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Abstract

Motivation: Patterns of gene expression, quantified at the level of tissue or cells, can inform on etiology of disease.
There are now rich resources for tissue-level (bulk) gene expression data, which have been collected from thou-
sands of subjects, and resources involving single-cell RNA-sequencing (scRNA-seq) data are expanding rapidly. The
latter yields cell type information, although the data can be noisy and typically are derived from a small number of
subjects.

Results: Complementing these approaches, we develop a method to estimate subject- and cell-type-specific (CTS)
gene expression from tissue using an empirical Bayes method that borrows information across multiple measure-
ments of the same tissue per subject (e.g. multiple regions of the brain). Analyzing expression data from multiple
brain regions from the Genotype-Tissue Expression project (GTEx) reveals CTS expression, which then permits
downstream analyses, such as identification of CTS expression Quantitative Trait Loci (eQTL).

Availability and implementation: We implement this method as an R package MIND, hosted on https://github.com/
randel/MIND.

Contact: roeder@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Altered gene expression is one mechanism by which genetic vari-
ation confers risk for complex disease. Thus, many studies have
quantified bulk gene expression from tissue, thereby assessing ex-
pression averaged over the individual cells comprising the tissue.
Recently, using single-cell RNA sequencing (scRNA-seq) (Darmanis
et al., 2015; Habib et al., 2017; Zeisel et al., 2015), studies have
quantified gene expression at the level of cells and cell types; such
data could be especially informative for brain tissue, which harbors
myriad cell types whose functions are not fully resolved. Drawbacks
to scRNA-seq data include its noisy nature and the challenge of
characterizing such cells from many subjects, which limits its poten-
tial for genetic analyses. Alternatively, there are established resour-
ces, such as GTEx (GTEx Consortium, 2017) and BrainSpan (Kang
et al., 2011), among others, that have collected bulk transcriptome
data from many subjects and multiple brain regions. Although bulk
transcriptomes represent an amalgamation of different cell types,
which occur in various proportions in the sampled tissues, there is
cell-type-specific information encoded in these transcriptomes, as re-
cent studies demonstrate (Kelley et al., 2018; Wang et al., 2018).
Here we present a method, MIND for Multi-measure INdividual
Deconvolution (Fig. 1), to exploit such resources to learn about

subject- and cell-type-specific (CTS) gene expression. For each sub-
ject and gene, MIND’s CTS estimate represents the average expres-
sion of the gene for fundamental cell types, such as neurons,
astrocytes, microglia, oligodendrocytes and endothelial cells in
brain.

MIND exploits two key ideas for obtaining CTS gene expression
from tissue. (1) Because a tissue sample’s bulk transcriptome is a
convolution of gene expression from cells belonging to various cell
types, deconvolution methods (Abbas et al., 2009; Newman et al.,
2015; Shen-Orr et al., 2010; Wang et al., 2019) can estimate the
fraction of each cell type within this tissue. Methods typically decon-
volve each tissue sample per subject and require prior information,
specifically sets of genes that are expressed in certain cell types
(marker genes), the collection of which we call the signature matrix.
Any good deconvolution method will suffice for MIND, such as
CIBERSORT (Newman et al., 2015) or the non-negative least
squares approach adopted by PsychENCODE (Wang et al., 2018).
(2) Multiple transcriptomes from the same subject, but different
brain regions, share common cell types. MIND uses empirical Bayes
techniques to exploit this commonality, together with the estimated
cell type fractions from (1), to estimate CTS gene expression. Note
that the idea behind (2) is unique to MIND and it permits subject
and CTS expression estimates from tissue level transcriptomes.
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Using MIND, we analyze data from GTEx brain tissue to obtain
CTS gene expression.

2 Materials and methods

2.1 The MIND algorithm
For a single measure (t) from subject i, let Xijt be the observed ex-
pression of gene j. When the tissue consists of K cell types, typically
the goal of gene expression deconvolution is to find W it, the K cell
type fractions for subject i in measure t, such that

Xijt
ð1�1Þ

¼ W it
ð1�KÞ

Aj
ðK�1Þ

þ eijt
ð1�1Þ

; (1)

where Aj is the cell type gene expression and eijt is the error term.
When reference samples are available, such as purified cells or
scRNA-seq data, the signature matrix can be estimated for the
marker genes by differential expression analysis of cell types from
the reference samples. Plugging in Aj, deconvolution becomes a
standard regression problem and W it can be estimated directly.

We extend the single-measure deconvolution in Equation (1) by
borrowing information across multiple measurements, t¼1, . . . , Ti

from the same tissue for subject i to estimate subject-specific and
CTS gene expression (Ti can vary by subject).

Step 1 of the MIND algorithm is to estimate cell type fractions
for subject i and measure t, W it, for t¼1, . . . , Ti. Combining esti-
mated information across measures yields W i, a Ti � K matrix, of
cell type fractions. Step 2, treating W i as known, we reverse the

problem from single-measure deconvolution, estimating instead
CTS gene expression. For gene j in subject i, the observed gene ex-
pression X ij is a Ti � 1 vector that represents Ti quantified measure-
ments (Fig. 1e), rather than a scalar as in Equation (1). We model
X ij as a product of cell type fraction (W i) and CTS expression (Aij),

X ij
ðTi�1Þ

¼ W i
ðTi�KÞ

Aij
ðK�1Þ

þ eij
ðTi�1Þ

;

Aij � Nðaj;RcÞ;

eij � Nð0;r2
e ITÞ:

(2)

where eij is the error term that captures the unexplained random
noise.

To ensure robustness, we assume that the CTS expression (Aij) is
randomly distributed as Aij � Nðaj;RcÞ, with mean aj (K�1) that
constitutes the profile matrix and covariance matrix Rc (K�K) for
K cell types. In contrast to single-measure deconvolution, we assume

1. cell type fraction (W i) is subject- and measure-specific;

2. CTS expression (Aij) is subject-specific but constant across

measures.

Estimation is performed across all subjects and genes simultan-
eously. We estimate the parameters (aj;RcÞ through maximum likeli-
hood via a computationally efficient EM (Expectation-Maximization)
algorithm (see Supplementary Note). CTS expression (Aij) is esti-
mated using an empirical Bayes procedure. To achieve reliable results,
the number of cell types (K) to be estimated is limited by the number

(a)

(d)

(e) (f)

(b)

(c)

Fig. 1. Flow diagram for the MIND algorithm. (a) For a set of relevant cell types, select cell type marker genes and build a signature matrix using reference samples. (b)

Multiple transcriptomes are measured from each subject; here, one transcriptome for each of multiple brain regions. (c) Using an existing deconvolution method, e.g. non-nega-

tive least squares, estimate the cell type fractions for each brain region and subject. Here we depict K¼4 cell types for which their fractions will be estimated per brain region.

(d) With results from (b) and (c), MIND estimates cell-type-specific (CTS) expression for each of p genes for each subject and cell type. Colors map to the cell types in (c) and

(d) and we depict two of n subjects, 1 and n. (e) Matrix representation of key data elements of the MIND algorithm: for each of T brain regions for subject i, expression of p

genes from the transcriptome is measured, X ij; and the key outputs are the subject level CTS gene expression (AiÞ and the subject and measurement level cell type fractions

(W i). (f) Examples of downstream applications for MIND. (Color version of this figure is available at Bioinformatics online.)
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of measures (e.g. brain regions) per subject, whereas all genes in the
genome can be efficiently deconvolved together. MIND ignores gene–
gene correlation in the prior distribution of CTS expression to achieve
efficient computation, deconvolving for the whole genome in several
minutes (Supplementary Table S1). Gene–gene correlation can be
inferred from estimates of CTS gene expression.

2.2 Data resources, preliminary analyses, simulations
To explore the performance of MIND, we estimated subject and
CTS gene expression from GTEx bulk gene expression data from
human brain (GTEx Consortium, 2017). GTEx is an ongoing pro-
ject that collects both gene expression data from multiple tissue
types, including brain, and genotype data from blood for hundreds
of post-mortem adult donors. Here we focused on 1671 brain tissue
samples from 254 donors and 13 brain regions in the GTEx V7 data
(GTEx Consortium, 2017). We analyzed the read count data for all
genes detected in brain, normalized as count per million (CPM) and
transformed as log2(Xþ1) prior to analysis. Unless otherwise noted,
all expression count data analyzed herein were log-transformed in
this way. (See Supplementary Note for discussion and analyses of
various transformations of the data.)

Samples of brain tissue from different brain regions share com-
mon cell types and thus are suitable for analysis by MIND. To en-
sure reliable estimates, we removed GTEx subjects with less than 9
brain regions sampled, resulting in data from 105 subjects for ana-
lysis. Among these subjects, 95 also had genotype data for identify-
ing CTS eQTLs. These eQTLs were estimated using MatrixEQTL
(Shabalin, 2012), controlling for ancestry, gender and genotype plat-
form and were compared to eQTLs from GTEx bulk data, specific-
ally region-specific eQTLs downloaded from the GTEx portal.

To build a signature matrix for the GTEx brain data, we began
by analyzing the adult scRNA-seq data from Darmanis et al. (2015),
clustering characterized human brain cells into seven cell types
[astrocyte, endothelial, microglia, oligodendrocyte (Oligo), oligo-
dendrocyte precursor cell (OPC), inhibitory and excitatory neurons]
and selecting the top 50 marker genes for each cell type using SC3
(Kiselev et al., 2017). We also collected markers for astrocyte,
microglial and endothelial cells from the PsychENCODE
Consortium (Wang et al., 2018) and microglia markers from Olah
et al. (2018). The signature matrix (Supplementary Table S2) was
constructed by averaging the expression of each marker gene in the
cells of the same type. Following the PsychENCODE Consortium
(Wang et al., 2018), we estimated the cell type fractions for GTEx
subject-by-brain region using non-negative least squares (Lawson
and Hanson, 1995) (Supplementary Table S3). Because the esti-
mated fractions of OPCs in brain regions were always close to zero,
OPCs were dropped from further analyses. Given estimated cell type
fractions, MIND then estimates subject and CTS gene expression
from GTEx bulk expression data.

MIND’s estimates were validated empirically and by simulation.
For empirical validation, we used data from Habib et al. (2017),
who quantified single-nucleus RNA-seq data from seven brain tissue
samples from five GTEx donors. Because the authors classified the
cells into cell types, we could average their read count data for cells
of each type to obtain CTS expression on a scale similar to that pro-
duced by MIND. Because only a few hundred cells were character-
ized for one of the five subjects and these data cannot provide
accurate CTS expression, data from this subject were excluded. For
a fair comparison, we converted the read counts to CPM and then
compared the directly measured subject-specific and CTS expression
to MIND’s estimated quantities from bulk transcriptomes (in CPM)
from the same subjects.

To evaluate MIND via simulations, we generated gene expres-
sion using two approaches. To enhance the realism, for each ap-
proach we used cell type fractions (W i) estimated from GTEx
subjects, as described above, for 6 cell types (astrocyte, oligodendro-
cyte, microglia, endothelial cell, inhibitory and excitatory neurons).
As a measure of performance, we computed the correlation between
MIND’s and the true CTS expression. To evaluate the parameter
estimates, we calculated the average correlation and variance esti-
mate from 100 replications. In the first simulation approach, using

Equation (2), we simulated 105 subjects having 9–13 measurements
as in GTEx brain data. We utilized the profile matrix (aj) built from
Darmanis et al. (2015) for two sets of genes: (i) markers gene, and
(ii) all genes. We systematically varied the values of the true variance
parameters, r2

e and Rc, which denote the error variance and the co-
variance of CTS expression. Here we let Rc have equal variance r2

c

and equal covariance rkk0
c across cell types, where k and k0 denote

cell types. For the second simulation approach, single-cell data from
4 GTEx subjects, described above, guided data production for 100
subjects and 31 496 genes. There were two settings in the second
simulation approach, (i) we varied the error variance r2

e ; and (ii) we
added region-specific variation to Aij (CTS expression per subject),
letting the variation follow a normal distribution with zero mean
and variance equal to the simulated error variance (r2

e ). Finally we
fixed r2

e ¼ 0:1 (the error variance that we observed in deconvolving
GTEx brain data) and varied the number of measures from 1 to 13.

To partition variation in gene expression by cell type and brain
region and thereby check MIND assumptions, we used the
NeuroExpresso database (Mancarci et al., 2017), which holds gene
expression data for purified-cell samples from multiple mouse brains
and regions. This resource holds normalized data of purified cells on
expression of 11 546 genes. We restricted our analysis to four cell
types with largest sample size, namely astrocytes, oligodendrocytes
and inhibitory/GABAergic and excitatory/pyramidal neurons.

3 Results

3.1 Validating model assumptions
MIND models cell type fraction as subject- and region-specific. It is
natural to assume CTS expression is subject-specific, which allows
for differences among subjects due to age, phenotype, genotype and
other measured variables and thereby permits downstream analyses
not formerly possible (Fig. 1f). MIND also assumes CTS expression
is similar across brain regions of the same subject, thereby avoiding
overfitting the data. For this assumption to hold, cells from the same
cell type, but from different brain regions, should show similar pat-
terns of gene expression; whereas cells of different cell types from
the same region should show distinct expression profiles. This was
the observed pattern in the NeuroExpresso database of purified
brain cells from multiple brain regions (Fig. 2a). Fitting a mixed-
effects model for each gene and decomposing the variance into that
explained by cell types versus brain regions, as well as studies and
error, cell types account for a larger amount of the variance than re-
gion, 25% versus 12%.

Next, examination of the correlation of gene expression over
regions for the GTEx brain data shows that bulk gene expression is
highly correlated over all regions, with cerebellum and spinal cord
showing slightly lower correlation (Fig. 2b). Reversing the role of re-
gion and subject in MIND, to estimate CTS expression for every re-
gion, shows that the estimated expression is quite similar across
regions as illustrated by marker genes (Supplementary Fig. S1), with
the strongest deviation observed for cerebellum. Fitting a mixed-
effects model for each gene and decomposing the variance into that
explained by cell types and brain regions, the variance explained by
cell types (41%) is substantially larger than that for regions (1%).

It is reasonable to ask if MIND requires repeated measures of
gene expression in the same or similar tissue. Results using the
deconvolved GTEx brain data show that for subjects with fewer
measures, the deconvolved CTS expression has less variability, on
average (Fig. 2c). This implies that the model typically imputes simi-
lar expression for each cell type when the number of measurements
is small and it lacks strong information to the contrary. Thus the
number of measurements provides an indicator of the reliability of
the deconvolved expression.

3.2 Validating model estimates
We evaluate the performance of MIND for various scenarios,
including a variety of simulations and analysis of the GTEx brain
tissue data. Importantly, GTEx (Habib et al., 2017) produced
scRNA-seq data from the prefrontal cortex (3 subjects) and
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hippocampus (4 subjects). For these same subjects, bulk transcrip-
tomes were also characterized (GTEx Consortium, 2017). From the
scRNA-seq data, we can calculate CTS expression by averaging over
cells of each cell type for each subject. Then, existence of both bulk
and scRNA-seq data enables a direct comparison of MIND’s per-
formance and reveals highly concordant estimates for most cell types
and donors (Fig. 3a). As expected, focusing on marker genes,
we find that MIND’s CTS expression has the highest correlation
with the measured expression of the same cell type (Supplementary
Table S4). If MIND’s estimates are accurate, bulk gene expression
should be a convolution of its estimated CTS gene expression and
the estimated cell type fraction for the tissue sample. Using MIND’s
estimates to predict region level expression for each subject shows
excellent correspondence between predicted versus measured bulk
gene expression (Supplementary Fig. S2).

Recent research identifies microglia as a cell type involved in risk
for Alzheimer disease. In this regard, Olah et al. (2018) identified a
set of genes that mark microglia in the aging human brain and
showed expression increased with age. We replicate the same pat-
tern in GTEx brains (Fig. 3b) and, importantly, we see the same
trend in MIND’s estimate of the expression of these genes in micro-
glia (Fig. 3c).

The design of simulation studies to evaluate MIND’s perform-
ance was described in Section 2. In Supplementary Figure S3 and
Table S5, we provide detailed results of these studies. In brief,
MIND provided consistently high correlation between estimated
and true CTS gene expression for all cell types and was robust to
increasing noise (Supplementary Fig. S3a). This conclusion held
even when we simulated bulk data with region-specific CTS expres-
sion (Supplementary Fig. S3b) and MIND’s performance improved
with the number of regions assessed (Supplementary Fig. S3c).
When six or more regions were assessed, the correlation between the
estimated and true CTS expression for six cell types reached 0.8 on

average when the error variance was set equal to that observed from
deconvolved GTEx brain data. MIND provided high quality esti-
mates when the cell type fraction is �0.05, but it cannot recover ac-
curate estimates of CTS expression for more rare cell types
(Supplementary Fig. S3d). Moreover, MIND’s parameter estimates
were approximately unbiased (Supplementary Table S5) when the
number of measures was large. A least-squares approach did not
perform as well as MIND (Supplementary Fig. S3), highlighting the
advantages of considering correlations between measures and
assuming random CTS expression in MIND, an assumption that is
particularly valuable when the number of measures is small, which
is usually the case in practice.

3.3 Further results from GTEx brain tissue
Results for cell type fractions (Fig. 4a) were consistent with previous
findings and what is known about the brain: (i) related brain regions
have similar cell type composition, for example, the three basal gan-
glia structures, two cerebellum samples and three cortical samples
(note that the two cerebellum samples and two frontal cortical sam-
ples are technical replicates); and (ii) spinal cord (cervical c-1) is esti-
mated to consist of 35% oligodendrocytes, which agrees with the
prominence of white matter tracts present at c-1 and glial cells in
white matter. See Supplementary Note for analyses and discussion
of the interrelationship of estimated cell fractions, cell size and gene
expression (Supplementary Fig. S4).

We next examine the estimated CTS expression values, by sub-
ject, to determine if the estimates conform to expected patterns. It is
reasonable to predict that RNA showing specificity for certain brain
regions would also show specificity to a cell type prominent in that
region. This is indeed the case. For example, consider LINC00507
and HOXB8, the former is highly expressed in cortical brain tissue
and the latter in spinal cord (Fig. 4b). By contrasting the region-level

(a)

(b) (c)

Fig. 2. Validation of the assumptions of MIND. (a) Heatmap of expression of cell type marker genes in the NeuroExpresso database of purified-cell samples. Columns denote

192 marker genes selected by CIBERSORT (Newman et al., 2015) from NeuroExpresso. Rows represent purified-cell samples. Purified-cell samples are clustered, then anno-

tated by cell type and brain region (labels on left, scale of expression on right). (b) Correlation matrix of gene expression (heatmap) for brain regions from GTEx samples.

(ACC, anterior cingulate cortex; hemis., hemisphere.) (c) Boxplots of centered CTS expression as a function of the number of measures per subject in GTEx brain data. The

number of subjects with all 13 measures is small and thus those subjects are combined with subjects having 12 measures. To obtain centered CTS expression, for a given num-

ber of measures, the estimated expression per gene and cell-type was first centered, then these estimates were pooled for display
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(a) (b)

(c)

Fig. 3. Validation of the estimates of MIND. (a) Direct quantification of average gene expression from single cells (observed) (Habib et al., 2017) from GTEx brain samples of the same

subjects as the CTS expression estimated by MIND. Shown are scatter plots represented as a smoothed two-dimensional color density. For each panel, correlation for all genes is given. For

presentation, only genes with positive observed expression are shown. On average, there are 17 223 out of 31 496 genes that have positive observed CTS expression. Dotted line at y¼ x.

(b) Average scaled expression of microglia marker genes in GTEx cortex tissue and matching the pattern observed by Olah et al. (2018) from different subjects. (c) MIND derived average

scaled expression of the same microglia marker genes analyzed in (b) and showing the same pattern of increased expression with age. Expression values in (b) and (c) have been centered

(a) (b)

(d) (e)

(c)

Fig. 4. Analyses of CTS gene expression of the GTEx brain data. (a) Estimated cell type fractions in each GTEx brain region, averaged over subjects. Putamen, caudate and nu-

cleus accumbens are the three basal ganglia structures. (b, c) For two transcripts selected for differential expression in cortex versus spinal cord, (b) boxplots of tissue-level ex-

pression across brain regions and (c) CTS expression estimated by MIND from tissue-level expression across brain regions. (d) The heatmap and clustering of estimated CTS

expression from MIND by cell type and age. Here we visualize a 6n � 6n correlation matrix for the 6 cell types and n¼105 subjects, based on the expression of 124 genes that

have the largest variability across brain regions. (e) Age trends for expression of gene SAMSN1 in tissue and its estimated CTS expression from MIND. SAMSN1 is a known

marker gene for microglia and is down-regulated in aged microglia (Olah et al., 2018)
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expression for these genes with their estimated CTS expression
(Fig. 4c), we find that LINC00507 tends to be expressed solely in
excitatory neurons (Aevermann et al., 2018), while HOXB8 is
expressed largely in microglia (Frick and Pittenger, 2016). A priori,
and based on recent findings (Soreq et al., 2017), we would also ex-
pect cell type to be a strong predictor of gene co-expression.
Moreover, because GTEx subjects were all adults at death, but not
elderly, recent findings (Soreq et al., 2017) suggest that age would
not be a strong predictor of gene co-expression. Thus, we asked if
the estimated CTS expression clusters by cell type or by age of the
subject using estimates from 124 genes with the largest variability in
expression across brain regions. Based on these genes, we compute
the correlation matrix for the 6n subject-cell-type configurations
(6 cell types and n¼105 subjects). Hierarchical clustering of the
entries in the correlation matrix reveals that cell-type is a strong pre-
dictor of co-expression, while age is not (Fig. 4d), consistent with
MIND’s modeling assumptions.

CTS expression by age, however, reveals interesting patterns that
are not always apparent at the tissue level. For example, for
SAMSN1, expression decreases with age in tissue, whereas it is only
expressed substantially in microglia and only shows a significant
decreasing trend in microglia and inhibitory neurons (Fig. 4e). This
agrees with findings in Olah et al. (2018) that SAMSN1 is a marker
for microglia and down-regulated in aged microglia cells. Overall,
21% of genes show age trends at the region level or cell-type level,
with the false discovery rate (FDR) (Storey and Tibshirani, 2003)
controlled at 0.05: 5% show age trends in at least one brain region
and at least one cell type; 14% show age trends in at least one of 13
brain regions, but not in any cell type; and 2% show age trends in at
least one of 6 cell types, but not in any brain region.

Because MIND yields subject-level and CTS gene expression, we
can identify eQTLs for each cell type. To do so, CTS gene expression
data were analyzed using MatrixEQTL (Shabalin, 2012), with FDR
controlled at 0.05 for each cell type. We assessed that the P-values
of eQTL mapping are well calibrated and enriched near gene tran-
scriptional start site (Supplementary Fig. S5). We then compared the
MIND-identified eQTLs with region-specific eQTLs identified by
the GTEx project (GTEx Consortium, 2017). Notably, the rate at
which eQTLs are both region-specific and CTS increases as the cell
type becomes more prominent in the region (Fig. 5a). Moreover,
when an eQTL was jointly identified in more brain cell types, it was
more likely to be detected across a variety of tissues and especially
across brain regions (McKenzie et al., 2014) (Fig. 5b,
Supplementary Fig. S6a). Interestingly, this does not hold for all cell
types, because the eQTLs identified in oligodendrocyte and

microglia were more distinct than those in the other four cell types
(Supplementary Fig. S6b). We found that 48% of eQTLs that were
identified in one or more brain cell types were not identified from
any GTEx brain region, which suggests MIND’s results can identify
novel eQTLs. Finally, some eQTLs were shared by all six cell types,
while others are specific to certain cell types, especially for neuronal
cells (Fig. 5c and Supplementary Fig. S6c), which implies that eQTL
analysis based on MIND’s results can shed light on gene expression
regulation within cell types. Additionally, those genes that had
eQTLs in fewer cell types were more likely to be marker genes (Chi-
squared-test of independence, P-value ¼ 1.6�10�28).

4 Discussion

We develop an algorithm, MIND, to obtain gene expression by cell
type and subject, even though gene expression is measured from tissue.
There are notable advantages to the MIND algorithm. Because its esti-
mates are CTS for each subject, they represent the cell-specific features
inherent in the database for these subjects, such as the eQTLs from
CTS expression. While we have concentrated our analyses on brain tis-
sue, MIND is not specific to brain, any tissue could be appropriate,
given these two conditions: there are a group of subjects for which
transcriptomes have been assessed repeatedly; and the repeatedly
sampled tissue, per subject, has cell types in common. For example,
several other GTEx tissues meet these requirements, including artery
and esophagus (GTEx Consortium, 2017). Other experimental settings
fit these requirements too, such as organoids (Mariani et al., 2015;
Takasato et al., 2015). It is also possible that one could substitute
repeated measures per subject with repeated measures of genetically
similar subjects, such as sibships for model organisms.

There are also limitations to the current version of MIND, which
relies on reference samples to identify genes whose expression are
largely specific to cell type, so-called marker genes. Identifying
which reference samples are appropriate can be challenging. A dif-
ferent challenge is presented when there are a large number of cell
types in the tissue. Reliably estimating expression by cell type and
subject will require a large number of repeated measures per subject,
something most resources do not have at this time. For this reason,
we limit our analyses to major cell types. Furthermore, MIND is
limited to estimating the average gene expression across cells of the
same type within a subject, ignoring the diversity of expression with-
in single cells.

Despite its limitations, MIND has the potential to increase the
value of bulk transcriptome resources. By estimating individual and

(a) (b) (c)

Fig. 5. Expression quantitative trait loci (eQTL) discovered from tissue-level or CTS gene expression. (a) Scatter plot of eQTL mapping rate versus the estimated cell type frac-

tion. The rate is for mapping eQTLs from CTS expression estimated by MIND to region-specific eQTLs identified by the GTEx consortium. It represents the probability of an

eQTL detected in a cell type being identified in a brain region as well. Each point denotes a brain region and cell type. The dashed line depicts the fitted linear regression model

and the P-value (pval) is for the t-test of the regression slope. (b) Rate of correspondence between eQTLs appearing in one to more cell types and those in each tissue type. For

eQTLs that appear in one to six cell types, respectively, we calculate their probability of being identified in each brain region or whole blood. (c) Overlap among eGenes (genes

with eQTLs) for three cell types of interest: astrocyte, inhibitory and excitatory neurons. The results for all six cell types are presented in Supplementary Figure S6c
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CTS gene expression, it can determine if an age trend for a gene’s ex-
pression is a property of a specific cell type or is a composite pattern
arising from the various cell types comprising the tissue. Extending
this observation, results from MIND can be used to produce CTS
gene expression networks, which in turn can yield critical clues
regarding the etiology of complex diseases. And, as documented here,
it can map CTS variation in gene expression onto genetic variation,
yielding CTS eQTLs, further enhancing the utility of bulk transcrip-
tome resources to understand the origins of complex disease.
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