressed somatic insertions/deletions (indels) is an unmet need due to arti-
facts generated in PCR-based RNA-Seq library preparation and the lack of normal RNA-Seq data, presenting analyt-
ical challenges for discovery of somatic indels in tumor transcriptome.

Results: We present RNAIndel, a tool for predicting somatic, germline and artifact indels from tumor RNA-Seq data.
RNAIndel leverages features derived from indel sequence context and biological effect in a machine-learning frame-
work. Except for tumor samples with microsatellite instability, RNAIndel robustly predicts 88–100% of somatic indels
in five diverse test datasets of pediatric and adult cancers, even recovering subclonal (VAF range 0.01–0.15) driver
indels missed by targeted deep-sequencing, outperforming the current best-practice for RNA-Seq variant calling
which had 57% sensitivity but with 14 times more false positives.

Availability and implementation: RNAIndel is freely available at https://github.com/stjude/RNAIndel.

Contact: jinghui.zhang@stjude.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptome sequencing (RNA-Seq) is a versatile platform for per-
forming a multitude of cancer genomic analyses such as gene expres-
sion profiling, allele specific expression, alternative splicing and
fusion transcript detection. However, variant identification in RNA-
Seq is not a common practice due to the presence of artifacts intro-
duced in library preparation, the intrinsic complexity of splicing and
RNA editing (Piskol et al., 2013). RNA-Seq data are predominantly
generated from tumor-only samples as acquisition of a normal tissue
with a comparable transcriptome is a rare practice. This lack of
matching normal data further complicates somatic variant discovery
in RNA-Seq. Despite these challenges, there are compelling reasons
to explore RNA-Seq data for variant detection: (i) RNA variants are
expressed and therefore more interpretable to cancer phenotype and
clinical actionability than DNA variants; and (ii) Some studies only
analyze tumor specimen by RNA-Seq, and performing variant detec-
tion in RNA-Seq will make full use of the available data resources.
Thus, successful development of RNA-Seq variant calling tools will
make this platform an interpretable and cost-effective alternative to

DNA-based whole-genome or whole-exome sequencing (DNA-Seq),
the current standard platform for somatic variant detection.

Various single nucleotide variant (SNV) detection tools dedi-
cated to RNA-Seq have been developed. SNPiR (Piskol et al., 2013)
calls true RNA-Seq SNVs by hard-filtering calls in repetitive and
low-quality regions, around splice sites and at known RNA-editing
sites. RVboost (Wang et al., 2014) is a machine-learning method to
prioritize true SNVs trained on common SNPs in the input RNA-
Seq data. eSNV-Detect (Tang et al., 2014) incorporates results gen-
erated from two mappers to confidently call expressed SNVs by
removing mapping artifacts from individual mappers. Opossum
(Oikkonen and Lise, 2017) preprocesses RNA-Seq reads for SNV
calling by splitting intron-spanning reads and removing spurious
reads. By contrast, indel detection in transcriptome is more challeng-
ing and has been largely unexplored (Sun et al., 2017). Even in
DNA-Seq, indel discovery suffers from a high false discovery rate
(Fang et al., 2014). In RNA-Seq, in addition to the artifacts from li-
brary preparation due to polymerase chain reaction (PCR), misalign-
ment of spliced reads can introduce mapping artifacts. Indels are less
common than SNVs in the genome with the ratio 1:7 and even more
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so in coding regions with 1: 43 (Ng et al., 2008). This low preva-
lence poses additional challenges for developing a robust indel detec-
tion method that optimizes sensitivity and specificity. In cancer
studies, somatic indels should also be distinguished from germline
indels. Therefore, somatic indel identification in tumor RNA-Seq
can be formulated as a three-class classification problem where som-
atic, germline and artifact indels must be considered.

Here, we introduce RNAIndel, a novel tool that takes a tumor
RNA-Seq BAM file as input, calls and annotates coding indels, and
classifies them into somatic, germline and artifacts by supervised
learning. RNAIndel was developed by using 765 475 indels collected
from 330 pediatric tumor transcriptomes. To test the generality of
the model, we tested RNAIndel against five RNA-Seq datasets, two
from pediatric cancers and three from adult cancers, which are com-
prised of 547 samples analyzed by different RNA-Seq protocols on
different NGS platforms. RNAIndel predicted 88–100% of known
somatic indels with 4–16 false positives out of 500–5000 RNA-Seq
indels per sample. RNAIndel is also flexibly designed to allow
researchers to import data from their own variant caller rather than
the built-in caller and the model can be retrained using the user
data. With its high sensitivity on somatic indel prediction, we antici-
pate that RNAIndel will augment the range of RNA-Seq applica-
tions and facilitate the investigation of expressed somatic variants.

2 Overview

The RNAIndel software (Fig. 1A) requires a RNA-Seq BAM file
mapped by STAR (Dobin et al., 2013) as the input. Indel calling can
be performed by the built-in Bambino (Edmonson et al., 2011) caller
using parameters optimized for RNA-Seq indel calling, or by supply-
ing variants in the Variant Call Format (VCF) (Danecek et al., 2011)
generated by a user-preferred caller. Indels are annotated using all
RefSeq (Pruitt et al., 2004) isoforms containing coding exons; indels
within a coding exon or in an intron region within 10 bases of a
splice site (splice region) are considered coding indels and subjected
to further analysis. For each coding indel, RNAlndel extracts reads
covering the indel locus to retrieve the actual alignment pileup. This
process also enables the incorporation of additional variations such
as polymorphisms near the indel into the feature calculation.
RNAIndel queries a custom germline database, which is described in
detail below, for matches to the indel, with the query result being
used as a feature. The database query looks for both exact
matches and equivalent matches (Supplementary Fig. S1). For indels
supported by �2 unique reads, prediction is made by classifiers
specifically trained based on their size (i.e. single-nucleotide [s-indel]
or multi-nucleotide [m-indel]), which consist of an ensemble of ran-
dom forest (Breiman, 2001) models. RNAIndel generates a VCF file
where indel entries are parsimonious and left-aligned (Tan et al.,
2015) to unify equivalent alignments of supporting reads
(Supplementary Fig. S1). Predicted class and probability are
reported in the VCF INFO field as well as calculated feature values
and other annotations.

3 Indel classifiers

3.1 Training set
Each case in the training set (N¼330) was sequenced by tumor
RNA-Seq, and paired tumor (T)/normal (N) whole exome sequencing
(WES) and PCR-free paired T/N whole genome sequencing (WGS)
(Section 6). Coding indels in the training RNA-Seq dataset were
labelled somatic, germline or artifact based on the paired T/N WES
and WGS analysis (Fig. 1B). Specifically, an indel in RNA-Seq was
labelled somatic if it matched to a somatic indel identified by the
paired T/N DNA-Seq analysis. Expressed germline indels were defined
if they were supported by the normal WGS and WES. The remaining
indels, present in RNA-Seq but absent in WGS and WES, were
labelled as artifacts. RNA-Seq indels with < 10� coverage in WGS or
WES were excluded as ambiguous unless identified as somatic in the
T/N-paired WGS/WES analysis. The resulting training set, comprised
of single-nucleotide (s-indels) and multi-nucleotide (m-indels) indels,

showed distinct distributions in the three categories of somatic, germ-
line and artifact (Fig. 1C) where s-indels were highly enriched in arti-
facts. Specifically, s-indels accounted for 115, 12 529 and 616 121 of
somatic, germline and artifact loci, respectively while m-indels
accounted for 213, 45098 and 91399 of somatic, germline and arti-
fact loci, respectively. The T/N-paired DNA-Seq analysis identified
959 somatic coding indels, 35.2% of which were expressed. Each
sample harbored, on average, 0.886 1.19 s.d. expressed somatic
indels, ranging from 0 to 6. The somatic indels in the training set did
not recur except for known somatic hotspots: NPM1 W288fs (3 acute
myeloid leukemia (AML) samples), FLT3 I836_M837>M (2 B-lin-
eage acute lymphoblastic leukemia samples) and WT1 V362fs (2
AML samples). The top 10 genes with most frequent indel mutations
were ETV6 (11 samples), CCND3 (6), GATA1 (6), NOTCH1 (6),
PTCH1 (6), BCOR (5), SETD2 (5), XBP1 (5), PTEN (4) and WT1
(4), highlighting the role of expressed somatic indels in tumorigenesis.

3.2 Features
We developed a total of 31 features in the following three categories:
(i) sequence and alignment, (ii) effect on transcription and protein
coding and (iii) match to a germline database (Table 1 and
Supplementary Methods). In the first category, several features were
selected based on the strand-slippage hypothesis, a widely accepted
model for explaining the mechanism by which indels are generated
in the process of DNA replication (Garcia-Diaz and Kunkel, 2006).
Under this model, a DNA polymerase pauses synthesis in repetitive

Fig. 1. Computational framework and training dataset construction. (A) Workflow

of RNAIndel. A tumor RNA-Seq BAM file is a required input. If an optional VCF

file from user’s variant caller is supplied, indel calls in the file are used for prediction.

Otherwise, indel calling is performed on the input BAM file using the built-in caller.

Features are calculated using alignment pileup, transcript structure, and database.

Alignments are spliced (dashed) and may contain non-reference variations which

alter the indel flanking sequence (C>A at the 2nd base). Indels are annotated for

coding exon (grey box) and splice region (light-grey box), defined as an intronic re-

gion within 10 bp of the exon boundary. After annotating a germline database mem-

bership, single-nucleotide (s-indel) and multi-nucleotide (m-indel) indels are

separately predicted using random forest classifiers specifically trained for each type.

Predicted class is based on the highest probability of being somatic, germine or arti-

fact. RNAIndel outputs an annotated VCF file. (B) Training set generated from 330

cases. Indel calls in RNA-Seq were classified somatic, germline and artifact by

matching with T/N-paired WES and WGS (DNA-Seq) data. (C) The s-indel and m-

indel distribution in the categories of somatic, germline and artifacts. The class dis-

tribution of each dataset is shown in logarithm scale
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regions, and this delay in replication allows unpaired nucleotides to
transiently anneal, leading to a misaligned replication. Thus, fea-
tures governing sequence complexity (feature 1–3) which include
‘repeat’ (feature 1) for quantifying homopolymer and simple tandem
repeat (STR) content, as well as annealing temperature (feature 4–7)
are expected to be important parameters of this model. By contrast,
insertions or deletions that are dissimilar to the flanking sequences
are unlikely to be caused by strand slippage (feature 8). Cancer-
associated indels can be complex (Supplementary Fig. S2) (Ye et al.,
2016), so we define indel complexity based on misalignments near
the indel site. Indel size (feature 10) is negatively correlated to preva-
lence, and insertions (feature 11) are rarer than deletions in the
human genome (Zhang and Gerstein, 2003). Polymers of adenine or
thymine, i.e. polyA or polyT, are known to be more error-prone
than polyG or polyC (feature 12–15) (Fang et al., 2014). Indels with
high read support are more likely to be true (feature 16–18).
Mapping artifacts which stem from ambiguous mapping (feature
19) or difficulty in mapping spliced reads may cause false positives
(feature 20). Equivalent indels are alternative alignments of the iden-
tical indel sequence, a type of mapping artefact which may confound
indel detection (feature 21). PCR-based genotyping can frequently
create false multiallelic indels (feature 22) (Weber et al., 2002).

In the second category, indels were also characterized in terms of
variant effect on gene transcription and protein coding. In-frame
indels are non-truncating unless they create a de novo stop codon
(stop gain). Indels in splicing regions may not affect splicing unless

they destroy the splice motif (feature 23–25). Further, in-frame indels
may be less deleterious if they occur outside of conserved domains
(feature 26). The relative location of indels (feature 27) within pro-
teins are bimodal around the N and C-termini (Ng et al., 2008). It has
been postulated that transcripts with N-terminal indels can be rescued
by an alternative start codon downstream, while a subset of C-ter-
minus truncations may retain the all functional domains. Indels in the
first and last exons are therefore known to be less sensitive to non-
sense mediated decay (NMD) (feature 28) (Popp and Maquat, 2016).
We also hypothesized that the number of true somatic indels per gene
is expected to be few. The number of indels within a gene was normal-
ized by the length of the coding region (feature 29–30).

The third category has a single feature (feature 31) which
describes the membership of an indel to a custom germline indel
database constructed by combining common indels from the dbSNP
database (build 151) (Sherry et al., 2001) and gnomAD database
(ver.2.1.1) (Karczewski et al., 2019) with > 0.0001 allele frequency
in non-cancer populations. Indels curated as ‘Pathogenic’ or ‘Likely
Pathogenic’ by ClinVar (ver.20180603) (Landrum et al., 2014) were
subtracted from this custom germline database. A user can also sup-
ply their own germline database for this feature.

3.3 Training
RNAIndel random forest model training consists of the following
three steps: down-sampling, feature selection and model optimization.

Table 1. RNAIndel features

Feature identifiera Feature description Selection statusb

1 Sequence/Alignment repeat Count of repeat unit including homopolymers and

STRs in indel flanking region

s, m

2 lc (linguistic complexity) Diversity of k-mers in flanking 50-bp region

3 local_lc Diversity of k-mers in flanking 6-bp region s, m

4 gc GC content in flanking 50-bp region

5 local_gc GC content in flanking 6-bp region

6 strength DNA pair-bond strength of 2-mers in flanking 50-bp region m

7 local_strength DNA pair-bond strength of 2-mers in flanking 6-bp region s

8 dissimilarity** Edit distance between indel and flanking sequences m

9 indel_complexity Mismatches around the indel measured by edit distance s

10 indel_size** Length of inserted or deleted nucleotides m

11 is_ins True for insertions m

12 is_at_ins* True for ‘A’ or ‘T’ insertions s

13 is_at_del* True for ‘A’ or ‘T’ deletions

14 is_gc_ins* True for ‘G’ or ‘C’ insertions

15 is_gc_del* True for ‘G’ or ‘C’ deletions s

16 ref_count Count of RNA-Seq reads representing the reference allele s, m

17 alt_count Count of RNA-Seq reads representing the indel allele s, m

18 is_bidirectional True if an indel is supported by forward and reverse reads s

19 is_uniq_mapped True if an indel is supported by uniquely mapped reads s, m

20 is_near_exon_boundary True if an indel is within exon but on the exon boundary s, m

21 equivalence exists True if alternative indel alignments are observe s, m

22 is_multiallelic True if multiple indels are observed at the locus s, m

23 Transcript/Protein is_inframe** True if an indel is in-frame

24 is_splice True if an indel is in an intronic region within 10-bp to exon

25 is_truncating True if an indel causes frame-shift, or stop gain, or destroys

splice motif

26 is_in_cdd** True if an indel is located in conserved domain

27 indel_location Relative indel location in coding region s

28 is_nmd_insensitive True if nonsense-mediate decay insensitive

29 indels_per_gene Number of indels detected in the gene in the sample

30 cds_length Length of the coding region s

31 DB is_on_db True if indel is present in the default germline database s, m

Note: A total of 31 features related to sequence/alignment, biological effect on transcription and protein coding, and match to germline variant database are examined.
aFeatures marked with * were used only for training of single-nucleotide indel model while those marked with ** were used only for training of multi-nucleo-

tide indel model.
bFeatures selected by the single-nucleotide or the multi-nucleotide model are marked as s and m, respectively.
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Each step is performed on k-fold cross-validation to maximize a gen-
eralized F-score (Fb ) with b being a user-configurable weight for true
positive rate (TPR) over precision (Section 6). In most applications,
the somatic class will represent a minority as in our training set
(Fig. 1C) and users are generally interested in sensitive detection of
somatic indels. Thus, we expect a relatively large b to be used for
training. Here, we trained the models to maximize F15 for somatic
prediction on a 5-fold cross-validation. Selected features and perform-
ance metric are summarized in Table 1 and Table 2, respectively.

The selected features generated a distinct distribution of somatic,
germline and artifact indels. For example, the majority of somatic s-
indels occur in regions with �2 homopolyers while the artifacts
occur mostly in regions with �3 homopolymers (Fig. 2) accompa-
nied by lower DNA-bond strength, a strong predictor of annealing
temperature (Khandelwal and Bhyravabhotla, 2010; see
Supplementary Fig. S3B). Related to this, m-indels with sequences
dissimilar to the flanking region are prevalent in somatic events but
rare in germline or artifacts. Complex indels were uncommon in
general and they occur almost exclusively as somatic s- or m-indels
(Fig. 2). When considering indel size as the feature of interest, germ-
line m-indels exhibit distinct peaks where the indel size is a multiple
of three, indicating an enrichment for in-frame indels (Fig. 2).
Indeed, germline indels showed a deficiency of protein truncation
events and an enrichment for events that exhibited insensitivity to
NMD compared to somatic indels or artifacts (Supplementary Fig.
S3A). As expected, 85% of the germline indels were present in the

germline database constructed for training both s-indel and m-indel
(Supplementary Fig. S3A).

4 Performance

4.1 Somatic indel discovery from tumor RNA-Seq data
The training set was generated from 330 pediatric cancer samples
from 17 types; tumor transcriptomes were analyzed on Illumina
HiSeq 4000 using total RNA libraries with 125-bp read length
(Supplementary Table S1). To evaluate the broad applicability of
the trained model, we tested the performance of RNAIndel in two
additional pediatric cancer datasets (TestSet 1 and 2, Supplementary
Tables S2 and S3) and three adult cancer datasets (TestSet 3–5,
Supplementary Tables S4–S6). Altogether, the five test datasets rep-
resent a broad spectrum of mutational processes in cancer genomes
and technical variability in transcriptome profiling (Table 3).
Published somatic DNA indels of these five test datasets, which were
derived by various approaches (Section 6), were used as the truth
datasets for evaluation.

While RNAIndel robustly predicted somatic indels at a high sen-
sitivity with a true positive rate (TPR) of 0.88–1.0 in all five test sets
except for single-nucleotide indels (s-indels) in a subset of colon
adenocarcinoma (COAD) with a hypermutated phenotype caused
by microsatellite instability (MSI) (TestSet 5). The low sensitivity
(TPR of 0.392) for s-indel prediction in hypermutated COAD was
caused by misclassifying MSI-induced s-indels, mostly located in
homopolyers, as artifacts. Excluding the COAD hypermutators,
RNAIndel was able to achieve a high sensitivity of 0.73 (45/62) even
for subclonal variants with VAF < 0.1. In TestSets 2 (AML) and 5
(lung cancer), we were able to find DNA support for 10 pathogenic
indels predicted as somatic by RNAIndel but absent from the truth
dataset, by manually reviewing targeted capture exome sequencing
or WGS for evidence (Supplementary Table S7): EP300 Y207fs
(VAF: 0.1), CEBPA P23fs (0.17), RAD21 D543fs (0.02), KIT
Y418_D419>Y (0.15) and CREBBP S1767fs (0.01) in AML; EGFR
K745_R748>K (0.64), EGFR E746_K754>RSNISESQQ (0.68),
TP53 P72_A76fs (0.57), TP53 S313fs (0.15) and TP53
V122_T123fs (0.46) in lung cancer. This indicates that the overall
accuracy of RNAIndel could be higher than what was calculated
using the existing truth datasets.

A refinement process can be applied to re-assign predicted somatic
variants as non-somatic if they match custom databases that include
common artifacts (Section 6, Supplementary Fig. S4). This can lead to
great reduction in the false positive prediction per case especially
when matched normal RNA-Seq is available e.g. TestSet 3 of lung
cancer and TestSet 4 of renal cell carcinoma in Table 3). Users can
also prioritize the RNAIndel prediction for variant pathogenicity by
uploading the output VCF file to the St Jude Cloud tool PeCanPIE
(https://platform.stjude.cloud/tools/pecan_pie) (Edmonson et al.,
2019), which ranks variant pathogenicity into four tiers: gold, silver,
bronze, or no medal with ‘gold’ being most likely to be pathogenic. In
the example shown in Figure 3, two out the five predicted somatic
indels are assigned a medal (both are gold), both are in-frame indels in
KIT, a driver gene in AML while the remaining three genes are not
driver genes in AML. This pathogenicity annotation can result in
elimination of false positives or passenger events.

4.2 Comparison with paired analysis
While RNAIndel predicts somatic indels from tumor data alone,
somatic variants are commonly discovered by T/N-paired analysis
where systematic errors common to the tumor and the normal data
would be subtracted along with germline variants. The Panel of
Normals (PON) filtering supported by Mutect2 (Cibulskis et al,
2013) enhances this subtraction by collecting common variants
found in a technically similar dataset of healthy samples.
Performance of these two approaches was compared in an ideal situ-
ation where the matched normal controls and a dataset for PON cre-
ation are available using the non-small cell lung cancer (NSCLC)
dataset (TestSet 3) (Section 6). While RNAIndel does not benefit
from error subtraction by data pairing, it outperformed Mutect2’s

Table 2. Performance of the trained model for s-indel and m-indel

prediction

Indel* TPR FPR Fb Hand-Till

somatic s 0.887 0.005 0.789 0.971

m 0.953 0.032 0.873 0.985

germline s 0.932 0.004 0.92 0.979

m 0.925 0.005 0.956 0.989

artifact s 0.994 0.021 0.997 0.991

m 0.978 0.007 0.984 0.995

Note: TPR (sensitivity): true positive rate; FPR (1� specificity): false posi-

tive rate; Fb: generalized F-score. b ¼ 15 for somatic, 1 otherwise. Hand-Till:

Hand-Till’s measure, a generalization of AUC to multi-class problem (Section

6). *s for single-nucleotide indel, m for multi-nucleotide indel.

Fig. 2. Distribution of somatic, germline and artifact indels based on features

selected in the trained model. The complexity feature was not selected for m-indel

(likely due to the overlapping with the dissimilarity feature) but shown for compari-

son with s-indel. Distribution of somatic (top panel, red), germline line (middle

panel, blue) and artifacts (bottom panel, gray) are shown in histogram for each

feature
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paired analysis in both TPR and error rates (Table 4). The PON cre-
ated from 100 healthy blood samples with similar technical specifi-
cations almost halved errors in the Mutect2 paired analysis with
two true somatic single-nucleotide indels also filtered, even though
no indels equivalent to them were found in the panel. RNAIndel

optionally accepts a user-defined panel to refine its somatic predic-
tion (Fig. 3). When the PON was used as the input panel, only a
marginal improvement was seen in RNAIndel’s results, suggesting
that indels found in the panel were already predicted as artifact or
germline.

Table 3. Performance of RNAIndel on two pediatric and three adult cancer datasets

Tumor N Library ReadLen Sequencer SomaticIndels* TPR Median #FP/Sampleˆ Median indels

per sample
A B C

1 Pediatric 77 TotalRNA 100 HiSeq2000or 2500 s 17 0.882 3 3 2318

m 40 0.975 4 3 311

2 AML 158 Poly-A 75 HiSeq2000 s 22 0.954 2 1 1036

m 61 0.984 2 2 202

3 NSCLC 90 Poly-A 100 HiSeq1500 s 97 0.887 6 3 4 3171

m 68 0.941 7 4 4 394

4 RCC 91 Poly-A 50 HiSeq2000 s 130 0.877 8 5 5 4303

m 81 0.889 8 2 2 510

5 COAD (Hyper) 29 Poly-A 75 GAIIX s 120 0.392 20 20 999

m 53 0.953 11 10 141

COAD (NonHyper) 102 s 30 0.9 4 3 466

m 14 1.000 4 2 128

Note: TestSet 1 consists of 77 samples from 20 types of pediatric cancers (Supplementary Table S2). The tumor type for TestSet 2–5 uses the following abbrevi-

ation: AML for acute myeloid leukemia; NSCLC for non-small cell lung cancer; RCC for renal cell carcinoma; COAD for colon adenocarcinoma with hypermuta-

tor phenotype (Hyper) or without hypermutator phenotype (NonHyper). *s for single-nucleotide indel, m for multi-nucleotide indel. ˆMedian number of false

positives (FP) in somatic prediction per sample is shown for the default (column A), filtered with normal RNA-Seq data (column B, available only for TestSet 3

and 4) and filtered with cohort recurrence in RNA-Seq (Supplementary Fig. S4).

Fig. 3. Pathogenic indel discovery by RNAIndel. (A) An example workflow is shown with a leukemia sample SJCBF041_D which harbors two distinct subclonal indels in the

KIT oncogene based on WGS and WES analysis: Y418_D419del (VAF: 0.12) and R420>TG (0.04). Of the 7 somatic indels predicted by RNAIndel, only five remains after

the refinement step. (B) By uploading the output VCF file to St Jude Cloud tool PeCanPIE, users can prioritize indels by pathogenicity. The KIT indels in somatic context were

prioritized with the highest pathogenicity rank ‘gold’ (the ‘G’ symbol)
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4.3 Working with an external variant caller—an example

using GATK-HaplotypeCaller
In addition to calling indels from a BAM file, RNAIndel can accept
a VCF file made by an external variant caller (Fig. 1A). We chose
Genome Analysis Toolkit-HaplotypeCaller (GATK-HC) (DePristo
et al., 2011) to illustrate this feature for two reasons. First, GATK
Best Practice of RNA-Seq variant calling has been documented in
detail for GATK-HC with STAR (Section 6). Second, the STAR/
GATK-HC pipeline showed best performance in a recent study
where a variety of combinations of an RNA-Seq mapper and a vari-
ant caller were tested for detecting known somatic EGFR indels in
lung cancer (Sun et al., 2017). Following this procedure, we eval-
uated the performance of three approaches for detecting expressed
pathogenic indels: RNAIndel with the built-in caller, RNAIndel
with GATK-HC, and the Best Practice-based approach without
RNAIndel (Fig. 4A). We used TestSet 1 which contained 23 patho-
genic indels and the RNA-Seq data were analyzed by the three
approaches followed by automated pathogenicity classification (Fig.
3B). RNAIndel with the built-in caller achieved the highest sensitiv-
ity (22/23) with one somatic indel misclassified as artifact. The pre-
diction from the combination of RNAIndel and GATK-HC had the
fewest false positives (a total of 5 artifacts were predicted), but this
was achieved at a cost of sensitivity: only 14 of the 23 pathogenic
indels were predicted as somatic (the remaining 9 indels were not
detected by GATK-HC) (Fig. 4B and C). The Best Practice predic-
tion, i.e. the STAR/GATK-HC pipeline, was the noisiest with 442
artifacts, which is 14 times higher than the first two approaches.
This approach also has the lowest sensitivity: only 13 of the 23 true
somatic indels were correctly predicted with 1 removed by the Best
Practice variant filtration and 9 undetected (Fig. 4B and C). The
RNAIndel-based approaches predicted 2 germline indels as somatic
that were curated as cancer predisposition mutations on ClinVar:
RAD50 K994_E995fs (rs587780154) and BRCA2 P1062_Q1063
(rs80359374).

5 Discussion

We developed RNAIndel, a machine-learning based method to clas-
sify coding indels derived from RNA-Seq data. To construct a high-
quality training set, we used indel variants derived from three-
platform sequencing of WGS, WES and RNA-Seq with WGS data
generated from a PCR-free library protocol (Rusch et al., 2018).
Previously, we have shown that exonic somatic indels that are vali-
dated by both WGS and WES and passed human review could
achieve a positive predictive rate of 98.8% and a sensitivity of
94.3%, assuring the quality of this training set (Rusch et al., 2018).
We focused on small indels with indel size < 23-bp as larger indels
cannot be mapped accurately with the popular mapping algorithms
and can be detected more effectively using software tools designed
for structural variation analysis. For training the model, we
excluded two high-grade glioma hypermutators to avoid feature se-
lection bias; therefore, the current model is not able to predict indels
caused by microsatellite instability (MSI) at high sensitivity. The low
sensitivity of predicting s-indel in a subset of colon adenocarcinomas
with hypermutator phenotype [TestSet 5 COAD (Hyper) in Table 3]

reflects this deficiency in the training model. The vast majority of
MSI-induced indels are s-indels in polyA or polyT regions (The
Cancer Genome Atlas Network, 2012) and 81% of the missed indels
in TestSet 5 occurred in polyA or polyT regions. MSI-induced hyper-
mutation is rare in pediatric cancer but relatively common in a sub-
set of adult cancers such as uterine corpus carcinoma (28.3%),
stomach (21.9%) and colon adenocarcinomas (16.6%) (Cortes-
Ciriano et al., 2017). We recommend users retrain the model for
these cancer types.

Artifact indels mostly occurred with a low variant allele fre-
quency (VAF) of < 0.1; however more than 20% of somatic indels
in the training dataset were in the same low VAF range
(Supplementary Fig. S3C). VAF was initially used as a feature for
model training but was abandoned after we recognized that this fea-
ture would lead to loss of true subclonal somatic indels. The com-
bined results obtained from the five test datasets showed 11% of the
somatic indels have < 0.1 VAF, confirming that RNAIndel is able to
distinguish somatic indels of low VAF from those of artifacts. For
the five test datasets, we used the published data as the ground truth
for measuring the accuracy of RNAIndel. The real accuracy of
RNAIndel may be higher in some cases—by manual review of WGS
or deep capture sequencing, we were able to find DNA support for
predicted somatic indels which are absent in the ground truth data
(Supplementary Table S8).

Features assigned to variants by the software are used to inform
its classification logic and at times may unveil interesting biological
insights. For example, the strand-slippage model predicts a simple
indel with the flanking sequence inserted or deleted. Two of our
assigned features capture this state; the feature ‘dissimilarity’ is set
to zero if the indel matches its flanking sequence, and the feature
‘indel complexity’ is set to zero for simple indels. Interestingly,
somatic indels frequently deviated from the slippage model, while
germline and artifact indels were generally consistent with it (Fig. 2).

Table 4. Performance of Mutect2 paired analysis and RNAIndel

TPR #False Positives

Mutect2 RNAIndel Mutect2 RNAIndel

PON þ � þ � þ � þ �

NSCLC

(n¼90)

s 0.464 0.485 0.887 0.887 94 50 6 5

m 0.603 0.603 0.941 0.941 26 16 7 7

Note: Analysis was performed with (þ) and without (�) Panel of Normals

(PON) for non-small cell lung cancer (NSCLC) dataset (TestSet 3). s indicates

single-nucleotide indel, m indicates multi-nucleotide indel.

Fig. 4. Working with an external variant caller. RNAIndel is flexibly designed to

work with an external variant caller via a user-provided VCF file. GATK-HC was

used as an example. (A) TestSet 1 (n¼77) was screened for pathogenic somatic

indels by three approaches: 1) RNAIndel with built-in caller (left) using a RNA-Seq

BAM file as input; 2) RNAIndel with GATK-HC (middle) using the VCF file from

GATK-HC and the RNA-Seq BAM file as input; and 3) Best Practice-based ap-

proach (right). (B) Comparison of predicted somatic indels by the three approaches

with the truth datasets. (C) Performance of the three methods on 23 known patho-

genic somatic indels
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This suggests that the mechanisms of somatic indel acquisition differ
from that of germline due to the instability of cancer genome.
Alternatively, one may speculate that a high proportion of indels
compatible with the slippage model tend to be under weaker selec-
tion pressure and may hence appear in germline. For example, a
triplet indel in a tandem tri-nucleotide repeat region is a pattern typ-
ical of germline indels and can be explained by strand slippage. This
type of indel may have limited impact on protein function due to the
possible redundancy of the repetitive amino acid molecules.

Like other variant discovery tools, RNAIndel expects users to re-
view the predicted outputs. To facilitate this process, we developed
a refinement step by removing non-somatic indels using custom files
(Supplementary Fig. S4), variant pathogenicity classification
(Fig. 3), or using an alternative indel caller (Fig. 4) to ensure consen-
sus. By combining automated classification with manual curation,
RNAIndel enables an unbiased screening of somatic indels from
tumor RNA-Seq data alone; an application of RNA-Seq data which
has not been attempted effectively due to the lack of suitable tools.

6 Materials and methods

6.1 Datasets
All RNA-Seq datasets in this study, which consisted of a training set
and five test sets, were mapped by STAR in 2-pass mode to
GRCh38 (Supplementary Methods).

The training set was comprised of paired tumor (T)/normal (N)
WGS and WES, and tumor RNA-Seq generated from 330 pediatric
cancer patients from 17 major cancer types (Supplementary Table
S1). In this dataset, somatic mutations in different cancer types were
known to be acquired through diverse mutagenesis mechanisms
including APOBEC, Reactive Oxidative Stress (ROS), Homologous
Recombination (HR) deficiency and UV-light (Ma et al., 2018).
Importantly, the WGS libraries were prepared by a PCR-free proto-
col to minimize PCR-artifacts. We did not include two high grade
glioma samples with hypermutator phenotype to avoid bias in fea-
ture selection caused by the overwhelming number of s-indel in
homopolymer regions.

The truth dataset used for training was comprised of expressed
DNA indels that were validated by WGS and WES and passed man-
ual review of variant quality and alignment by human analysts.
Somatic exonic indels derived by this approach have a 98.8% valid-
ation rate based on capture sequencing (Rusch et al., 2018). A min-
imum of 10� coverage in tumor and normal WGS or WES is
required for considering whether an RNA-Seq indel that does not
match a known somatic DNA indel should be classified as germline
(i.e. present in normal DNA) or artifact (absent in both tumor and
normal DNA). On average, the WGS and WES of the training sam-
ples had 98.2 and 99.6% of the coding regions with � 10� read
coverage, respectively, showing that our overall classification of the
training dataset was unbiased across the entire coding regions. The
details of nucleic acid extraction, library preparation, sequencing,
and variant detection and validation were previously described
(Rusch et al., 2018).

Five public datasets were used as test sets. The first set (TestSet
1) was comprised of 77 RNA-Seq samples of 20 tumor types
(EGAS00001002217) (Rusch et al., 2018). The ground-truth somat-
ic indels in TestSet1 were based on paired T/N DNA-Seq analysis
performed on the samples. The annotation of somatic, germline and
artifacts presented in Figure 4 was determined using the same cover-
age criteria as the training dataset. To confirm the annotation
derived by the Illumina DNA-Seq cross-platform validation with an
orthogonal sequencing method, we selected 5 somatic, 2 germline
and 4 artifact indels with a median VAF of 0.33 (range: 0.14–0.79),
for Sanger validation. The results were 100% concordant with
NGS-based annotation (Supplementary Fig. S5). The second test set
(TestSet 2) included 158 acute myeloid leukaemia samples by NCI
TARGET project (dbGaP study identifier phs000465) (https://ocg.
cancer.gov/programs/target). The ground-truth somatic indels in
TestSet 2 were compiled from the paired-T/N WGS analysis by the
Complete Genomics, Inc. (CGI) Cancer Sequencing service pipeline

version 2 (Ma et al., 2018) and targeted capture sequencing analysis
(Bolouri et al., 2018) by Strelka (Saunders et al., 2012). The third
set (TestSet 3) was a non-small cell lung cancer dataset from 90
patients (Wang et al., 2018) (EGAD00001004071). The ground-
truth somatic indels were called by Mutect2 (Cibulskis et al., 2013).
The fourth (TestSet 4) and fifth (TestSet 5) datasets were TCGA
datasets for renal cell carcinoma and colon adenocarcinoma (https://
portal.gdc.cancer.gov). The ground-truths of these test sets were
obtained from Broad GDAC Firehose (http://gdac.broadinstitute.
org). In TestSet 5, the hypermutated samples were identified by the
previous study (The Cancer Genome Atlas Network, 2012).

6.2 Performance metrics
As performance metrics for overall classification are sensitive to
class imbalance, we used class-specific metrics for evaluation. For
class i, true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) are defined by:

TP ¼ jpredicted class i \ true class ij
TN ¼ jpredicted non class i \ true non class ij
FP ¼ jpredicted class i \ true non class ij
FN ¼ jpredicted non class i \ true class ij

where j j denotes the set size. True positive rate (TPR), false positive
rate (FPR) and false discovery rate (FDR) are defined by TP/
(TPþFN), FP/(FPþTN) and FP/(FPþTP), respectively.

A generalized F-score (Fb) is formulated as:

Fb ¼ 1þ b2
� �

� TP=ð 1þ b2Þ � TPþ b2 � FNþ FP
� �

where b is a weighting parameter for TP. The Hand-Till measure
(M) is a generalization of the area under the curve (AUC) to multi-
class classification (Hand and Till, 2001). This quantifies the separ-
ation of classes in terms of prediction probability. For three classes
i; j and k, the Hand-Till measure for class i is defined:

M ¼ p i; jð Þ þ p j; ið Þ þ p i; kð Þ þ pðk; iÞ
� �

=4

where p x; yð Þ is the probability that a randomly chosen instance from
class x has a higher prediction probability of being in class x than a
randomly chosen class y instance’s probability of being class x.

6.3 Training by cross validation
Models are evaluated in the actual imbalanced distribution by k-
fold cross-validation (k-fold CV), whose k value is user-configurable
(default 5). In the first fold, 100� 1=k % of the data is held out un-
sampled as a validation set and the training set is down-sampled
from the remaining 100� k� 1ð Þ=k %. Trained models are eval-
uated using the un-sampled validation set. This process is repeated
to the k-th fold by rotating the validation set portion.

Training is carried by the following three steps: down-sampling,
feature selection and parameter tuning. At each step, an optimal
value or a subset of features is determined to maximize Fb for som-
atic prediction on k-fold CV. In the down-sampling step, the train-
ing set is down-sampled with the following ratio: somatic: germline:
artifact ¼ 1 : 1 : x. The ratio x is searched within the range of 1 �
x � 20 for a maximum Fb for somatic prediction using all features
on k-fold CV. Next, features are selected in a greedy best-first
search. The search procedure begins with an empty set of selected
features and a set of candidate features initially containing all fea-
tures. In the first iteration, each feature is evaluated separately, and
the one that achieves the maximum Fb is added to the selected set
and removed from the candidate feature set. For features tied for the
highest value, the one with the minimum FDR is chosen. The second
iteration examines the combination of the feature in the selected set
and one of the remaining candidate features. The highest Fb feature
is similarly added to the selected set and removed from the candidate
set. This procedure continues until the candidate set becomes empty
and a subset of features with the highest Fb is selected. Finally, the
maximum number of features used in splitting a node during the

1388 K.Hagiwara et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz753#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz753#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz753#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz753#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz753#supplementary-data
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://gdac.broadinstitute.org
http://gdac.broadinstitute.org


tree construction is searched over from 1 to the number of features
selected from the previous step. The value maximizing Fb is chosen.

6.4 Prediction refinement
RNAIndel refines the somatic prediction using databases and the
prediction probability. Common polymorphisms are reclassified to
germline if predicted as somatic. Putative somatic indels matching a
non-somatic indel panel, which is user-definable, are assigned to
germline or artifact, whichever has the higher probability
(Supplementary Fig. S4). This reclassification rule obviates the need
to label non-somatic indels as germline or artifact when compiling a
panel, which can be difficult in the absence of the DNA evidence. At
default, RNAIndel uses a panel made from a reviewed list of non-
somatic indels that were predicted somatic three time or more in the
training set cross-validation. An ideal source of such non-somatic
indels would be technically and biologically similar normal RNA-
Seq data. RNAIndel can compile a non-somatic panel from normal
VCF files. To avoid potential somatic variant contamination, the
panel requires variants appear � n times in the VCF file set and ab-
sence in the COSMIC (Tate et al., 2019) database (Supplementary
Fig. S4A). Such panels were created using the matched normal
RNA-Seq data in TestSet 3 and 4 with n ¼ 3, and successfully
applied without affecting the TPR (Table 3). While a suitable nor-
mal dataset may not be available, it is a common scenario that mul-
tiple RNA-Seq samples are generated in a study. Putative somatic
indels recurring in the output VCF files from the study cohort are
possibly frequent artifacts or somatic hotspots as common polymor-
phisms are reclassified to germline if predicted as somatic.
RNAIndel annotates recurrent indels that are absent in COSMIC in
the output VCF INFO field (Supplementary Fig. S4B). Filtering non-
COSMIC recurrent indels was also as effective in refining the somat-
ic prediction, but, in the five test sets, one true somatic indel was
also removed: the ACTB N111>MN insertion in TestSet 2
(Table 3).

6.5 Paired RNA-Seq analysis with panel of

normals (PON)
While the expression difference between tissues is a limitation of
applying PON to the RNA context, we selected a peripheral blood
dataset from Dutch 500FG cohort as input for PON creation due to
the limited availability of RNA-Seq dataset from healthy sources
and the technical similarity to TestSet 3 (Table 3); the dataset was
prepared by poly-A enriched library protocol and sequenced with
100-bp read length on Illumina HiSeq 2500, a higher-throughput
version of HiSeq 1500. The FASTQ files (n¼100) (PRJNA553703)
were downloaded and STAR 2-pass mapped against GRCh38. BAM
files from this cohort and TestSet 3 were preprocessed by reassigning
STAR’s MAPQ to 60 and GATK’s ‘SplitNCigarReads’ command.
The PON was created by following (https://software.broadinstitute.
org/gatk/documentation/tooldocs/4.0.2.0/org_broadinstitute_hellbender_
tools_walkers_mutect_CreateSomaticPanelOfNormals.php). For each
tumor and matched normal BAM file pair, Mutect2 in GATK 4.0.2.1
was run with and without the PON. The output VCF files were filtered
using the ‘FilterMutectCalls’ command, and coding indels with ‘PASS’
status were considered putative somatic.

6.6 RNA-Seq variant calling by GATK-HC
Variant calling of BAM files were performed by GATK-HC in
GATK 4.0.2.1. The work flow closely following the GATK Best
Practice for calling variants in RNA-Seq (https://software.broadinsti
tute.org/gatk/documentation/article.php?id¼3891). The Best Practice
protocol filters spurious calls but does not distinguish somatic and
germline calls. For a fair comparison with RNAIndel, which distin-
guishes somatic, germline and artifact calls, germline calls in the Best
Practice protocol were filtered by matching the normal DNA-Seq
data (Germline filtration in Fig. 4A). Indels passed these filters were
considered putative somatic. Of those, indels annotated pathogenic
by PeCanPIE were used for performance comparison.

6.7 Indel recovery
RNAIndel uses actual indel alignments in the BAM file for feature
calculation. For this calculation, indels reported from the caller are
searched in the BAM file. RNAIndel first searches for indels equiva-
lent to the reported indel and merges them (Supplementary Fig. S1).
If no equivalent indels are found, the nearest indel from the reported
locus within a widow of 65-bp is used for analysis as proxy. These
substituted cases are labelled as such in the output VCF file.
Typically, 100% of indels reported from the built-in Bambino caller
are successfully recovered.

When GATK-HC is used as an external caller, �90% of indels
are recovered from the alignment pileup while the remaining are
missing. We evaluated the distribution of missing GATK indels in
TestSet 1 and found that 48.6% were located in reads spanning
intron-exon boundaries and 12.5% are at the human leukocyte anti-
gen (HLA) loci, suggesting the missing indels may be caused by a
combination of mapping artifacts and anomalies caused by GATK-
HC locally assembled haplotypes.

For further investigation, we randomly selected 100 missing
indels for manual curation. As shown in Supplementary Table S9,
47 cases were in intron-exon boundaries, 14 at HLA loci and 39
non-HLA exon cases. Remapping to the genome by the BLAT algo-
rithm (Kent, 2002) confirmed that 44 of the 47 intronic indels were
caused by mis-alignments over splice junctions. The remaining 3
cases had low quality mappings. The high degree of genetic diversity
at HLA loci likely explains the missing indels at the HLA loci. For
the remaining 39 non-HLA exonic indels, 17 were caused by mis-
mappings, 15 were in highly-repetitive regions, 3 were caused by
mis-alignment of SNVs in the neighborhood and 4 were in non-
repetitive regions. Given that 96% of the missed indels can be attrib-
uted to artifacts, the impact of the underreporting is marginal for
our analysis of somatic prediction by GATK. Indeed, none of the
GATK indels that match the ground truth are in this category.

6.8 Sanger validation
Sanger validation was performed on samples for which DNA was
available. Using PrimerTK, PCR primers were designed to include
the regions to validate and generate amplicons between 200 bp and
350 bp in length (Supplementary Table S10). The PCR was per-
formed using Amplitaq Gold 360 Master Mix (Thermo Fisher
Scientific) in a 25 ml reaction with 50 ng of genomic DNA, 400 nM
of each amplification primer and 1ul of 360 GC enhancer. The PCR
was performed on a Veriti thermo cycler (Life Technologies) with a
10 min activation step at 95 �C followed by 35 cycles of amplifica-
tion (94 �C 30 s, 59 �C 30 s, 72 �C 30 s), and a final extension for
7 min at 72 �C. Prior to sequencing, the PCR reactions were cleaned
up using the Minelute PCR Purification Kit (Qiagen). Sequencing
data was generated using an ABI3730 DNA Sequencer (Applied
Biosystems).
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