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Abstract

Motivation: X-ray crystallography has facilitated the majority of protein structures determined to date. Sequence-
based predictors that can accurately estimate protein crystallization propensities would be highly beneficial to over-
come the high expenditure, large attrition rate, and to reduce the trial-and-error settings required for crystallization.

Results: In this study, we present a novel model, BCrystal, which uses an optimized gradient boosting machine
(XGBoost) on sequence, structural and physio-chemical features extracted from the proteins of interest. BCrystal
also provides explanations, highlighting the most important features for the predicted crystallization propensity of
an individual protein using the SHAP algorithm. On three independent test sets, BCrystal outperforms state-of-the-
art sequence-based methods by more than 12.5% in accuracy, 18% in recall and 0.253 in Matthew’s correlation coef-
ficient, with an average accuracy of 93.7%, recall of 96.63% and Matthew’s correlation coefficient of 0.868. For rela-
tive solvent accessibility of exposed residues, we observed higher values to associate positively with protein crystal-
lizability and the number of disordered regions, fraction of coils and tripeptide stretches that contain multiple
histidines associate negatively with crystallizability. The higher accuracy of BCrystal enables it to accurately screen
for sequence variants with enhanced crystallizability.
Availability and implementation: Our BCrystal webserver is at https://machinelearning-protein.qcri.org/ and source
code is available at https://github.com/raghvendra5688/BCrystal.
Contact: rmall@hbku.edu.qa or hbensmail@hbku.edu.qa
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

X-ray crystallography is a key method that is used to determine the
structure of a protein. This method is quite expensive and has a high
attrition rate due to the need for well-diffracting crystals. The total
percentage of successful attempts for X-ray crystallography ranges
between 2% and 10% (Terwilliger et al., 2009), whereas failed
attempts attain >70% of the total cost (Service, 2005). Several in sil-
ico machine learning and statistical models have been developed to
predict protein crystallization propensities, including CrystalP2
(Kurgan and Mizianty, 2009), PPCpred (Charoenkwan et al., 2013),
PredPPCrys (Wang et al., 2014), XtalPred-RF (Jahandideh et al.,
2014), TargetCrys (Hu et al., 2016), Crysalis (Wang et al., 2016),
Crysf (Wang et al., 2017) and fDETECT (Meng et al., 2018).

These methods primarily rely on extracting physio-chemical, se-
quence-based and functional features from the raw protein sequen-
ces. However, the identification of novel biological features that can
accurately estimate protein crystallization propensity still remains a
significant challenge. Moreover, a majority of these methods follow
a two-step process: (i) feature engineering and selection; (ii) protein
crystallization propensity prediction i.e. distinguishing diffraction
quality crystals from yet to be crystallized proteins, referred as non-
crystallizable proteins in literature Wang et al. (2017), Hu et al.
(2016) and Charoenkwan et al. (2013). Recently, a deep learning
technique called DeepCrystal (Elbasir et al., 2019) showcased that
by just using the raw protein sequences as input, it can outperform
all other state-of-the-art sequence-based crystallization predictors.
DeepCrystal utilizes complex non-linear features from the raw
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protein sequences. These features can be associated with the fre-
quencies of k-mers and sets of k-mers of different lengths. However,
it is not straightforward to pinpoint what are the specific k-mers in a
given protein sequence driving its crystallization propensity and
thus determine their biological relevance as mentioned in Elbasir
et al. (2019).

To overcome the limitations of existing methods, we propose
BCrystal (acronym for ‘Be Crystal’), an XGBoost based model
(Chen and Guestrin, 2016) using several well-known physio-chem-
ical and sequence-derived features. Additionally, BCrystal uses sev-
eral novel secondary structure and disorder features extracted from
the SCRATCH suite (Cheng et al., 2005) and DISOPRED version
3.16 (Ward et al., 2004), respectively. XGBoost is an optimized ver-
sion of the gradient boosting machine (GBM; Friedman, 2001),
which has been shown to perform very well on several bioinformat-
ics problems, such as gene regulatory network reconstruction (Mall
et al., 2017, 2018a, b), protein solubility (Rawi et al., 2017), trans-
membrane protein crystallization (Varga and Tusnády, 2018) and so
on. Moreover, BCrystal has the unique attribute that can provide ex-
planation for the predicted class label for each test protein based on
its corresponding feature values using the SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017) algorithm. Our pri-
mary contributions include:

1. Extraction of novel structure and disorder features from the protein

sequence using SCRATCH suite and DISOPRED, respectively.

2. Usage of an XGBoost model enables BCrystal to outperform

existing methods for various evaluation metrics on three inde-

pendent test sets.

3. Provide an interpretation for BCrystal’s output by showing the

most important features driving the model predictions towards

diffraction quality crystals or non-crystallizable proteins.

4. A user-friendly public webserver for academic usage and avail-

ability of source code for further enhancements.

Figure 1 provides the steps undertaken by the proposed BCrystal
model and graphical representation of the modeling techniques uti-
lized by BCrystal.

2 Materials and methods

2.1 Overview
Our task is a binary classification problem i.e. distinguishing crystal-
lizable proteins from non-crystallizable ones. Our goal is to learn a
function (H), which takes features engineered from a protein se-
quence i.e. x 2 R

d as input and outputs a prediction score between
½0;1� 2 R i.e. H : x! ½0;1�. In this work, H is an XGBoost model

(Chen and Guestrin, 2016), a white-box non-linear tree-based inter-
pretable boosting machine that exploits the interactions between the
engineered features.

2.2 Data information
All our experiments are performed on publicly available datasets.
The training dataset is obtained from Wang et al. (2014) which has
five class labels including diffraction-quality crystals, cloning failure,
material production failure, purification failure and crystallization
failure. A total of 28 731 proteins, including 5383 diffraction-
quality crystals (positive class), are present in the dataset. We
consider all the remaining 23 348 protein sequences as non-
crystallizable ones (negative class). The authors in Wang et al.
(2014) highlighted that all the sequences in individual classes were
passed through a filter of >25% sequence similarity to de-bias and
remove highly similar protein sequences within each class.

We randomly divide this training dataset into two parts: D1 and
D2. Here, D2 consists of 891 crystallizable and 897 non-
crystallizable proteins forming a fairly balanced test set for evalu-
ation. We use two other independent test sets which were generated
in Wang et al. (2017) for comprehensive comparison with state-of-
the-art web-servers including DeepCrystal, fDETECT, Crysf,
Crysalis I and II, TargetCrys, XtralPred-RF, PPCPred and
CrystalP2. The two independent test sets are obtained from
SwissProt and Trembl databases and are named SP_final and
TR_final, respectively. In the SP_final dataset, we have 148 proteins
belonging to the positive class and 89 protein sequences are non-
crystallizable whereas in the TR_final dataset, there are 374 crystal-
lizable and 638 proteins belonging to the negative class.

We perform a more stringent filtering by removing all proteins
from D1 belonging to positive class and having sequence similarity
>15% with the crystallizable proteins in fairly balanced set,
SP_final and TR_final using CD-HIT method Fu et al. (2012) result-
ing in 2880 proteins corresponding to the positive class in the final
training set Dfinal. We perform the same operation for proteins
belonging to the negative class in D1 to obtain a total of 8474 pro-
tein sequences associated with the non-crystallizable class in Dfinal.
In total, Dfinal has a total of 11 354 protein sequences. We perform
5-fold cross-validation to obtain the optimal set of hyper-
parameters. We use the optimal hyper-parameters with Dfinal to
build the XGBoost classifier.

2.3 Feature engineering
One of our main contributions is designing and engineering features
which are useful for discriminating diffraction quality crystals from
non-crystallizable ones. We devise three groups of features which
are then used to train the BCrystal model (see Fig. 2). The first set is

Fig. 1. (A) The flowchart of the proposed BCrystal model is shown. (B) The working mechanism of XGBoost model is illustrated. At each iteration a tree is fitted to all the sam-

ples and for a particular sample the final crystallization propensity is the average of all predictions for that instance across all the trees. In XGBoost, the primary task is identifi-

cation of the optimal tree structure which is explained in detail in Section 2. (C) How Shapley value for a particular feature (Feature 1 here) is estimated by the SHAP model is

demonstrated. SHAP model works by considering the tree structure with or without Feature 1 and all such possible combinations in case of multiple features. (Cii and iv) The

importance of Feature 1 versus an empty set of features (Ci) and feature set with just Feature 2 (Ciii), respectively for predicting the crystallization propensity of protein P1 is

illustrated. The prediction score for P1 in each of the four cases (i, ii, iii, and iv) would be 0.725, 0.5, 0.725, and 0.1 (math not shown), respectively and thus the Shapley value

for Feature 1 would be (0.5 � 0.725)/2 þ (0.1 � 0.725)/2 ¼ �0.425 according to Equation 3. This indicates that Feature 1 drives BCrystal model prediction to non-crystalliz-

able class (negative Shapley value) for protein P1 which aligns with the propensity score of 0.1 estimated by BCrystal for protein P1. A detailed description of SHAP method

for generating explanations is provided in the Section 3
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composed of features based on global properties of the protein
including sequence length (logðLÞ), molecular weight (log (Mol-
Weight)), fraction of turn-forming residues, the average of hydropa-
thicity (Gravy) and aliphatic indices, along with the total absolute
charge. The second group of features are derived directly from the
protein sequence and consist of frequencies of mono- (single amino
acids, denoted AA), di- (two consecutive AAs) and tri-peptides
(three consecutive AAs) within the protein sequences.

The third group of features are structural information obtained
from the protein sequence using SCRATCH (Cheng et al., 2005)
and DISOPRED (Ward et al., 2004). It has been shown previously
(Hou et al., 2018) that SCRATCH based features are useful for pro-
tein fold prediction. We predict 3- and 8-state secondary structure
(SS) information as well as the fraction of exposed residues (FER)
with 20 different relative solvent accessibility (RSA) cutoffs (� 0%
to � 95% cutoffs at 5% intervals). From the 3-state SS obtained via
SCRATCH, we extract mono- (1 state i.e. turn, strand or coil),
di- (two consecutive states) and tri-state (three consecutive states)
frequencies for a given protein sequence. We follow a similar pro-
cedure for the more granular 8-state SS information as shown in
Figure 2. Additionally, we multiply the FER by the average hydro-
phobicity of these exposed residues at different RSA cutoffs. From
DISOPRED, we obtain information about which AAs in the protein
sequences are part of disordered regions as well as which AAs from
the protein binding sites (PBS) of a protein are part of disordered
regions. Given this information, we engineer features such as the
fraction of the protein sequence which is disordered, frequency of
each of the AAs (out of the 20 AAs) in disordered regions, number
of disordered regions, number of disordered regions of length
<5 AAs, number of disordered regions of length between 5 and
10 AAs, and number of disordered regions of length >10 AAs in a
protein sequence. A similar set of features are extracted from the
PBS of a protein.

In total, we include 9139 features for each protein sequence.
In contrast to other sequence-based predictors, we do not perform a
feature selection step to exclude features, rather we rely on the
XGBoost model to prioritize the most important features and filter
out irrelevant ones.

2.4 Methods
2.4.1 Gradient boosting machine

In this work, we utilized an optimized version of the white-box,
non-linear, ensemble GBM (Friedman, 2001; Schapire, 2003) called
XGBoost (Chen and Guestrin, 2016) for building our BCrystal

model. Gradient boosting is a machine-learning technique based on
a constructive strategy by which the learning procedure will addi-
tively fit new models, typically decision trees and repetitively lever-
age the patterns in residuals to provide a more accurate estimate of
the response variable (crystallizable versus non-crystallizable pro-
teins). A brief explanation of GBM is provided in Supplementary
Material.

2.4.2 XGBoost algorithm

Tree boosting is a learning technique to improve the classification of
weaker classifiers by repeatedly adding new decision trees to the
ensembles. XGBoost (Chen and Guestrin, 2016) is a scalable ma-
chine learning technique for tree boosting. It was shown in Chen
and Guestrin (2016) that its performance is better than other boost-
ing algorithms.

The main components of XGBoost algorithm are the objective
function and its iterative solution. The objective function is initial-
ized to describe the model’s performance. Given the training dataset,
Dfinal ¼ fxi; yigN

i¼1 where xi 2 R
d, d¼9139, yi 2 R and N denotes

the total number of training samples. The predicted output ŷ i

obtained from the ensemble model can be represented as

ŷi ¼
PT

t¼1 HtðxiÞ, where HtðxiÞ represents the prediction score of
the tth decision tree for the ith protein sequence in the training data-
set. If the decision trees are allowed to grow unregulated, then the
resulting model is bound to overfit (Chen and Guestrin, 2016).
Hence, the following objective has to be minimized:

JðHÞ ¼
XN

i¼1

Lðyi; ŷiÞ þ
XT

t¼1

XðHtÞ; (1)

where L is the loss function and X(�) is the penalty that is used to

prevent overfitting which is defined as: XðHtÞ ¼ cAþ 1
2 k
PA

j¼1 w2
j ,

where c and k are the parameters which control the penalty for the
number of leaf nodes (A) and leaf weights (w), respectively in the de-
cision tree Ht.

The objective function can be re-written as follows JðHtÞ ¼PN
i¼1 Lðyi; ŷi

t�1 þHtðxiÞÞ þ XðHtÞ. After applying a Taylor expan-
sion and expanding X(Ht), we obtain:

JðHtÞ ¼
XN

i¼1

½giHtðxiÞ þ 1

2
h2

i HtðxiÞ� þ cAþ 1

2
k
XA

j¼1

w2
j ;

where gi ¼ @ŷ t�1
ðLðyi; ŷi

t�1ÞÞ and hi ¼ @2
ŷ t�1
ðLðyi; ŷi

t�1ÞÞ are the first
and second order gradient statistics on the loss function. For a fixed

Fig. 2. Different sets of features engineered for the BCrystal model. The number of features for each component is shown within parentheses
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tree structure HðxÞ, where Ij ¼ fijHðxiÞ ¼ jg is an instance of leaf
node j, the optimal weight w�j for leaf node j is:

w�j ¼ �
P

i2Ij
giP

i2Ij
hi þ k

:

The corresponding optimal objective function then becomes:

JðHtÞ ¼ �
1

2

XA

j¼1

ð
P

i2Ij
giÞ2P

i2Ij
hi þ k

þ cA: (2)

Equation 2 can be used as a scoring function to measure the quality of a
tree structure Ht at the tth iteration. This score is equivalent to the impur-
ity score used for evaluating decision trees in random forests (Breiman,
2001). The authors in Chen and Guestrin (2016), come up with a fast,
greedy and iterative algorithm to identify these optimal tree structures.

2.5 Training
We train our XGBoost classifier on top of physio-chemical (global),
sequence and structural features extracted from the protein sequence
as mentioned earlier. Since our training set is imbalanced, we weight

the samples belonging to crystallizable class by a, where a ¼ Nn

Np
and

Nn is the total number of non-crystallizable proteins and Np is the
total number of diffraction quality crystals in the training set.

The BCrystal classifier is based on several parameters, such as
maximum depth of a tree (M), the learning rate (�), the minimum
child weight of a leaf node (wj), the sampling rate for features (r)
and the subsample ratio of the training set (s). We keep the regular-
ization parameter, c, on the number leaf nodes to the default value
of 0. We then performed a hyper-parameter optimization procedure
by varying these parameters over a grid of M� � �wj � r� s ¼
243 combinations. In particular with M 2 f5; 7; 9g; � 2 f0:1;
0:2; 0:3g; wj 2 f4;5; 6g; r 2 f0:5; 0:6; 0:7g and s 2 f0:5; 0:6; 0:7g.
We performed a five-fold cross-validation for each of these combi-
nations (variance in the results is highlighted in Supplementary Fig.
S1). Finally, we selected the XGBoost classifier which had the max-
imum 5-fold cross-validation area under the curve, which was
obtained corresponding to the parameters M¼5, � ¼ 0:1, wj ¼ 6,
r¼0.7 and s¼0.6. The final BCrystal classifier had a maximum
training accuracy of 93.7% and a maximum Matthew’s correlation-
coefficient (MCC) of 0.867. The first and the last tree of the
BCrystal model are highlighted in the Supplementary Figure S2.

2.6 Evaluation metrics
The BCrystal method was compared against different in silico
sequence-based crystallization predictors using several well-known
metrics such as recall (REC), precision (PRE), accuracy (ACC),
MCC, F-score (F) and negative predictive value (NPV). All these
evaluation metrics are based on true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). The set TP repre-
sents the proteins which produce diffraction quality crystals (class
Label 1) and for which BCrystal predicts HðxÞ � 0:5. Similarly, the
set TN consists of those proteins which are non-crystallizable (class
Label 0) and for which BCrystal predicts HðxÞ < 0:5. The set FP
represents those proteins whose true label is non-crystallizable i.e.
0 but BCrystal predicts HðxÞ � 0:5 and the set FN comprises pro-
teins whose true label is crystallizable i.e. 1 but BCrystal estimates
HðxÞ < 0:5. A detailed definition of these sets and importance of
each of these evaluation metrics are provided in Khurana et al.
(2018), Elbasir et al. (2019) and Rawi et al. (2017).

3 Results

The performance of BCrystal was evaluated on three independent test
sets, including a fairly balanced test, the SP_final and TR_final test
sets. A comprehensive comparison was done against several state-of-
the-art sequence-based protein crystallization predictors, including
DeepCrystal, Crysf, Crysalis I and II, fDETECT, TargetCrys,
XtalPred-RF, PPCPred and CrystalP2. The comparison with Crysf was

conducted only on the SP_final and TR_final datasets as Crysf required
Uniprot ids as input which were available only for these two datasets.

3.1 Fairly balanced set
The fairly balanced test set was composed of 1787 proteins with
896 non-crystallizable proteins and 891 crystallizable proteins. The
prediction accuracy achieved by BCrystal was 95.4%, an increase of
12% over than the-state-of-art, DeepCrystal that achieved an accur-
acy of 82.8%. Moreover, the prediction accuracy of BCrystal was
15%, 17%, 27%, 30%, 30%, 32%, 36% higher than Crysalis II
(80.4%), Crysalis I (77.7%), PPCPred (67.2%), XtalPred-RF
(65%), fDETECT (64.6%), TargetCrys (62.7%) and CrysalP2
(58.5%), respectively. Noteworthly, BCrystal achieved an MCC
score of 0.908, which was 25% higher than the MCC score obtained
by DeepCrystal (0.658), 29% and 35% higher than second and
third-best competitor, Crysalis II (0.61) and Crysalis I (0.556),
respectively. As depicted in Table 1 and Figure 3, on the balanced
test set BCrystal achieved an area under curve (AUC) score of 0.981
that was 7.8% higher than DeepCrystal (0.903), 9% higher than
Crysalis II (0.89) and 11% higher than Crysalis I (0.865), respective-
ly. In addition, BCrystal was at least 20% better than other competi-
tors in terms of AUC, fDETECT (0.78), PPCPred (0.75), TargetCrys
(0.64) and CrystalP2 (0.61), respectively. BCrystal attained a score
of 0.939 and 0.970 w.r.t. precision and recall scores, which reflected
the capability of BCrystal to accurately identify and discriminate be-
tween both crystallizable and non-crystallizable proteins.

3.2 SP_final test set
This test set contained 237 proteins which had very low sequence simi-
larly with the training set. On all of the evaluation metrics except
precision, BCrystal was superior when compared to state-of-the-art
crystallization models. BCrystal achieved an MCC score of 0.773
which was 24%, 26% and 33% higher than DeepCrystal, Crysalis II
and Crysf, respectively as depicted in Table 2. BCrystal obtained a

Table 1. BCrystal outperforms eight other protein crystallization

predictors on the balanced test data

Models Accuracy MCC AUC F-score Recall Precision NPV

PPCpred 0.672 0.359 0.754 0.616 0.528 0.740 0.635

fDETECT 0.646 0.355 0.778 0.504 0.36 0.840 0.593

Crysalis I 0.777 0.556 0.865 0.767 0.738 0.799 0.758

Crysalis II 0.804 0.61 0.888 0.796 0.767 0.828 0.784

XtalPred-RF 0.650 0.301 0.710 0.654 0.663 0.645 0.655

TargetCrys 0.627 0.255 0.637 0.637 0.656 0.619 0.593

CrystalP2 0.585 0.177 0.608 0.627 0.700 0.568 0.613

DeepCrystal 0.828 0.658 0.903 0.822 0.795 0.851 0.809

BCrystal 0.954 0.908 0.981 0.954 0.970 0.939 0.969

Note: Best results are highlighted in bold.

Table 2. BCrystal surpassed nine other protein crystallization pre-

dictors on the SP_final set

Models Accuracy MCC AUC F-score Recall Precision NPV

Crysf 0.700 0.426 0.811 0.727 0.641 0.840 0.572

PPCpred 0.666 0.403 0.784 0.675 0.554 0.863 0.535

fDETECT 0.616 0.381 0.837 0.580 0.425 0.913 0.494

Crysalis I 0.725 0.448 0.835 0.763 0.709 0.826 0.609

Crysalis II 0.751 0.505 0.851 0.783 0.722 0.856 0.633

XtalPred-RF 0.451 0.149 0.449 0.548 0.553 0.564 0.288

TargetCrys 0.611 0.223 0.641 0.659 0.601 0.729 0.486

CrystalP2 0.658 0.257 0.696 0.734 0.756 0.713 0.55

DeepCrystal 0.759 0.53 0.874 0.788 0.716 0.876 0.637

BCrystal 0.894 0.774 0.951 0.919 0.966 0.877 0.932

Note: Best results are highlighted in bold.
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prediction accuracy of 89.4%, that was 13% better than current
state-of-the-art, DeepCrystal (75.9%), 14%, 17%, 19%, 22%,
23%, 27%, 27%, 43% higher than Crysalis II (75.1%), Crysalis I
(72.5%), Crysf (70.0%), PPCPred (66.6%), CrystalP2 (65.8%),
fDETECT (61.6%), TargetCrys (61.1%) and XtalPred-RF
(45.1%), respectively. Remarkably, BCrystal could detect diffrac-
tion quality crystals better than other sequence-based predictors
with a F-score of 0.919 while DeepCrystal achieved a F-score of
0.788, Crysalis II obtained 0.783, Crysalis I obtained 0.763, Crysf
attained a score of 0.727, while PPCPred, fDETECT and CrystalP2
obtained F-scores of 0.675, 0.580 and 0.734, respectively. BCrystal
comprehensively outperformed all sequence-based predictors w.r.t.
the recall evaluation metric. BCrystal obtained a recall value
(0.966), while it achieved a precision score of (0.877), making it the
method with the highest ability to correctly identify crystallizable
proteins. Even though fDETECT had the higher precision score
(0.913), it obtained a very low recall value (0.425), diminishing its
ability to correctly detect crystallizable proteins. Finally, BCrystal
obtained an area under precision-recall (AUPR) score of (0.957)
which was 8% higher than DeepCrystal (0.877), 10% higher than
Crysf (0.853) and 7% higher than Crysalis II (0.883), its three near-
est competitors as observed in Figure 4.

3.3 TR_final test set
The final experiment was performed on the TR_final test set.
BCrystal outperformed all sequence-based predictors for every
evaluation metric. BCrystal obtained a prediction accuracy score of
96.3% which was 12% higher than state-of-the-art, DeepCrystal
(84.1%). It was also better than Crysf (84.1%), Crysalis II
(81.6%), Crysalis I (78.7%) and PPCPred (74.8%). In addition,
BCrystal was also superior w.r.t. AUC, F-score and MCC metrics.
Figure 3C illustrated how BCrystal performed well w.r.t. AUC.
BCrystal achieved an AUC value of 0.988, which was 8%, 9%,
10%, 11%, 14%, 16.9%, 46% higher than DeepCrystal (0.91),
Crysalis II (0.892), Crysf (0.887), Crysalis I (0.87), fDETECT
(0.847), PPCPred (0.819) and XtalPred-RF (0.525), respectively.
For the MCC evaluation metric, BCrystal outperformed all in silico

methods (see Table 3). BCrystal obtained an MCC of 0.922, which
was better by 25%, 26%, 31.9%, 37%, 47% than Crysf (0.663),
DeepCrystal (0.657), Crysalis II (0.603), Crysalis I (0.546) and
PPCPred (0.448), respectively. On the other hand, in terms of re-
call, precision and NPV, BCrystal attained maximum values of
0.970, 0.933 and 0.982, respectively, when compared with other
crystallization predictors.

3.4 Model interpretation
An advantage of tree-based non-linear machine learning techniques,
in contrast to black-box modeling techniques like support vector
machines Drucker et al. (1997) and artificial neural networks
Fausett et al. (1994), is that we can easily obtain feature/variable im-
portance scores for all input features. The importance of a feature is
the sum of information gained when splits (tree branching) are per-
formed using that variable. A distinct benefit of using an XGBoost
classifier is that out of all the 9139 features used during training,
variables which are not used for optimal tree splits in the BCrystal

Fig. 3. The AUC plots for the three different test sets. (A) AUPR for balanced test set. (B) AUPR for SP final test set. (C) AUPR for TR final test set

Fig. 4. The AUPR plots for the three different test sets. (A) AUPR for balanced test set. (B) AUPR for SP final test set. (C) AUPR for TR final test set

Table 3. BCrystal outperformed nine other protein crystallization

predictors on the TR_final set

Models Accuracy MCC AUC F-score Recall Precision NPV

Crysf 0.841 0.663 0.887 0.747 0.631 0.918 0.817

PPCpred 0.748 0.448 0.819 0.64 0.606 0.677 0.782

fDETECT 0.75 0.447 0.847 0.548 0.411 0.823 0.733

Crysalis I 0.787 0.546 0.87 0.715 0.724 0.707 0.836

Crysalis II 0.816 0.603 0.892 0.748 0.74 0.756 0.849

XtalPred-RF 0.451 0.04 0.525 0.452 0.537 0.39 0.651

TargetCrys 0.634 0.325 0.693 0.614 0.788 0.503 0.733

CrystalP2 0.581 0.241 0.673 0.577 0.775 0.460 0.78

DeepCrystal 0.841 0.657 0.910 0.781 0.762 0.800 0.864

BCrystal 0.963 0.922 0.988 0.951 0.970 0.933 0.982

Note: Best results are highlighted in bold.
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model are pruned automatically and get a feature importance score
of 0. We observe from Table 4 that only 127 features have non-zero
feature importance scores. A list of all these features with their
individual feature importance score is available in Supplementary
Table S1.

We then analyzed the total feature importance contribution of
all features according to their feature types/classes as shown in
Figure 2 and Table 4. At the highest level, we had three macro
classes of features including global, sequence, and structure derived
features contributing 0.101%, 2.434%, and 97.465%, respectively
in the overall variable importance scores. From Table 4, we can ob-
serve that the maximum feature importance is associated with FER
at different RSA cutoffs (81.08%, more details in Supplementary
Fig. S4), followed by FER at different RSA cutoffs multiplied by
average hydrophobicity of exposed residues (11.53%). Thus, RSA
features (see Fig. 2) account for � 92% of the total variable import-
ance in the BCrystal model. Figure 5 showcases the difference be-
tween the feature values for these Top 3 variables in case of
crystallizable versus non-crystallizable proteins.

One of the disadvantages of the inherent feature importance
scores obtained from the XGBoost model is that the directionality is
not apparent i.e. when a particular feature for a protein sample
takes a high value, does that correspond to high or low feature im-
portance score. Moreover, at the test phase, it is not straightforward
for traditional white-box, tree-based, machine learning techniques
to provide information about, say, the Top 5 features driving the
prediction to be diffraction quality crystals or non-crystallizable
class.

Recently, several techniques such as the LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017) methods have been pro-
posed to overcome the aforementioned limitations. These methods
have the ability to interpret feature importance scores from complex
training models as well provide interpretable predictions for a test
sample by grounding their reasoning on the top k features for that
particular test instance. In our work, we use the SHAP (SHapley
Additive exPlanations) method, a unified framework for interpretat-
ing predictions, as it was shown in (Lundberg and Lee, 2017) to out-
perform LIME and they demonstrated that its predictions are better
aligned with human intuitions.

The SHAP method belongs to the class of additive feature attri-
bution methods where a test instance prediction is composed as a
linear function of features and satisfies three critical properties com-
prised of local accuracy, missingness and consistency. The explicit
SHAP regression values comes from a game-theory framework
(Lipovetsky and Conklin, 2001; Shapley, 1953) and can be com-
puted as:

/i ¼
X

S	Qnfig

jSj!ðjQj � jSj � 1Þ!
jQj! ½HS[figðxS[figÞ �HSðxSÞ�: (3)

Here, Q represents the set of all d features and S represents the sub-
sets obtained from Q after removing the ith feature and /i is an esti-
mate of the importance of feature i in the model. In order to refrain
from undergoing 2jQj differences to estimate /i, the SHAP method
approximates the Shapley value by either performing Shapley sam-
pling (�Strumbelj and Kononenko, 2014) or quantitative input influ-
ence (Datta et al., 2016). A detailed description of the SHAP
method for model interpretation is available in Lundberg and Lee
(2017).

We passed our BCrystal model along with the training set to the
SHAP method as shown in Figure 1 to obtain importance of features
based on Shapley values. Figure 6 highlights the Top 25 training fea-
tures based on Shapley values. Moreover, it also provides direction-
ality i.e. when a feature attains ‘high’ or ‘low’ values, the
corresponding Shapley values are positive or negative. The positive
Shapley values drive the predictions towards crystallizable class,
whereas the negative Shapley values influence the predictions to
move toward the non-crystallizable class. From Figure 6, we can ob-
serve that when top features such as FER at RSA cutoffs � 65% and
� 70% take high values, the corresponding Shapley values are posi-
tive driving model prediction to diffraction quality crystals, whereas
when these features take low values (i.e. closer to 0), the correspond-
ing Shapley values are negative. Similarly, Figure 6 illustrates that
when top features such as fraction of the sequence which is disor-
dered, number of disordered regions comprising >10 AAs and fre-
quency of coils in protein sequences are high, the corresponding
Shapley values are negative driving the model prediction towards
non-crystallizable class.

4 Case study

We perform a truncation analysis i.e. removing one amino acid at a
time from N-terminal of full length (l¼680) of PF21A human pro-
tein (Protein ID: Q96BD5). We generate features for each such con-
struct and pass it to BCrystal model for predicting the crystallization
propensity. The same analysis is performed for all constructs

Table 4. Variable importance percentages grouped by feature

classes for the BCrystal model highlighting the feature contribu-

tions in order as depicted in Figure 2

Feature class Total

features

Total

features (>0)

Total

imp (%)

Log(L) 1 1 0.052

Log(MW) 1 1 0.032

Turn Freq 1 0 0.000

Gravy index 1 1 0.017

Aliphatic index 1 0 0.000

Total charge 1 0 0.000

Mono Freq SS3 3 1 0.068

Di Freq SS3 9 0 0.000

Tri Freq SS3 27 3 0.063

Mono Freq SS8 8 4 0.664

Di Freq SS8 64 8 1.051

Tri Freq SS8 512 18 1.001

FER at RSA cutoffs 20 10 81.08

FER at RSA cutoff � HP 20 12 11.53

Disorder features 25 5 1.906

PBS in disorder features 25 2 0.099

Mono Freq AA 20 7 0.479

Di Freq AA 400 31 1.018

Tri Freq AA 8000 23 0.937

All features 9139 127 100.00

Note: Here, total features (>0) represents the total number of variables

from a feature class with non-zero variable importance scores.

Fig. 5. Frequency distribution of Top 3 features with relative importance higher

than 5% for crystallizable and non-crystallizable training protein sequences shown

as box plots (****P value < 0.0001)
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obtained by performing truncation from the C-terminal one
amino acid at a time as depicted in Figure 7A. In the truncation ana-
lysis, we consider only those constructs whose lengths are greater
than 10 AAs.

The crystallization propensity of full length PF21A protein
remains at 0.216, whereas serial truncation from N-terminal more
or less maintains this value upto amino acid 200. After AA at pos-
ition 200, the crystallization propensity increases but still remains
below 0.5 till position 477. However, several constructs comprising
AAs starting from positions [478, 500] and ending at position 680
are crystallizable. These constructs include majority of the AAs from
the functional Zinc finger domain (PDB ID: 2PUY, made of AAs be-
tween position 486 and 543 of PF21A protein) which has a known
crystal structure (BCrystal prediction score: 0.777) as depicted in
Supplementary Figure S3. The functional domain in the full length
protein was predicted using SMART (Schultz et al., 1998) method.

Similarly, serial truncation from C-terminal result in constructs
with low crystallization propensities (start position is 1) till end pos-
ition reaches 70. All constructs of smaller lengths obtained from
truncation of one amino acid at time from the C-terminal are crys-
tallizable. This is due to the fact that these residues primarily belong
to the helical regions. We predicted the secondary structure of
PF21A using PSIPRED (McGuffin et al., 2000) which indicated that
majority of the residues are part of helixes between the positions [1,
70] as shown in Figure 7B. The helical regions are usually the best-
folded regions of a protein, providing stability and thereby more
probability of forming crystal contacts (Deller et al., 2016). Thus,
our BCrystal model accurately suggests that small sized constructs
containing the functional Zinc finger domain (with known crystal
structure) and constructs with primarily helical secondary structures
are crystallizable for the protein PF21A (Protein ID: Q96BD5).

We perform additional analysis on two other proteins to show-
case that the Top 10 features obtained via SHAP algorithm for
BCrystal prediction are biologically relevant. Acinetobacter baylyi
pyrimidine nucleoside phosphorylase (Protein ID: ACIAD0356,
PDB ID: 3HQX) attained a relatively high BCrystal prediction score
of 0.776, while the human AT-rich interactive domain-containing
protein 3A’s (Protein ID: ARID3A, PDB ID: 4LJX) got a score of
0.75. The first protein’s Top 10 features had almost exclusively

positive Shapley values, driving BCrystal prediction to be closer
to 1. In particular, features such as FER at different RSA cutoffs
were the primary driving force for the high BCrystal output score as
observed in Figure 8B and C. For the second example protein, the
Top 10 features included both, features with positive and negative
Shapley values, lowering the BCrystal prediction score. In Figure 8,
we illustrated the two proteins crystal structures in cartoon
(Figure 8A and D) as well as in surface representation (Figure 8B
and E) with the RSA mapped onto the structures. It was readily ap-
parent that the phosphorylase has more RSA amino acids (depicted
with light colors) than the second example protein ARID3A.
Furthermore, ARID3A had 2 disordered regions at its terminal
regions, which were not visible in the crystal structure, illustrated by
dashed lines (Figure 8D) that had slight antagonistic effect on the
protein crystallization propensity. We provide additional informa-
tion about the two proteins in Supplementary Figure S4.

Finally, we perform assessment of crystallizability of all proteins
in the human proteome. We downloaded all the proteins from
TargetTrack database which maintains crystallization status of pro-
teins. We filter to keep only those proteins associated with humans
and have low sequence similarity (¡15%) with the training proteins.
We then categorize these proteins into ‘Some success in crystalliza-
tion’ and ‘No evidence in crystallization’ classes based on their
working status and run BCrystal to obtain the crystallization pro-
pensity scores. The predictive power of BCrsytal for these hard real-
world protein targets is depicted in Supplementary Table S2.
Additionally, probing the proteins which are misclassified can help
to prioritize human targets that warrant further investigation as
highlighted in Supplementary Figure S5.

5 Discussion

The development of in silico sequence-based protein crystallization
prediction tools with high accuracy continues to be highly sought
after. In this study, we introduce BCrystal, a crystallization predictor
that uses the XGBoost modeling technique and features that repre-
sent physio-chemical, sequence as well as structural properties of
proteins. BCrystal outperforms, to the best of our knowledge, all
existing sequence-based crystallization predictors by >12.5% in ac-
curacy and 0.25 in MCC.

The superiority of BCrystal over other predictors is due to three
factors. The first factor is the choice of the machine learning method
XGBoost. The non-linear optimized gradient boosting technique,
XGBoost, is able to capture non-linear relationships between the
features and the dependent vector, which makes its performance
comparable to non-linear methods like SVMs (Chang and Lin,
2011). Additionally, XGBoost reduces the bias of the model without
increasing the variance, leading to better generalization perform-
ance. In addition, XGBoost has the ability to provide variable im-
portance, making the model interpretable, which is a drawback of
black-box methods like SVMs and deep learning (DeepCrystal)
(LeCun et al., 1998). The second factor is the choice of features. We
include several features that provide information about the physio-
chemical, sequence and structural properties of the protein of inter-
est. Previous tools such as DeepSF (Hou et al., 2018) have shown
that features extracted from the SCRATCH suite are very helpful in
correct protein fold recognition. We observe that the predicted FER
at different RSA cutoffs and predicted average hydrophobicity of
such residues determined via the SCRATCH suite plays a very vital
role in protein crystallization propensity. An inherent advantage of
the XGBoost model is that it performs regularization i.e. feature
pruning automatically, reducing the risk of overfitting and including
only those features which helps in discriminating the positive class
from the non-crystallizable ones. Thus, it has an advantage over
two-stage methods like CrystalP2, PPCpred, Cryalis and Crysf,
which are susceptible to loss of information by explicitly performing
feature selection. Finally, unlike other sequence-based crystallization
predictors, BCrystal has the ability to provide a meaningful explan-
ation for each test sample using the SHAP method. This empowers
crystallographers to more quickly screen for good crystallization tar-
gets and to attempt mutations of initial targets for diffraction quality

Fig. 6. Top 25 features from SHAP (Lundberg and Lee, 2017)
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Fig. 7. Crystallization propensity analysis for serial truncation of a very homologous protein (hard to crystallize protein) complimented with secondary structure analysis. (A)

Crystallization propensities for serial truncation experiments. (B) Predicted secondary structure for PF21A human protein

Fig. 8. Top predictive features—relative solvent accessibilities and disordered regions—correlate with BCrystal scores. (A) Crystal structure of pyrimidine/purine nucleoside

phosphorylase with predicted RSA values mapped onto the structure in cartoon illustration (PDB ID: 3HQX, 108 residues). (B) Predicted RSA values shown on structure in

surface representation. (C) Top 10 SHAP-features with corresponding Shapely values. (D) Crystal structure of human AT-rich interactive domain-containing protein 3A

(Protein ID: ARID3A, PDB ID: 4LJX, 145 residues) in cartoon illustration. (E) Predicted RSA values mapped onto structure shown in surface representation. (F) Top 10

SHAP-features with corresponding Shapely values
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crystal production reliably and with more information to reason
about the effects of proposed modifications.

From the BCrystal model, (see Figs 5 and 6), we observe that the
features with the highest variable importance were FER at RSA cut-
offs 65% and 70% and FER at RSA cutoff 70% � HP of corre-
sponding residues. We notice from the training set that the FERs for
the crystallizable set is significantly different than the FERs for the
non-crystallizable set (see Fig. 5, P-value < 1e�4) at almost all RSA
cutoff levels (see Supplementary Fig. S6), which is the reason that
the FER is a dominant feature of the classifier.

Moreover, the RSA cutoff (0–100%) for a residue in a protein se-
quence is used to determine whether the residue is buried or
exposed. In the past, several RSA cutoffs were used to divide the res-
idues into the two classes. For example in Chen and Zhou (2005),
RSA cutoffs 20–25% were used arbitrarily to get roughly balanced
buried and exposed residues in order to determine the secondary
structure of proteins. Similarly, in Tien et al. (2013), RSA cutoff of
0–5% were used arbitrarily to identify buried residues and the frac-
tion of buried residues were correlated with properties like transfer
energy from vapor to water, cyclohexane to water and so on.
Intuitively, at least half of the residue would be available to the solv-
ent at RSA cutoff of 50%. If only half of the residue is available to
the solvent (i.e. RSA at 50%), the residue might still be quite rigid
and thus there would be a lower probability that the residue lines up
perfectly to create a crystal lattice Salemme et al. (1988); Zhang
et al. (2009). So, a relatively higher RSA cutoff {60%, 65%, 70%}
for a residue would imply that the residue which we consider
exposed has enough flexibility to be part of the crystal lattice and
hence enhances the chances of the protein to crystallize Zhang et al.
(2015). This is further complemented by the difference between me-
dian (DBM) values of FER at RSA cutoffs: 60%, 65% and 70% for
crystallizable vs non-crystallizable class (see Supplementary Fig. S6),
where the median FER values at each of these cutoffs are much
higher in crystallizable proteins in comparison to non-crystallizable
ones (closer to 0). Additionally, a statistical measure based on ratio
of Difference Between Median (DBM) and Overall Visible Spread
(OVS) is highest for FER at RSA cutoffs: 60%, 65% and 70%
(Supplementary Fig. S7). The higher this percentage, the larger is the
difference in the FER feature values at that particular RSA cutoff be-
tween the crystallizable and non-crystallizable class, and stronger is
the discrimination power of this feature Wild et al. (2011).

An important issue which can influence the BCrystal predictions
is the presence of a recognizable homolog in the PDB as it would en-
hance the accuracy of the obtained RSA values provided by the
SCRATCH suite. Since we enforce a strong sequence similarity cri-
terion i.e. removal of all sequences within the training set having
>15% intra-training sequence similarity as well as removal of
sequences having >15% sequence similarity with test protein
sequences, BCrystal model should be able to overcome this bias.
Additionally, other features extracted by the SCRATCH suite (sec-
ondary structure features) would have benefitted from presence of a
recognizable homolog and their feature importance would have
been inflated, which is not the case as observed from Table 4.

Furthermore, from Figure 6, we also detect that the non-
crystallizable proteins tend to have large disordered regions
(Frac_Seq_Diso > 0 and No_Diso_>10_AA > 0) in the protein se-
quence, higher frequency coils in secondary structure and higher fre-
quency of tri-peptides containing multiple histidines. Interestingly,
positively charged surface residues and polyhistidine-tags have been
previously (Chan et al., 2013; Woestenenk et al., 2004) correlated
with protein insolubility, which explains that higher frequency of
the tripeptide EHH in the protein sequence drives the model predic-
tion to negative class (see Fig. 6).

Apart from the comprehensively outperforming all existing
sequence-based protein crystallization predictors, BCrystal is the
first sequence-based bioinformatics tool that provides meaningful
interpretations for its prediction by using the SHAP method.
BCrystal always attains a very high recall (average recall of 0.966)
for the three independent test sets, suggesting that it can very effi-
ciently select crystallizable proteins from an initial set of candidates,
thereby, reducing the high attrition rate and the production cost.

The ultimate goal of an in silico sequence-based crystallization pre-
dictor would be the ability to design protein sequence variants i.e.
perform single/double point mutations in the protein sequence such
that these mutations positively drive the protein crystallization pro-
pensity. Ideally, rendering the protein to be crystallizable (from non-
crystallizable class) without changing the intrinsic functionality of
the protein. In the future, we plan to provide wrapper software on
top of BCrystal that will automatically generate/suggest mutants
(with/without fixing specific residues; for instance functionally im-
portant ones) for crystallographers to use.

Conflict of Interest: none declared.
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