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Abstract

Motivation: Spectral unmixing methods attempt to determine the concentrations of different fluorophores present
at each pixel location in an image by analyzing a set of measured emission spectra. Unmixing algorithms have
shown great promise for applications where samples contain many fluorescent labels; however, existing methods
perform poorly when confronted with autofluorescence-contaminated images.

Results: We propose an unmixing algorithm designed to separate fluorophores with overlapping emission spectra
from contamination by autofluorescence and background fluorescence. First, we formally define a generalization of
the linear mixing model, called the affine mixture model (AMM), that specifically accounts for background fluores-
cence. Second, we use the AMM to derive an affine nonnegative matrix factorization method for estimating fluoro-
phore endmember spectra from reference images. Lastly, we propose a semi-blind sparse affine spectral unmixing
(SSASU) algorithm that uses knowledge of the estimated endmembers to learn the autofluorescence and back-
ground fluorescence spectra on a per-image basis. When unmixing real-world spectral images contaminated by
autofluorescence, SSASU greatly improved proportion indeterminacy as compared to existing methods for a given
relative reconstruction error.

Availability and implementation: The source code used for this paper was written in Julia and is available with the
test data at https://github.com/brossetti/ssasu.

Contact: blair.rossetti@emory.edu

1 Introduction

Most conventional fluorescence microscopes use a series of mirrors
and optical filters to separate the emission light of different fluoro-
phores. The characteristics of these filters (i.e. what wavelengths of
light they let pass) dictate what types of fluorophores and, more im-
portantly, how many fluorophores can be used in an experiment.
There exist a number of tools to help optimize the choice of fluoro-
phores based on the configuration of a given microscope, such as the
recently released SPEKcheck by Phillips et al. (2018). These tools at-
tempt to reveal the set of fluorophores that minimize spectral cross
talk, a problem where the filter used for one fluorophore does not
adequately exclude the fluorescent emission of other fluorophores
(see Waters (2009) and references therein). Yet, even with such opti-
mization, most experiments are still limited to three or four fluores-
cent labels. To make matters worse, many biological samples
contain a variety of autofluorescent molecules that emit light at
wavelengths that overlap and obscure the desired signal.

Spectral microscopy has become the method of choice when
needing to avoid cross talk, mitigate autofluorescence and simultan-
eously visualize many biological objects (Harmany et al., 2017;
Jonkman et al., 2014; Levenson et al., 2008; Valm et al., 2011,
2016). Instead of relying on filters, spectral microscopes use special-
ized optics and computational analysis to measure and separate the
light emitted by different fluorophores. A spectral image is a three-
dimensional data structure that holds a discrete spectral emission
profile for each (x, y) pixel location. The range of detectable wave-
lengths and the number and width of the spectral bands varies by
system and application. However, most commercial spectral micro-
scopes are capable of measuring tens (multispectral) or even hun-
dreds (hyperspectral) of spectral bands at resolutions of 1–15 nm/
band (Cole et al., 2013; Gao and Smith, 2015). For an in-depth
treatment of spectral microscopy and its applications, we refer the
reader to the ‘Spectral Imaging’ special issue of Cytometry Part A
(Lerner et al., 2006) and the reviews by Garini and Tauber (2013)
and Li et al. (2013).
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Since a spectral microscope simply records the spectrum at each
pixel, the ability to separate fluorophores with overlapping emission
spectra depends on the choice of spectral unmixing algorithm.
Spectral unmixing refers to a group of techniques that attempt to de-
termine how much of each fluorophore was present in some
observed spectrum. Nearly all of these methods assume that light
emitted by different fluorophores mix linearly, and are rightly called
linear mixing models (LMM) (Zimmermann et al., 2014). In the de-
terministic case, fluorophores are assumed to have one canonical
emission spectrum called a reference spectrum or endmember (a
term borrowed from mineralogy that refers to the purest form of an
element that exists in a mixture). We can represent the set of N end-
members, each with M spectral bands, as the columns, denoted sn

for n ¼ 1; . . . ;N, of the endmember matrix S 2 R
M�N
þ . If we denote

the endmember concentrations, or weights, as w 2 R
N
þ , then we can

write the LMM as

y ¼
XN

n¼1

snwn þ e; (1)

where y 2 R
M
þ is the observed spectrum, wn is the nth entry of w,

and e is i.i.d. noise (typically assumed to be Gaussian or Poisson dis-
tributed). When considering an entire spectral image with P pixels,
denoted Y 2 R

M�P
þ , we can rewrite the LMM in matrix form as

Y ¼ SWþ E; (2)

where E 2 R
M�P is noise and W 2 R

N�P
þ is the set of weights for

each endmember in each pixel. It is important to highlight that the
entries of W must be nonnegative (i.e. in Rþ) since negative combi-
nations of endmembers are not physically meaningful. The end-
member weights are visualized by reorganizing the columns of W to
produce a three-dimensional (Py � Px �N) unmixed image, where
Py and Px are the number of vertical and horizontal pixels,
respectively.

When the number and spectra of endmembers in an image are
known in advance, spectral unmixing under the LMM is equivalent
to the problem of Nonnegative Least Squares (NLS), and it can be
written as

WNLS ¼ arg min
W

kY� SWk2
F; subject to W�0; (3)

where jj � jjF is the Frobenius norm, � is element-wise � and 0 is an
appropriately sized matrix of zeros. Conveniently, NLS is a strictly
convex optimization problem with a unique solution when the end-
members are linearly independent. Many unmixing algorithms that
come packaged with commercial microscopes rely on some variant
of the NLS active-set algorithm by Lawson and Hanson (1995).
While NLS is sufficient for some applications, it is not always pos-
sible to know which endmembers exist in an image. In particular,
there are many different types of autofluorescent molecules, and
knowing which autofluorescence endmembers are present is often
impractical. In addition, endmembers are typically estimated from a
reference sample. A poorly prepared reference sample or improper
estimation method will lead to undesired unmixing results
(Zimmermann et al., 2014). As such, NLS lacks the flexibility to ad-
equately handle many of the unmixing problems that arise in realis-
tic applications.

Spectral unmixing methods have been used extensively by the re-
mote sensing community for the analysis of hyperspectral geospatial
data, and there exists a rich literature on advanced hyperspectral
unmixing algorithms (Bioucas-Dias et al., 2012; Drumetz et al., 2016;
Heylen et al., 2014; Keshava and Mustard, 2002; Keshava, 2003; Ma
et al., 2014). Although some methods from remote sensing have been
directly applied to spectral micrographs (Harris, 2006; Lu and Fei,
2014), there are several key differences between the problem condi-
tions that render many unmixing algorithms for geospatial data un-
suitable for spectral microscopy. As compared to remote sensing data,

• spectral micrographs contain fewer spectral bands and, there-

fore, suffer less from the curse of dimensionality;

• spectral micrographs have significantly higher spatial resolution

relative to the size of the target objects, meaning that individual

pixels contain fewer endmembers and neighboring pixels have

similar compositions;
• the number of fluorophores used for labeling is known a priori;
• it is possible to estimate endmembers from reference images;
• and spectral micrographs are often heavily contaminated by

background fluorescence and autofluorescent organic molecules.

As a result of these differences, there is an existing and ongoing
need to develop spectral unmixing methods specifically tailored to-
wards spectral microscopy applications (Arena et al., 2017).

Several notable algorithms have been recently introduced with the
aim of unmixing images contaminated by autofluorescence.
Fereidouni et al. (2012, 2014) developed a fast unmixing algorithm
(along with an ImageJ plugin) inspired by the phasor methods used in
lifetime imaging. Unfortunately, spectral phasor analysis is a geomet-
ric approach that is computationally expensive when unmixing more
than three endmembers. A highly optimized phasor approach was
proposed by Cutrale et al. (2017) for classifying autofluorescence-
contaminated spectral images. Their Hyper-Spectral Phasors (HySP)
software was able to differentiate four fluorophores and three auto-
fluorescent sources in a single volumetric time-lapse dataset. Unlike
unmixing methods, however, HySP assigns each pixel to an end-
member class and does not determine the relative proportions of each
endmember. As a result, HySP is not suitable for experiments where
fluorophores or autofluorescent molecules spatially overlap.
Megjhani et al. (2017) proposed a powerful morphologically con-
strained spectral unmixing (MCSU) algorithm using dictionary learn-
ing. In addition to learning the endmember spectra from reference
images, MCSU builds a dictionary of morphological motifs (e.g. cell
or organelle shapes) unique to each fluorophore. Although MCSU
shows impressive results for up to eight fluorophores, it requires that
the reference images share the same morphologies found in the test
images and that these morphologies differ between fluorophores.

The sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL) algorithm by Bioucas-Dias and Figueiredo
(2010) and its spatially regularized variant SUnSAL-TV by Iordache
et al. (2012) are two useful methods for images containing endmem-
bers that may not be linearly independent (recall that S must have
full column rank for NLS to have a unique solution). The imposed
sparsity and total variation (TV) regularizers help guide the opti-
mization towards sparse solutions in which fewer endmembers are
used to explain the observed spectral signatures. As with NLS, how-
ever, both SUnSAL and SUnSAL-TV are unable to learn or adjust
endmembers on a per-image basis.

Perhaps the most popular open source unmixing tool is the
PoissonNMF plugin for ImageJ by Neher et al. (2009). PoissonNMF
is based on the nonnegative matrix factorization (NMF) methods
popularized by Lee and Seung (2001). In the context of unmixing,
NMF is a blind source separation algorithm that aims to learn the
endmembers and their weights by solving

min
S;W
kY� SWk; subject to S�0;W�0; (4)

for an appropriate distance metric. As its name suggests,
PoissonNMF is intended for use with images affected primarily by
Poisson distributed noise (i.e. shot-noise). The PoissonNMF ImageJ
plugin can operate in a blind or semi-blind manner where known
endmembers can be fixed when solving Eq. 4. However, Neher et al.
(2009) report that PoissonNMF yields unsatisfactory results when
unmixing more than four endmembers due to the heavily overlap-
ping emission profiles.

Similar semi-blind NMF approaches using the Gaussian noise
model for read-noise-limited data have been suggested by Huang
et al. (2015), Tong et al. (2016) and Qin et al. (2016). These meth-
ods rely on sparsity regularization to help with linearly dependent
endmembers, and they have been shown to work well on images
with three to five endmembers. However, none of these methods
separately and explicitly model contamination by autofluorescence
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from organic molecules and background fluorescence from ambient
and stray light.

Global background fluorescence originates from a variety of
sources in the sample and optical path (Waters, 2009). When
neglecting this source of light, the weight matrix becomes dense and
sparsity constraints are ineffective. This occurs because the offset in-
tensity stemming from background fluorescence violates the
assumed zero-mean Gaussian noise model. Laurberg and Hansen
(2007) introduced a sparse affine NMF method aimed at handling
the offset components found in a variety of data types. Woolfe et al.
(2011) used a similar affine model (incorrectly called a linear model)
to address autofluorescence in spectral images; however, this model
did not impose constraints on sparsity.

In this paper, we formally define an affine mixing model (AMM)
that generalizes the LMM by including a term to absorb any back-
ground fluorescence. From this model, we derive an affine nonnega-
tive matrix factorization (ANMF) method for estimating
endmembers from reference images. We then propose a semi-blind
sparse affine spectral unmixing (SSASU) method for images conta-
minated with both autofluorescence and background fluorescence.

We test the proposed methods on the study of complex bacterial
biofilms. As shown by Valm et al. (2011) and Mark Welch et al.
(2016), multiplexed labeling and spectral microscopy can be used to
explore the spatial relationships within biofilms. In these experi-
ments, fluorophores conjugated to oligonucleotide probes were used
to label and differentiate tens of bacterial taxa. Until now, the pres-
ence of autofluorescence and background has made separating these
overlapping fluorophores difficult for certain biofilm samples. We
show that our SSASU approach is able to successfully reduce the im-
pact of autofluorescence and background and unmix seven
fluorophores.

2 Materials and methods

2.1 Sample preparation
To evaluate the proposed method, a set of seven reference samples,
ten test samples and one no-probe control was prepared. The bacteria
Leptotrichia buccalis was used as the biological target for generating
reference samples for each of the seven fluorophores: DY-415, DY-
490, ATTO 520, ATTO 550, Texas Red-X, ATTO 620 and ATTO
655 (Dyomics GmbH; ATTO-TEC GmbH; Thermo Fisher Scientific
Inc.). L. buccalis cells were cultured, fixed, and then separately hybri-
dized using custom fluorophore-conjugated oligonucleotide probes
(biomers.net GmbH) as described by Mark Welch et al. (2016). For
practical considerations concerning probe set design, we refer the
reader to work by Cohen et al. (2018).

Test samples consisted of biofilms that were collected from the
dorsum of the tongue. Samples were collected by gently scraping
with a ridged plastic strip along the surface of the tongue of healthy
human volunteers recruited and sampled according to a study proto-
col and informed consent document approved by the Institutional
Review Board of the Forsyth Institute, Cambridge, MA. Samples
were fixed in 50% ethanol and hybridized using a set of probes spe-
cific to different taxa of bacteria (see Table 1). Two samples were
taken from each of five human subjects (A-E). An additional biofilm
sample was collected from subject D, chemically fixed and hybri-
dized without a fluorophore to generate a no-probe control sample

(used to measure autofluorescence). After hybridization, the refer-
ence samples, test samples and no-probe control were mounted on
slides as described by Mark Welch et al. (2016).

2.2 Imaging and preprocessing
All spectral micrographs were acquired on a Zeiss LSM 880 using a
63�/1.4 NA Plan-Apochromat objective lens. Point scanning was
performed simultaneously with the 405, 488, 561 and 633 nm lasers
using the 405 and 488/561/633 dichroic mirrors. Spectral data was
collected from a range of 410 to 696 nm using 8.6 nm steps. Each
reference image was acquired using dimensions of 512�512 pixels
at 0.263 lm/pixel resolution. Test images were acquired at
2048�2048 pixels and down-sampled to 1024�1024 pixels at a
resolution of 0.220 lm/pixel.

The use of dichroic mirrors blocked the detection of emitted light
near the excitation wavelengths. Since these dark bands contained
little information, they were removed from the reference and test
images prior to any analysis. In total, 6 of the 32 spectral bands
were removed.

2.3 Affine mixing model
The vast majority of spectral unmixing methods assume that the
emitted light from different fluorophores combines according to the
linear mixing model (LMM) described in Eq. 2. The LMM is so
widely used that the phrase ‘linear unmixing’ is regularly used inter-
changeable with ‘spectral unmixing.’ As point scanning confocal mi-
croscopy data is predominately read-noise-limited (Lambert and
Waters, 2014), the noise component is expected to follow a
Gaussian distribution with zero mean. In reality, nearly all micros-
copy images are contaminated by background fluorescence that off-
sets the noise profile (Waters, 2009; Waters and Wittmann, 2014)
and breaks the assumption of zero-centered noise. To explicitly ac-
commodate for the presence of background fluorescence, we define
an affine mixing model (AMM) as

Y ¼ SWþ b1T þ E; (5)

where b 2 R
M
þ is the nonnegative background spectrum and 1 is a

vector of ones. Conveniently, the AMM becomes equivalent to the
LMM when no background fluorescence exists (i.e. b ¼ 0).

2.4 Estimating endmembers
Spectral unmixing by NLS carries the assumption that the end-
member spectra of both the fluorophores and the autofluorescence
are known in advance. Our proposed unmixing method relaxes this
assumption by only requiring that the endmember spectra of the K
fluorophores be known. This claim is valid because one can control
which fluorophores are used to label the sample, and endmember
spectra can be estimated from reference images. But how to estimate
endmembers from their corresponding reference images is not wide-
ly discussed in the literature. This open problem is important to em-
phasize because even slight inaccuracies in endmember estimates are
known to dramatically affect the determination of the endmember
weights—a problem called proportion indeterminacy (Zare and Ho,
2014). We address this open question by proposing an affine non-
negative matrix factorization (ANMF) method for estimating
endmembers.

For the following discussion of endmember estimation, we will
denote the set of reference images as fR1; . . . ;RKg with Rk 2 R

M�Q
þ ,

where Q is the number of pixels in the reference image. The corre-
sponding endmembers, denoted sk for k ¼ 1; . . . ;K, make up the
columns of the fluorophore endmember matrix.

2.4.1 Mean estimated endmember

Spectral microscopy practitioners estimate endmembers from refer-
ence images using a variety of methods based on the arithmetic
mean. In general, endmembers are determined by the average
spectral signature over all foreground pixels or some user-defined re-
gion of interest within the reference image. Since the illumination

Table 1. Oligonucleotide probes and their taxonomic targets

Probe ID Taxon Target Fluorophore

Smit651-DY415-2 Species Streptococcus mitis DY-415

Ssal372-DY490-2 Species Streptococcus salivarius DY-490

Prv392-AT520-2 Genus Prevotella ATTO 520

Vei488-AT550-1 Genus Veillonella ATTO 550

Act118-TRX-1 Genus Actinomyces Texas Red-X

Nei1030-AT620-2 Family Neisseriaceae ATTO 620

Rot491-AT655-2 Genus Rothia ATTO 655

912 B.J.Rossetti et al.



conditions can vary between reference and test images, it is common
to normalize the mean endmembers by their ‘1- or ‘1-norm. We can
write this estimation procedure in matrix form as

�sk ¼
1

khkk1

Rkhk

sk ¼
1

k�skk1
�sk for k ¼ 1; . . . ;K;

(6)

where hk 2 R
Q is a binary vector with 1 indicating the foreground

and 0 indicating the background of the kth reference image.
Foreground/background thresholding can be performed using any
number of different thresholding algorithms. The Triangle algorithm
is used in this work for its robustness to different illumination condi-
tions (Zack et al., 1977).

2.4.2 ANMF estimated endmember

Using the arithmetic mean of foreground pixels assumes that the
noise is Gaussian distributed with zero mean. Yet, even reference
images contain some level of background fluorescence. We, there-
fore, define an affine model similar to Eq. 5 for reference images as

Rk ¼ sk €wT
k þ €bk1T þ Ek; (7)

where €wk 2 R
Q
þ and €bn 2 R

M
þ are the weights and background spec-

trum for the kth reference image, respectively. From Eq. 7, we can
formulate an endmember estimation method based on ANMF. For
each fluorophore endmember spectrum sk 2 R

M
þ from k ¼ 1; . . . ;K

we solve the constrained optimization problem

min
sk ; €wk ;

€bk

kRk � sk €wT
k � €bk1Tk2

F;

subject to sk; €wk;
€bk�0:

(8)

Since sk; €wk and €bk are all unknown, Eq. 8 is a nonconvex optimiza-
tion problem. We also note that the solutions for sk and €wk are non-
unique as they may be scaled by a nonzero constant (i.e.
sk €wT

k ¼ ðcskÞðc�1 €wT
k Þ). To control the uniqueness of the solution,

we normalize sk to the ‘1-norm at each iteration of the optimization
scheme. This normalization is also required later to properly scale
the unmixed image to the bit-depth of the observed image.

Since ANMF operates on the entire image, there is no need to
threshold foreground from background or define a region of interest
as with the Mean method. This is important to emphasize because a
Mean estimated spectrum can change dramatically from one thresh-
olding method to another.

2.5 Semi-blind sparse affine spectral unmixing
Although it is possible to accurately characterize endmembers for

each fluorophore, estimating autofluorescence endmembers is diffi-
cult for several reasons. First, it may not always be possible to create
a reference sample for each type of autofluorescence that occurs in
the test samples. Second, the structure of the autofluorescent tissue
may influence its spectrum (i.e. thicker samples may induce more light
scattering). Therefore, we believe it is better to learn the L distinct
autofluorescence endmembers directly from the test images. This ap-
proach provides the flexibility necessary to adjust to varying numbers
and types of autofluorescence spectra on an image-by-image basis.

Since we are confident in the estimation of our K fluorophore end-
members, it would not make sense to impose the same flexibility on
them. In fact, this flexibility can cause problems during unmixing.
Although a sample can be labeled with a set of fluorophores, there is
no guarantee that all K fluorophores will exist in every field-of-view. In
this rank-deficient case (i.e. rankðYÞ < rankðSÞ), the columns of S that
are associated with the missing fluorophores will learn some other sig-
nal from the image that may not be physically meaningful. Therefore,
we propose a semi-blind unmixing that separates the endmember ma-
trix S into two pieces: one for the K fluorophore endmembers, denoted
SF 2 R

M�K
þ and the other for the L autofluorescence endmembers,

denoted SA 2 R
M�L
þ . Note that the total number of endmembers is

equal to the number of fluorophore and autofluorescent endmembers

(i.e. N ¼ Kþ L). To further reduce overfitting and protect against lin-
early dependent endmembers, we include a term to enforce sparsity of
the weight matrix. We define our semi-blind sparse affine spectral
unmixing (SSASU) method as

min
SA ;W;b

kY� ½SF; SA�W� b1Tk2
F þ ckWk1;

subject to SA;W;b�0
(9)

where ½SF; SA� ¼ S is the partitioned endmember matrix, jj � jj1 is the
sum over all matrix entries and c is the parameter controlling sparsity.

As with our ANMF method for estimating endmembers, SSASU
is a nonconvex optimization problem. However, we note that
SSASU is convex in SA when W and b are fixed, convex in W when
SA and b are fixed, and convex in b when SA and W are fixed.
Therefore, SSASU can be solved using a block coordinate descent al-
gorithm similar to that suggested by Cichocki et al. (2009).
Algorithm 1 describes the multiplicative update method used to
solve Eq. 9. Note that element-wise multiplication and division are
denoted by � and �, respectively. As with all multiplicative update
algorithms, SSASU is sensitive to values becoming zero during the
optimization. Therefore, we set all non-positive entries to some
small value before each iteration. These small values were removed
by thresholding after reaching a stopping condition.

3 Results

We assessed the robustness of endmember estimation by ANMF and
arithmetic mean across seven different reference images: DY-415,
DY-490, ATTO 520, ATTO 550, Texas Red-X, ATTO 620 and
ATTO 655. Each endmember estimate was compared against a
ground truth endmember by measuring the spectral angle.

We evaluated our SSASU method by unmixing a set of ten
real-world spectral images each of which were labeled with seven
fluorophores (see Table 1) and contaminated by background and
autofluorescence. For comparison, we performed the same evalu-
ation with the four most commonly used unmixing methods—NLS,
PoissonNMF, SUnSAL and SUnSAL-TV. The success of each
method was measured by its ability to reduce proportion indeter-
minacy for each test image.

3.1 Endmember estimation performance
Since poorly estimated endmembers can degrade the overall per-
formance of unmixing, it remains important to evaluate the accur-
acy of the estimates. Yet, defining a ground truth set of endmembers

Algorithm 1: SSASU
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is difficult because all images contain some level of background
fluorescence. Instead, we compared the endmember estimates to
fluorometer data reported in the literature (McNamara et al., 2006).
Although the fluorometer data was measured under different optical
and environmental conditions, these data still provided a useful
baseline to check estimates made from reference images.

While neither the Mean nor the ANMF estimation method per-
fectly matched the fluorometer data due to differing environmental
conditions, excitation wavelengths, presence of dark bands and
spectral accuracy (Cole et al., 2013), Figure 1 shows that ANMF
endmembers were less contaminated by background fluorescence
than Mean endmembers. We evaluated this quantitatively by calcu-
lating the spectral angle between each Mean and ANMF endmember
and its corresponding fluorometer-measured spectrum. The spectral
angle, which is related to cosine similarity, was calculated as hðs; ŝÞ ¼
arccosð s�ŝ

jjsjj2 jjŝ jj2
Þ, where s was the fluorometer spectrum and ŝ was the

estimated spectrum. As reported in Table 2, ANMF endmembers
were as good or better at approximating the true endmember spectra
than estimation by arithmetic mean.

3.2 Parameters
SSASU, PoissonNMF, SUnSAL and SUnSAL-TV required regulariza-
tion parameters to be set prior to unmixing. Proper selection of these
parameters was critical to ensuring a fair comparison of proportion
indeterminacy. Therefore, parameters for SSASU, PoissonNMF,
SUnSAL and SUnSAL-TV were determined such that their unmixing
solutions produced relative reconstruction errors similar to NLS (i.e.
60.05). Parameters were kept constant across all test images to
show the flexibility of each algorithm. Both SSASU and
PoissonNMF required two parameters: one controlling the sparsity
of the weight matrix and the other estimating the rank of the auto-
fluorescence endmember matrix (i.e. L 	 rankðSAÞ). In practice, L is
determined by manually examining the spectra of contaminated
image regions. SUnSAL only needed a sparsity parameter; whereas,
SUnSAL-TV required a sparsity parameter and a spatial TV param-
eter. The empirically determined regularization parameters used for
all test images are listed in Table 3. The fluorophore endmembers (i.e.
SF) used for SSASU, NLS, PoissonNMF, SUnSAL and SUnSAL-TV

were set to the values estimated by the ANMF method. The auto-
fluorescence endmember for NLS, SUnSAL and SUnSAL-TV were
estimated by ANMF from a no-probe control sample (i.e. an un-
labeled sample taken from the dorsum of the tongue).

3.3 Unmixing performance
The unmixing performance of SSASU, NLS, PoissonNMF, SUnSAL
and SUnSAL-TV was evaluated on the basis of two relative error
metrics that ranged from zero (better) to one (worse). The ability to
reconstruct the observed signal was determined by the relative re-
construction error (RRE), and was defined by

RREðY; ŶÞ ¼ kY� ŶkF

kYkF

; (10)

where Y was the observed image and Ŷ was the reconstructed image.
The RRE was used to determine the parameters for each algorithm
and ensure that each method properly accounted for the observed sig-
nal. It is worth noting that the RRE provides a measure of underfit-
ting/overfitting and does not indicate the quality of a solution. For
example, an algorithm can produce a physically meaningless solution
to the unmixing problem with a near-zero RRE by fitting the noise in
addition to the signal. Therefore, we use the RRE in conjunction with
a metric that evaluates the ability of the unmixing algorithm to separ-
ate autofluorescence from the fluorophore endmembers.

Since the fluorophores used to label the test images were known
to bind to distinct bacteria, each pixel in the test images contained
at most one fluorophore (with the rare exception of areas where dif-
ferent bacteria overlap). In this case, a poor solution for an observed
spectrum would produce positive weights for more than one fluoro-
phore endmember. This is a type of overfitting known as proportion
indeterminacy (PI). We measured PI by checking the non-
orthogonality of the weight matrix. Since each pixel should contain
only one endmember, the property WWT ¼ D holds, where D ¼
diagðjjw1jj22; . . . ; jjwNjj22Þ and wn is the nth row of W. From this
property, we defined a measure of PI as

PIðWÞ ¼ kD�WWTkF

kDkF

: (11)

Since PI measures the intensity overlap between channels of an un-
mixed image, this metric would not be appropriate for ratiometric
applications (e.g. FRET). For the present application, however, RRE
and PI effectively indicate the fit and quality of each unmixing solution.

SSASU, NLS, PoissonNMF, SUnSAL and SUnSAL-TV were each
able to effectively reconstruct the test images with RREs below 0.15
and within 0.05 of each other (see top of Fig. 2). Across all test
images, SUnSAL-TV had the highest RRE. This was expected be-
cause SUnSAL-TV is the only algorithm with both a sparsity and a
spatial regularizer. The consistent RREs across all images suggests
that none of the methods significantly overfit or underfit the
observed data.

Table 2. Spectral angle between estimated endmembers and their corresponding fluorometer spectra

Method DY-415 DY-490 ATTO 520 ATTO 550 TRX ATTO 620 ATTO 655

Mean 0.484 0.324 0.455 0.088 0.065 0.203 0.053

ANMF 0.421 0.293 0.455 0.087 0.052 0.203 0.024

Table 3. Empirically determined regularization parameters for each

unmixing algorithm

Parameter SSASU Poisson

NMF

SUnSAL SUnSAL-TV

No. Autofluor. Endmembers 1 1 — —

Sparsity 0.009 6 0.005 0.005

Total variation — — — 0.005

Fig. 1. Comparison of seven Mean and ANMF estimated endmember spectra with

fluorometer measurements. The shaded regions represent the fluorometer data, the

dotted lines represent the Mean estimates and the dashed lines represent the ANMF

estimates. The gray vertical lines show the wavelength where dichroic mirrors

blocked the measurement of emitted light (i.e. locations of missing spectral data).

Note that the missing spectral data caused some endmember estimates to deviate

from the fluorometer measurements (e.g. ATTO 620)
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Despite having similar RRE across all test images, the quality of
the solutions varied dramatically between the different methods.
SSASU outperformed NLS, PoissonNMF, SUnSAL and SUnSAL-TV
in all but two test cases at reducing PI (see bottom of Fig. 2). SSASU
performed second best in PI for the remaining two test images. For
eight of the ten test images, PoissonNMF was least able to cleanly
separate the fluorophores. Although there was no noticeable differ-
ence in PI between SUnSAL and SUnSAL-TV, they both consistently
produced better quality solutions than NLS. When comparing the
worst PI for each method, SSASU showed a clear improvement over
NLS, PoissonNMF, SUnSAL and SUnSAL-TV at 0.55, 0.89, 0.90,
0.83 and 0.82, respectively.

The performance illustrated by these metrics can be observed
qualitatively in the unmixing results for test image E2 (see Fig. 3). In
the results for NLS (Fig. 3A–H), autofluorescence has contaminated
nearly all of the unmixed channels. This same autofluorescence light
was efficiently captured in the autofluorescence channel of the
SSASU unmixed image (Fig. 3I). We also note that Prevotella
(ATTO 520) was not present in image E2, yet the ATTO 520 chan-
nel of the NLS unmixed image contained a significant amount of in-
tensity (Fig. 3D). Using the parameter settings described in Table 3,
we note that SSASU was unable to remove all proportion indeter-
minacy found in the DY-415 and DY-490 channels as indicated by
the repeated structures (Fig. 3J and K). Nevertheless, the composite
view of all unmixed fluorophore channels (i.e. all channels excluding
autofluorescence) clearly illustrates the ability of SSASU to efficient-
ly separate both the autofluorescence and the fluorophores (Fig. 3Q
and R).

3.4 Characterizing autofluorescence
Samples can contain many different types of autofluorescent mole-
cules, and exactly which autofluorescence endmembers exist in an
image is difficult to ascertain in advance. For applications using

Fig. 2. Comparison of unmixing performance for SSASU, NLS and PoissonNMF

across ten test images taken from five samples. The relative reconstruction error

(top) evaluates each method’s ability to reconstruct the observed spectral image.

The proportion indeterminacy (bottom) measures the non-orthogonality of the

weight matrices and illustrates how well each method separates the fluorophore

endmembers in the presence of autofluorescence. Both metrics range from zero (bet-

ter) to one (worse)

Fig. 3. Montage of unmixed images for NLS (top) and SSASU (bottom). Panels (A–P) show the unmixed channels for autofluorescence (A, I); S. mitis/DY-415 (B, J); S. salivarius/

DY-490 (C, K); Prevotella/ATTO 520 (D, L); Veillonella/ATTO 550 (E, M); Actinomyces/Texas Red-X (F, N); Neisseriaceae/ATTO 620 (G, O); and Rothia/ATTO 655 (H, P). A

larger composite view of the non-autofluorescence unmixed channels is shown for NLS in panel (Q) and for SSASU in panel (R). The scale bar in panel R indicates 10lm. (Color

version of this figure is available at Bioinformatics online.)
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NLS, SUnSAL, or SUnSAL-TV, it is common to estimate the auto-
fluorescence endmember from a no-probe control. Figure 4 shows
how the autofluorescence endmember estimated from the no-probe
control image compared to those learned by SSASU. It is clear that
the no-probe control endmember poorly characterized the auto-
fluorescence encountered in the test images. The learned autofluor-
escence signatures are consistent with the spectra of lipids, collagen
and other common fibrous proteins (Croce and Bottiroli, 2014). The
ability to learn the autofluorescence spectrum directly from an
image allows SSASU to adapt to highly varied samples. This flexibil-
ity lets SSASU fit the observed data with a sparse set of endmember
weight, thereby reducing proportion indeterminacy as compared to
NLS, SUnSAL and SUnSAL-TV.

4 Conclusion

Spectral microscopy and unmixing make it possible to visualize bio-
logical samples labeled with a large set of fluorophores. However, the
choice of unmixing algorithm is important for achieving the desired
results. In this paper, we proposed and evaluated a semi-blind sparse
affine spectral unmixing (SSASU) algorithm aimed at separating
fluorescence endmembers in the presence of autofluorescence and
background fluorescence. In all but two test cases, SSASU was able to
outperform NLS, PoissonNMF, SUnSAL and SUnSAL-TV in mitigat-
ing autofluorescence. While our method is more flexible than NLS,
we note that, like other NMF methods, SSASU is more computation-
ally expensive and does not guarantee a unique solution. Therefore,
we recommend SSASU for situations where spectral micrographs are
contaminated with one or many sources of autofluorescence.

In addition, we described an affine nonnegative matrix factoriza-
tion (ANMF) method for estimating endmembers from reference
images. We showed that ANMF estimation was as good or better than
the Mean method across all test cases. In addition, ANMF does not de-
pend on a thresholding of foreground and background. This makes
ANMF more robust to images with uneven illumination profiles.

There are several obvious extensions of this work. First, formu-
lating a version of SSASU for tensors would allow for the unmixing
of spectral images that use sequential excitation. Second, allowing
minor adjustments to fluorophore endmember spectra on an image-
by-image basis would allow the algorithm to accommodate end-
member variability (i.e. changes in the endmember spectra as a re-
sult of the microenvironment).
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