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ABSTRACT
Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the
understanding of the gut microbiota structure in ASD children at different ages as well as the
relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequen-
cing to evaluate the gut microbial population in a cohort of 143 children aged 2–13 years old. We
found that the α-diversity of ASD group showed no significant change with age, while the TD
group showed increased α-diversity with age, which indicates that the compositional develop-
ment of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD
group. Recent studies have shown that chronic constipation is one of the most commonly obvious
gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the poten-
tial interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD
were picked out to perform metagenomics analysis. We observed that C-ASD group displayed
decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as
dysregulation of associated metabolism activities, which may involve in the pathogenesis of
C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/
MS) revealed some of the differential metabolites between C-ASD and TD group were involved in
the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA.
Furthermore, we found these differences in metabolites were associated with altered abundance
of specific bacteria. The study suggested possible future modalities for ASD intervention through
targeting the specific bacteria associated with neurotransmitter metabolism.
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Introduction

Autistic Spectrum Disorder (ASD) is a severe neu-
rodevelopmental disorder that is primarily charac-
terized by abnormal behavioral symptoms: social
interaction impairment, stereotyped behavior, and
restricted interests.1 With its prevalence increasing
dramatically over the past decades, ASD now
affects 1 out of 59 children in the United States.2

According to national census data on handicapped
individuals, China also has an increased preva-
lence with ASD first on its list of top mental
disabilities.3

Accumulating evidences demonstrates that gas-
trointestinal (GI) symptoms, such as gaseousness,
diarrhea, and constipation, often co-occurred with
ASD core symptoms in children with ASD.4–6

Moreover, recent studies have shown that changes
in gut microbiota can modulate the gastrointest-
inal physiology, immune function, and even beha-
vior through the gut-microbiome-brain axis.7–9

Thus, these co-occurring gastrointestinal symp-
toms have prompted researchers to examine the
gut microbial composition of ASD children and
determine their potential role in promoting and
reflecting ASD symptoms.10–13
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A few cohort studies with a small number of
subjects have found that individuals with ASD
have different gut bacterial communities from
typically developing (TD) individuals.14–16 Early
life perturbations of the developing gut microbiota
can impact neurodevelopment and potentially lead
to adverse mental health outcomes later in life.17

Furthermore, a recent clinical study reported that,
within the ASD population, behavior abnormality
may have a different relationship with GI symp-
toms depending on patient age, which may have
overall implications related to the clinical
approach to GI disturbances in ASD children.18

Chronic constipation is one of the most com-
monly obvious gastrointestinal symptoms along
with ASD core symptoms. ASD children with con-
stipation have been reported to be associated with
increased emergency department visits and inpa-
tient admissions.19 Thus, it still needs to be more
thoroughly analyzed whether the abundance and
diversity of altered bacteria accompanying ASD
with constipation indicates the potential interac-
tion effects between ASD and GI symptoms gen-
erated by the dysbiosis of gut microbiota and fecal
metabolites.

To expand upon the understanding of the
change of gut microbiota structure with age and
the relationship between gut microbiota and meta-
bolism in ASD, as well as to develop more objec-
tive strategies for ASD diagnosis, the 16S rRNA
gene sequencing was used to evaluate the micro-
bial population in a 143 cohort spanning ages
2–13 years-old. Microbiota changes across differ-
ent ages were further investigated. Aware that gut
microbiota and its metabolites may not only be
associated with ASD behavioral symptoms, but as
well gastrointestinal symptoms, metagenomic

analysis of gut microbiota was performed for 30
constipated ASD (C-ASD) and 30 TD participants.
To explore the associations among these differen-
tial species with fecal metabolites, a correlation
analysis between fecal metabolites and individual
bacteria was also conducted. Furthermore, their
potential effects on fatty acid, amino acid, and
neurotransmitter metabolism were discussed.

Results

Information of Cohort children

A total of 143 subjects with clinical diagnosis of
ASD children (average age 4.937 ± 0.155; sex,
male: female 130:13) were recruited from May of
2016 to August of 2017. Meanwhile, 143 age and
sex-matched TD individuals (average age
5.189 ± 0.170; sex, male: female 127:16) who
attended annual physical examination were also
recruited (Table 1 and Table S1). In all of 143
ASD children, 52 ASD children showed consti-
pated symptoms and 5 ASD children showed diar-
rhea symptoms (Table 1 and Table S1).

Alterations of gut microbiota composition in ASD
children based on the 16S rRNA data

The optimized reads ranging from 32,484 to
70,833 were obtained from all samples (Table
S2). Rarefaction curves generated from the OTUs
(Operational Taxonomic Units) suggested that
high sampling coverage (~99%) was achieved in
all samples (Figure S1A and Table S2). This indi-
cated that the sequencing depth was sufficient for
the investigation of the fecal microbiota. As shown
in Figure 1(a), Venn diagram displayed 173 unique

Table 1. Characteristics of study participants.
Characteristic TD ASD P value

Subjects (n) 143 143
Male/Female 130/13 127/16 0.5567 (Chi-square test)
Age range, years 1-11 1-13
2-3(years) 33 31
4-6(years) 82 79
7-11(years) 28 32
12-13(years) 0 1
Age (mean), years 4.937 ± 0.155 5.189 ± 0.170 0.2751 (T test)
Constipation 0 52
Diarrhea 0 5

TD, typically developing; ASD, autism spectrum disorders.
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Figure 1. The shift of gut microbiota in typically developing (TD) and ASD children according to the 16S rRNA data.
(a) Venn diagram of the observed OTUs in TD and ASD. (b) The estimate of richness index analysis between two groups at the level
of Phylum (b) and genus (c). (d) Principal coordinate analysis (PCoA) of the microbiota based on the unweighted UniFrac distance
metrics for TD and ASD. ANOSIM, R = 0.1645, P = .001. (e) The ratio of Firmicutes/Bacteroidetes of ASD showed significantly higher
than that of TDs. (f) LDA scores for the bacterial taxa differentially abundant between TD and ASD (LDA > 3.5). Red bars indicate taxa
were enrichment in ASD, and green bars indicate taxa were enrichment in TD. (g) Cladograms generated by LEfSe indicating
differences in the bacterial taxa between TD and ASD. Red bars indicate taxa were enrichment in ASD, green bars indicate taxa were
enrichment in TD.(h-j) Alpha diversity indices of genus for TD and ASD according to age from 2 to 11, Estimate of richness (h),
Shannon index (i), and phylogenetic diversity index (j). (k-l) Relative abundance of phylum (k) and genus (l) genera with age growth
between two groups. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001, Wilcoxon rank-sum test.
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OTUs in the TD group and 67 unique OTUs in
the ASD group. 1082 OTUs were shared by both
groups (Figure 1(a)). The richness of species
(breakaway estimates) at the phylum level was
significantly lower in the ASD group than that in
the TD group (Figure 1(b)). However, there were
no significant differences in richness between the
ASD group and TD group at the genus level
(Figure 1(c)). A Principal Coordinates Analysis
(PCoA) was performed to investigate the extent
of the similarity of the microbial communities in
the two cohorts based on unweighted UniFrac
distance metrics (Figure 1(d)), Bray–Curtis
(Figure S1B) and weighted UniFrac distance
metrics (Figure S1C). The analysis indicated that
the microbiota composition of the ASD group
clusters was more heterogeneous and significantly
different from that of the TD group.

At the phylum level, compared to theTDgroup, the
ASD group was characterized by higher Firmicutes
levels and a significantly higher Firmicutes/
Bacteroidetes ratio (Figure 1(e)). A total of 291 OTUs
showed differential relative abundance between two
groups (Table S3). According to the bacterial commu-
nity profiles at the genus level, the hierarchical heat-
map indicated that the 30 most significant different
genera detected in all of the samples showed different
patterns between the ASD and TD groups (Figure
S1D). The linear discriminant analysis (LDA) distri-
bution diagram analysis (LAD score >3.5) showed
a clear alteration of the microbiota characterized by
higher Proteobacteria and Actinobacteria levels in
ASD individuals (Figure 1(f)). However,
Bacteroidetes levels were significantly decreased in
ASD group (Figure 1(f)). The genera Dialister,
Escherichia-Shigella, and Bifidobacterium were more
abundant in ASD group, while genus Prevotella 9,
Megamonas, and Ruminococcus 2 were more abun-
dant in TD group (Figure 1(g)).

Recent studies have shown that the development
of neurons is closely related to the development of
gutmicrobiota.20We further assessed the age-related
change of bacteria diversity. Different alpha diversity
index reflects only one aspect of within-sample
diversity; hence, we used three methods to estimate
the age-related change in alpha diversity between the
two groups. As shown in Figure 1(h), the richness of
species (breakaway estimates) showed increased in
7–11 years age subgroup of TD group compared to

2–3 years age subgroup; however, the ASD group
showed no change with age growth. Shannon index
accounts for both abundance and evenness of species
present. As shown in Figure 1(i), the Shannon index
at the 4–6 years age subgroup showed no significant
change compared to the 2–3 years age subgroup, but
the Shannon index at the subgroup of 7–11 years age
in TD group showed increased compared to both
2–3 years and 4–6 years age subgroups, respectively.
The phylogenetic diversity (PD) index was used to
measure the degree of evolutionary divergence
between two groups. As shown in Figure 1(j), the
PD index of the subgroup of 4–6 years and
7–11 years in TD group was increased compared to
2–3 subgroups, respectively. Similar to that of
Shannon and Richness index analysis, the PD index
in ASD group showed no significant changes with
age. Overall, the result implicated that the develop-
ment of gut microbiota in ASD group displayed
a serious lag status as regard to multiple aspects of
diversity.

Moreover, the ASD and TD groups displayed
different microbial profiles at different ages at both
the phylum and genus levels (Figure 1(k,l)). For
example, Bacteroidetes tended to decrease with age
in the TD group; however, they remained low in the
ASD group regardless of age, meanwhile, Firmicutes
and Cyanobacteria increased with age in the TD
group but not in the ASD group (Figure 1(k)). At
the genus level, the genera Prevotella, Lachnospira,
and Megamonas became more abundant between
age 2–3 and age 7–11 in the TD group, while this
change was not observed in the ASD group. In the
TD group, Bacteroides showed increased abundance
at the age of 2–3, and then decreased with age there-
after, while the ASD group showed lower abundance
levels at all ages (Figure 1(l)). The results further
suggested that the development of neurons in ASD
children may be highly correlated with the impaired
dynamic abundance change of specific bacteria.17

ASD children are commonly affected by gastro-
intestinal symptoms such as abdominal pain, con-
stipation, and diarrhea.21 The proportion of ASD
children with gastrointestinal dysfunction in the cur-
rent study was close to 40% (Table S1). To rule out
the constipation effect on gut microbiota, we also
compared the gut microbiota composition of 86 NC-
ASD with 86 age-matched TD children out of
a sample of 143 ASD and TD children, respectively.
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A total of 196 OTUs showed differential relative
abundance between NC-ASD and TD (Table S4).
Similar to that of the whole comparison of ASD
and TD (Figure 1(a)), the NC-ASD showed
decreased number of OTU (Figure S2A). The esti-
mate of richness index and phylogenetic diversity
Index was significantly lower in the NC-ASD group
than that in the age-matched TD group, respectively
(Figure S2B-C). PCoA analysis indicated that the
bacterial communities showed significant differences
between the two groups (Figure S2D-E).
A differential relative abundance analysis showed
the variation of 21 genera between NC-ASD and
TD exhibited a similar tendency to alternation pat-
tern between all ASD and TD (Figure S1D and
Figure S2F). For example, the increased Escherichia-
Shigell and norank_f__Lachnospiraceae in NC-ASD
relative to the TD group also displayed the elevated
abundance in the whole ASD group relative to TD
group. Moreover, the decreased genera in NC-ASD
relative to the matched-aged TD group such as
Parabacteroides, [Eubacterium]_eligens_group,
Megamonas, and Phascolarctobacterium also dis-
played reduced abundance level in the whole ASD
relative to TD group (Figure S1D and Figure S2F).
These results indicated these differential genera that
showed the same abundance shift between ASD and
TD group in spite of the constipation factor might be
more directly related to ASD pathogenesis. However,
we also found 8 genera which showed increased
abundance in ASD relative to TD, such as Dialister,
Parasutterella, Christensenellaceae_R-7_group,
Coprococcus_2 and Collinsella showed no change in
NC-ASD relative to the matched TD, which impli-
cated constipation might add heterogenous charac-
teristics of gut microbiota in ASD.

To identify which microbial changes were asso-
ciated with constipation in ASD children, we further
compared the gut microbiota composition of 30
constipated ASD (C-ASD) and 30 non-constipated
ASD children (NC-ASD) out of a sample of 143
ASD children. As shown in Figure S3A, the Venn
diagram displayed 56 OTUs for the C-ASD group
and 57 OTUs for the NC-ASD group. The estimate
of richness index was significantly higher in the
C-ASD group than that in the NC-ASD group
(Wilcoxon rank-sum test, Figure S3B-C). PCoA ana-
lysis indicated that the bacterial communities
showed significant differences between the two

groups (Figure S3D-E). A total of 86 OTUs showed
differential relative abundance between C-ASD and
NC-ASD (Table S5). A differential relative abun-
dance analysis showed that
Lachnospiraceae_NK4A136, Subdoligranulum,
Ruminococcus, Barnesiella, Butyricicoccus, and
Ruminiclostridium were significantly increased in
C-ASD children (Figure S3F). Meanwhile, the genera
Fusobacterium, Acidaminococcus, and Veillonella
were markedly enriched in the NC-ASD children
(Figure S3F), indicating that these differential genera
may be involved in the gastrointestinal symptoms
of ASD.

The complex microbial ecosystem of the human
intestinal tract is unevenly influenced by individual
taxa within different microbial communities.22 To
describe potential relationships occurring among bac-
teria within the gut microbial communities, we
further constructed co-occurrence networks of genera
from each group based on significant Spearman cor-
relations. The TD and ASD groups mainly featured
two co-occurrence networks with scattered genera
from five primary phyla (Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, and Fusobacteria)
(Figure 2(a-b)). The TD group displayed a co-
occurrence network with strong positive correlation
among genera (Figure 2(a)). As shown in Figure 2(b),
the microbial community of the ASD group featured
amore complicated network. The correlation between
the microbiota in the ASD group was distinctly
increased compared to that of TD group. To quantify
such differences, the number of edges (connections)
and the centrality of nodes (genera) were counted in
the twomicrobial networks. The TD and ASD groups
shared 67 overlapped edges, while 361 and 689 of the
edges were specific to the TD and ASD groups,
respectively (Figure S4A). The closeness and eigen-
vector of shared genera were also quite different in the
two groups (Figure S4B). Taken together, the above
analyses suggest microbial relationships in the ASD
group display alternation relative to that of the TD
group, further indicating that ASD children show
dysbiosis in gut microecology.

Gut microbiota–based prediction of ASD

Next, to test whether potential diagnostic biomarkers
can be used to predict ASD status, we developed
a random forest model based on the differential
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genus with relative abundance >0 in at least 95%
samples of TD or ASD groups. The optimal model
utilized 24 genera which provided the best discrimi-
natory power (Figure 2(c-d)). These genera in the
optimal model were primarily members of the
Prevotella 2 (Figure 2(d). Based on the above analysis,
the distribution of microbial community across TD
andASD showed statistical differences. The out of bag
(OOB) error estimate of the model was 9.21% and
under the curve (AUC) was 0.931 (Figure 2(e)). It is

concluded that the prediction model showed a high
discriminatory power to predict ASD status.

Metagenomic sequencing revealed significant
differences between constipated ASD group and TD
group

To further investigate the potential interaction effects
between ASD and GI symptoms generated, and iden-
tify whether gut microbial changes at the species level

a b

c d d

Figure 2. Genera are strikingly different across TD and ASD children.
(a,b) Genera co-occurrence network between TD (a) and ASD (b) based on the Spearman correlation algorithms. Each node presents
a bacterial genus. The node size indicates the relative abundance of each genus per group, and the density of the dashed line
represents the Spearman coefficient. Red links stand for positive interactions between nodes, and green links stand for negative
interactions. (c) Classification performance of a random forest model using 16S rRNA genus abundance assessed by R random Forest
package. The cross-validated prediction performance of models with sequentially reduced number of predictors was explored and
ordered by importance. (d) The 24 most discriminant genera in the models classifying TD and ASD. The bar lengths indicate the
importance of the variable, and the colors represent enrichment in TD (green shades) or ASD (red shades). (e) ROC curve displaying
the classification for TD and ASD employing 16S rRNA data. AUC, area under curve.
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are associated with genes or functions of gut bacteria
in ASD group, metagenomic sequencing was applied
to these fecal sample of 30 C-ASD and 30 age-
matched TD children. As shown in Figure 3(a) and
Figure S5A-C, the samples from the TD group con-
tained 237,828 specific genes, however, only 214,357
specific genes were found in the samples from the
C-ASD group. Both species richness and diversity
were significantly lower in the C-ASD group than in
the TD group, as measured by breakaway and
Shannon index analyses (Figure 3(b,c)). The PCoA
analysis based on the Euclidean distance matrix
revealed striking differences in microbial composition
between the C-ASD and TD group at the species level
(Figure 3(d)). Next, we compared the bacterial profile
difference between the C-ASD and TD groups. A total
of 138 species showed differential relative abundance
between two groups (Table S5). Species Bacteroides
stercoris, Bacteroides plebeius, and Bacteroides plebeius
CAG:211 were significantly decreased in ASD group
(Wilcoxon rank-sum test, Table S6 and Figure 3(e)).
Interestingly, all the top 20 significantly different spe-
cies were lower in the C-ASD group than in the TD
group, including 9 species from Bacteroides, 4 from
Prevotella, 2 from Phascolarctobacterium and 1 from
Paraprevotella (Wilcoxon rank-sum test, Table S6 and
Figure 3(f)). Taken together, the analysis indicates
that these differential species may be involved in the
gastrointestinal symptoms of C-ASD. Consistent with
the 16S rRNA analysis at the genus level, most of the
identified differential species belonged to the genera
Prevotella (Figure 3(f)). To understand the role of
important species in the pathogenesis of ASD, we
used the NetShift method to identify important spe-
cies in microbiome network. The changes in the bac-
terial structure were evident from the community
shuffling plots. Impressively, Ruminococcus lactaris
displayed a high NESH score as the “drivers” species
in C-ASD (Figure 3(g)). The analysis may provide
important candidate bacteria that are involved in the
pathological mechanism of ASD.

Functional analysis of metagenomic sequencing
revealed disrupted bacteria functions in
constipated ASD group

Metagenomic sequencing additionally allows for
functional analysis. To compare the functional bac-
teria genes, we compared gut microbial functions

across the two groups in our study cohort. A total
of 1,550,192 genes were predicated in our study. The
ANOSIM results indicated that the KEGG ortholo-
gous (KO) were clearly separated between TD and
C-ASD (P = .005, Figure 4(a)). PCoA based on
KEGG modules revealed differences in microbial
functions between TD and C-ASD (Figure 4(b)).
Meanwhile, all the KEGG pathways based on level
1, level 2, and KO were disrupted in C-ASD, relative
to TD group (Figure 4(c-e)). For instance, the meta-
bolic pathway activity of energy, lipids, vitamins,
glycan, xenobiotics biodegradation, and nucleotides
were all lower in the C-ASD group.

The eggNOG orthologous group (og) of the
C-ASD group was also separated significantly from
the TD group (Figure S6A). Meanwhile, the distribu-
tion of function was significantly different based on
the PCoA (Figure S6B). Considering different levels
of eggNOG, most functions were disrupted in
C-ASD children, except for extracellular structures
(Figure S6C-6d). It is noted that the metabolism
involved in energy production and conversion was
enriched in the C-ASD group but cell wall mem-
brane envelope biogenesis was decreased, according
to the LDA diagram (Figure S6E). The CAZy results
also indicated that the number of CAZy orthologues
was significantly separated between the two groups
(Figure S7), and the predicated function was also
disrupted in the C-ASD group (Figure S7).

As resistance to antibiotics develops, humans are
facing a global public health problem.23 To investigate
the distribution of antibiotic-resistant genes (ARGs) in
C-ASD and TD group, we compared all the high-
throughput sequencing reads of the present study
against the Antibiotic Resistance Database (ARDB)
protein database.24 The overview of the ARDB results
is shown in Figure S8, and there were no significant
differences in the number of ARGs or ARG types
between the two groups, except for gene bl2ecfxa.

Overall, the microbiome associated genes analysis
revealed that C-ASD children displayed dysfunction in
several pathways of the KEGG, CAZy, and eggNOG
databases. The metabolism of energy, carbohydrates,
lipids, vitamins, glycan, xenobiotics biodegradation,
amino acids, and nucleotides were all shown to be
disrupted in the C-ASD group compared to the TD
group. The analysis further suggested these disrupted
pathways in ASD may play a part in the potential
interaction effects between ASD and GI symptoms
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Figure 3. The gut microbiota divergence in ASD with constipation (C-ASD) and TD children based on the metagenomic sequencing
data.
(a) Venn diagrams demonstrate the number of altered genes shared between TD and C-ASD.(b,c) Alpha diversity indices of species
for TD and C-ASD. Estimate of richness (b) and, Shannon index (c). (d) Principal Coordinate analysis (PCoA) of the microbiota based
on the Euclidean distance metrics for TD and C-ASD. ANOSIM, R = 0.2262, P = .001. (e) Heat map showed relative abundance of the
top 35 species across two groups. (f) The relative abundance of 20 species enriched in TD versus C-ASD. The box represents the
interquartile ranges, inner line denotes the median. * FDR < 0.05, ** FDR < 0.01, Wilcoxon rank-sum test. (g) The changes between
the two co-occurrence networks corresponding to the TD and C-ASD children are captured using the NetShift web tool. Nodes of the
common species are arranged on the periphery of the circle. All nodes are randomly assigned different colors. Node size shows the
predicated “driver” scores, while the big and red nodes are particularly important “drivers.” The edge connections in green are
present only in TD children, blue is only in C-ASD children, red is both in TD and C-ASD children.
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generated by the dysbiosis of gut microbiota and fecal
metabolites.

Metabolomics analysis revealed aberrant
metabolic patterns in ASD children

Microbially derived metabolites influence the host
through multiple pathways. Increasing evidences

showed some metabolic products of gut microbiota
could enter the bloodstream and exert important
influences on the physiology and behavior of the
hosts.25–27 Next, we explored the host metabolic pro-
file in the same samples as that of metagenomics
analysis which include 30 C-ASD and TD through
liquid chromatography-mass spectrometry (LC/MS)
and examined the relationship between microbiota
and metabolites. The fecal samples from distinct

a b c

d e

Figure 4. Microbial gene functions annotation on KEGG in ASD with constipation (C-ASD) and TD children.
(a) Comparison of the predicated KEGG orthologous (KO) between TD and C-ASD. ANOSIM, R = 0.0858, P = .005. (b) PCoA based on
the Bray–Curtis distances of KEGG modules between TD and C-ASD. ANOSIM, R = 0.2468, P = .001. (c,d) The average abundance of
KEGG pathway differentially enriched in TD and C-ASD according to level 1 and level 2. * FDR < 0.05, ** FDR < 0.01, * FDR < 0.05, ***
FDR < 0.001, **** FDR < 0.0001, Wilcoxon rank-sum test.(e) LDA scores for the KEGG functions showed different abundant between
TD and C-ASD. Positive and negative LDA scores indicate the bacterial taxa enriched in C-ASD and TD, respectively. Only taxa with
LDA > 3.0 are shown.
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groups were largely separated according to the Partial
Least Squares Discriminant Analysis (PLS-DA) and
Orthogonal Partial Least Squares Discriminant
Analysis (OPLS-DA) (Figure 5(a-d)), suggesting
a dissimilar metabolic mode. Seventeen KEGG path-
ways were significantly different between two groups
(Figure 5(e)). The top three enrichment pathways
were the catalog of global and overview, amino acid
metabolism and nucleotide metabolism.

There were 83 metabolites with 1.5-fold changes,
while 37 metabolites with twofold changes (Tables
S7 and S8). The hexanoic acid, chloroneb, and DL-
2-aminooctanoic acid were more abundant in
C-ASD samples (Figure 5(f)). Some products were
the intermediate metabolites of amino acid. For
example, 2,5-dioxopentanoate and desaminotyro-
sine are the metabolites of glutamate and tyrosine,
respectively, both of which are reported to be
increased in ASD.28,29 Interestingly, the indole acet-
aldehyde and indole-3-carboxylic acid both involved
in the metabolism of indole, which presented signif-
icant difference in C-ASD compared to TD. To
explore the potential relationships between the gut
microbiome changes and metabolic products,
a correlation matrix was generated using Spearman
correlation (Figure 5(g)). The abundance of most
species such as Ruminococcus lactaris, Alistipes
spp., Oscillibacter sp. ER4, and Faecalibacterium sp.
CAG:74, were positively correlated with the level of
dihydrojasmonic acid, butanone, hexanoic acid, flu-
nitrazepam, fospropofol, and caprolactone.

Increasing evidences showed ASD children
displayed abnormal level of neurotransmitters,
such as serotonin, dopamine, γ-aminobutyric
acid (GABA) and indole.30,31 Recently, emerging
literatures have reported that gut microbiota
participated in the synthesis and metabolism of
neurotransmitters,17 so we further checked
whether these differential level of metabolites
between two groups were involved in neuro-
transmitters metabolic process. As shown in
Figure 6, we found that much of differentia
metabolites, such as dopaquinone, pyroglutamic
acid, n-carboxyethyl-g-aminobutyric acid,
3-indoxyl-d-glucopyranoside, indole-3-carboxylic
acid, valyl-aspartate, and caffeoyl aspartic acid
involved in neurotransmitter metabolic network
including phenylalanine and tyrosine metabo-
lism, tryptophan metabolism, histidine, aspartate

metabolism, and glutamate metabolism.
Moreover, the metabolites which involved in
tetrahydrobiopterin (BH4) metabolism showed
an abnormal level in ASD. In short, the analysis
further implicated that gut microbes might be
involved in the metabolism of neurotransmitters.

Discussion

As shown in summary of Figure 7, compared to that of
TD group, ASD group displayed alternation of gut
microbiota composition. ASD showed less genera
including Prevotella and Megamonas. However,
Escherichia-Shigella, Dialister, Bifidobacterium were
increased in ASD. Furthermore, the current study
presented that the compositional development of the
gut microbiota in ASD varies at different ages in ways
that are not consistent with TD group. In addition, the
α-diversity of ASD children showed no age-related
change, while TD children showed increased α-
diversity with age. NC-ASD showed decreased α-
diversity and alternation of gut microbiota compared
to TD.However, C-ASD showed increased α-diversity
compared to NC-ASD, which further implicated that
constipation might add heterogenous characteristics
of gut microbiota in ASD. A Random Forest predic-
tionmodel was able to distinguish ASD children from
TDs with a high degree of certainty, which generated
the possibility for a gut health monitoring mode and
a complementary approach for risk assessment of
ASD. ASD children displayed abnormal level in meta-
bolites compared to TD group, and these metabolites
are majorly associated with the metabolism of fatty
acid, nucleotide, and amino acid, which are partially
involved in the metabolism of neurotransmitters.

Consistent with other studies that reported
changes in microbiome associated with consti-
pated populations.31 We also found significant
increases in the abundance of Coprobacter,
Barnesiella, and Veillonella in constipated ASD
children. But Fusobacterium was reduced in
C-ASD group, as opposed to a significant increase
in IBS patients with constipation.32 This suggests
the possibility that specific microbial patterns may
be linked to constipation symptoms of specific
disease, which suggests the necessity to more dee-
ply understand the ASD-related gastrointestinal
symptoms as they pertain to diagnosis and treat-
ment of ASD.
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Figure 5. Aberrant metabolic patterns in ASD with constipation (C-ASD) and typically developing (TD) children.
(a,b,c,d) The clustering analyses of partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares
discriminant analysis (OPLS-DA). (e) Seventeen KEGG pathways were significantly different between TD and C-ASD. (f) Heat map
of the 37 significantly different metabolites across TD and C-ASD. Metabolites >2-fold changes, VIP ≥ 1, P < .05 (T test). The
correlation effect is indicated by a color gradient from green (negative correlation) to red (positive correlation). (g) Correlations
between species and metabolites. The top 45 species were detected in Metagenomic data. Metabolites >2-fold changes between TD
and C-ASD, with P < .05 (T test), VIP ≥ 1. The correlation effect is indicated by a color gradient from green (negative correlation) to
red (positive correlation). +0.05 < P < .1, * P < .05, ** P < .01, T test.
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Compared with the TD group, the relative
abundance of Prevotella 9, Prevotella copri, and
Prevotella stercorea in C-ASD group were identi-
fied decreased significantly using metagenomics
technique. Moreover, the decreased level of
Prevotella in ASD children was in agreement
with studies from different countries using small
cohorts.31,32 Prevotella are the dominant bacteria
in the intestinal tract of human.33 Recent
researches reported that Prevotella copri can

utilize polysaccharides to produce succinic
acid,34 which has been reported to enhance the
immune response of antigen-specific T cells by
binding to the succinic acid receptor GPR91 on
the surface of dendritic cells to protect host
health.35 Increasing evidences have shown that
many of ASD children displayed immune
dysfunction.36 Therefore, it can be speculated
that their immune disorder may be related to
the decrease of Prevatella bacteria in the intestine,

Decrease metabolites, P < 0.05 (T test), VIP ≥ 1, Fold change  1.25.The derict pathway according to the KEGG database.

The indirect pathway according to the KEGG database. Increase metabolites, P < 0.05 (T test), VIP ≥ 1, Fold change  1.25.
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Figure 6. KEGG pathway of the differential metabolites between C-ASD and TD group (Fold change >1.25, VIP ≥ 1, P < .05 T test).
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which further affect the physiological and beha-
vioral features of ASD children.

Increasing evidences have shown that enteric
SCFAs present in diet and also those produced
by opportunistic bacteria of gut following fermen-
tation of dietary carbohydrates may act as envir-
onmental triggers for ASD.37 Recent fecal SCFAs
analysis in constipated ASD children showed that
a two-fold increased level of valeric acid is asso-
ciated with Acidobacteria among ASD compared

to TD.31 Consistent with this, we also found vale-
ric acid showed slight increase in C-ASD group
compared to TD group; however, a significant
change in other SCFAs, such as acetic acid, pro-
pionic acid, and butyric acid which have antimi-
crobial and anti-inflammatory properties, as well
as immunomodulatory roles were not found.
Previous studies on fecal SCFAs were inconsistent
in ASD, and it can be speculated fecal SCFAs may
not indicate SCFAs level of intestinal mucosa.38 In
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Figure 7. The summary of gut microbiota composition and metabolism analysis between ASD and TD.
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addition to considering sample manipulation, as
well as geographical and dietary effects on fecal
SCFAs, future investigation on SCFAs level asso-
ciated with bacteria in intestinal mucosa would
help to accurately reveal enteric SCFAs implica-
tions in ASD.

The abundance of middle chain fatty acids
(MCFAs) such as hexanoic acid showed increased
significantly in ASD group. Zhu et al. reported that
Clostridium cluster IV and Ruminococcaceae bacter-
ium CPB6 can produce hexanoic acid.39 The
Ruminococcaceae family including Faecalibacterium
sp. CAG: 74, Subdoligranulum variabile, Clostridium
sp. CAG: 269 and Eubacterium sp. CAG: 38 dis-
played a positive correlation with hexanoic acid
level. Moreover, previous study found the ASD was
associated with higher hexanoic acid levels in the
blood in comparison to the TD group.38 Moreover,
Ruminococcus lactaris is a key bacterium predicted
by the NetShift method and presented as positively
correlated with hexanoic acid (P < .1, Figure 5(g)).
Viewed together, this information further suggested
that some species from Ruminococcus family may be
involved in the development of ASD diseases via
hexanoic acid production. MCFAs are ligands of
GPR84, which enhances the production of lipopoly-
saccharide-induced pro-inflammatory immune fac-
tor IL-12 P40 (P40 is the subunit of IL-12).40 It has
been reported that IL-12 or IL-12 P40 is significantly
increased in children with ASD.36,41 Moreover,
Ashwood et al. reported that IL-12 P40 is positively
correlated with lethargy and stereotypy behavior.36

Therefore, future studies focus on whether hexanoic
acid produced by gut bacteria metabolism would
help identify new drug targets for ASD.

Gut microbes are capable of producing most neu-
rotransmitters found in the human brain.42

Furthermore, an analysis of fecal metabolites asso-
ciated with gut bacteria revealed different levels of
some precursor metabolites and neuronal transmit-
ter metabolites between ASD and TD group.
Previous studies have reported that most ASD chil-
dren displayed elevated 5-HT levels in the blood.43

Recent studies implicated that 5-HT is a critical
modulator of enteric nervous system (ENS) and
central nervous system (CNS) development and
may function as a nexus for the gut-brain axis in
ASD children.44 However, the specific bacteria reg-
ulating 5-HT levels remains much unclear.

Tryptophan has been found to be a precursor of
synthesizing serotonin, but indole acetaldehyde as
product of tryptophan metabolite had negative effect
on the synthesizing serotonin.45 The present fecal
metabolites analysis found indole acetaldehyde in
ASD exhibited a significant decrease compared to
that of TD group. Additionally, the decreased
Bacteroides spp. observed between the ages of 2–3
in the ASD group negatively correlated with indole
acetaldehyde, suggesting the elevated level of seroto-
nin in some ASD childrenmay be due to a lack of the
Bacteroides spp.

GABA is regarded as the main inhibitory
neurotransmitter.46,47 Recent studies have shown that
ASD displayed altered GABA metabolite profiles in
feces when compared with neurotypical children,
which is probably related to gut dysbiosis.32

Consistent with this, the present study observed the
precursors of GABA such as CEGABA, glutamylpro-
line, pyroglutamic acid, and gamma-glutamylglycine,
showed elevated level in ASD children29,48

Bifidobacterium spp. has been reported to produce
GABA.49 In agreement with this finding,
Bifidobacterium spp. in the present study was found
significantly increased, which implies the elevated level
of precursor of GABA may be induced by the
increased Bifidobacterium spp. Neurophysiological
deficits in GABA receptor-mediated function in ASD
children have been reported by Masuda et al.50 Hence,
further research focusing on targeting the specific
microbiota associated with neural circuits related to
GABA receptor-mediated function in regions involved
in the pathophysiology of ASD may be promising.

An increasing amount of studies have reported
dopamine (DOPA) signals abnormalities in ASD;
however, a coherent dopamine hypothesis that
links neurobiology to behavior in ASD is cur-
rently lacking.51 The present fecal microbiota
metabolites analysis showed an abnormal amino
acid metabolism, such as several tyrosine and
phenylalanine derivatives related to the synthesis
and metabolism of DOPA showed significant
change. Moreover, a number of Bacteroides spp.
and Prevotella spp. showed high correlation with
these differential metabolites, which further
implicated that the decreased level of both
genus in ASD group may play a potential role
of causing DOPA signaling abnormalities in ASD
via regulating the amino acids metabolism.

GUT MICROBES 1259



Recent studies in humans and animal-models
suggest that dysfunction of the cholinergic system
may underlie ASD-related behavioral
symptoms.52 Measuring that tap the cholinergic
system was used in ASD for diagnoses.53 In the
present study, phosphatidylcholine as an inter-
mediate metabolite of choline showed increased,
and acetaldehyde as the intermediate metabolite
of choline showed decreased level in ASD, which
implicated that gut microbes in ASD may regu-
late acetylcholine and eventually leads the defec-
tive behavior of ASD children through gut-
microbiome-brain-axis.

The equilibrium between reduced and oxidized
forms of glutathione (GSH and GSSG, respec-
tively) is the primary determinant of intracellular
redox status,54 which may play an essential role in
this pathogenesis of ASD.55 Systemic deficits of
glutathione and cysteine in ASD have been
reported by Frustaci et al.56 Consistent with this
finding, the current study found that the level of
the intermediate product, Methylselenocysteine
Se-oxide and 3-(Uracil-1-yl)-L-alanine from inter-
mediate derivative of L-alanine were elevated in
ASD group, which may further lead to a decrease
in selenocysteine and the abnormal reaction of
glutathione. Gut microbes in the gastrointestinal
tract compete for nutrient resources in the usual
symbiotic way; however, gut dysbiosis may inter-
fere with nutrient resources. Thus, the current
study suggested constipated ASD may be related
to the failure of gastrointestinal epithelium to
absorb antioxidant nutrients such as cysteine or
selenocysteine. Recently, Wang et al. reported that
alterations in the gut glutamate metabolism were
associated with changes in gut microbiota compo-
sition in ASD children,57 but the differential meta-
bolites shown in the Wang et al. study showed no
difference between the ASD and TD groups of the
current study, which imply the complexity of the
pathological mechanism of ASD. These inconsis-
tent and altered metabolites also reflect the limita-
tion of the analysis method, since fecal metabolism
analysis does not fully reveal the true metabolic
state of the host. Thus, future studies that focus on
the associated analysis of the urine metabolism
with fecal microbiota metabolites are suggested to
better understand the metabolite role in the patho-
logical mechanism of autism.

Conclusion

In conclusion, the present analysis revealed that ASD
patients showed gut dysbiosis at the phylum, genus,
and species level. Moreover, the α-diversity in the gut
microbiota of ASD group showed no significant
change with age; however, the TD group showed
increased diversity. The changed species associated
with metabolite alteration in C-ASD were identified.
In particular, that interaction analysis between gut
microbiota, metabolites and neurotransmitters was
discussed, which could provide clues for better under-
standing the mechanisms underlying altered social
behaviors in ASD patients as well as potentially reveal
whether the origin of such alterations can be linked to
gut microbiota. The aberrant fecal microbiome-
metabolites may have strong implications in terms
of pathogenesis of the gut-brain-axis in ASD patients.
Further studies are required to confirm the connec-
tion between gut microbiome-mediated metabolites
and the central nervous system. This study provided
insights into the relationship between the fecal micro-
biome, metabolites, gut dysfunction, and the dereg-
ulation of neurotransmitters in ASD patients,
suggesting possible future modalities for ASD inter-
vention targeting the specific microbiota associated
with neurotransmitter metabolism.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee
of Affiliated Yixing Hospital of Jiangsu University
(Ethics NO, 2016055). All children’s legal guar-
dians signed a written informed consent upon
enrollment. They all received questionnaires and
sample collection kits.

Study subject recruitment and fecal sample
collection

The children with ASD in this study were diag-
nosed according to the Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition.58 The
typically developing (TD) children were recruited
from kindergartens. All the children underwent
neurological, physical, and behavioral examina-
tions. The exclusion criteria include diseases such
as depressive disorder, cerebral palsy,
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schizophrenia, bipolar disorder, significant sensory
impairment, and clinically significant inflamma-
tory conditions. Participants’ metadata was
obtained about the sex, dietary supplements, gas-
trointestinal symptoms, medications, and allergy
histories, and age at sampling were collected for
each participant. All participants had not taken
antibiotics, probiotics, and prebiotics in the
3 months prior to the feces collection. None of
the participants were on anti-inflammatory or
antioxidant drugs. The Rome IV criteria for func-
tional constipation was used for evaluating GI
symptoms.

Fecal sample collection

Feces were collected at hospital or home. The feces
were collected according to the instruction and
delivered immediately at low temperatures. The
frozen feces were shipped using dry ice overnight
to Nanjing Medical University. Once received,
fecal samples were divided into three parts of
200 mg and stored at −80°C until extraction.

DNA isolation and 16S rRNA gene sequencing

About 100 mg of stool samples were used to
extract total genome DNA according to the DNA
extraction kit (#DP328, Tiangen Company,
Beijing, China). The concentration and purity of
the extracted bacterial DNA were detected using
Qubit 2.0 Fluorometer (Thermo Scientific, USA).
The 16S rRNA gene V4 region-specific primer are
515F GTGCCAGCMGCCGCGGTAA and 806A
GGACTACHVGGGTWTCTAAT. The PCR pro-
ducts of sterile water were considered as the nega-
tive control for 16S rRNA seq. The PCR products
were purified using the GeneJET Gel Extraction
Kit (Thermo Scientific). Illumina TruSeq DNA
PCR-Free Library Preparation Kit (Illumina,
USA) was used to generate sequencing libraries.
The libraries were sequenced in the Illumina Hiseq
platform (Novogene, China). Raw fastq files were
merged using FLASH (http://ccb.jhu.edu/software/
FLASH) parameters: -m 10 -f 300 -x 0.1 -p 33 -r
199 -M 173.59

Raw data were analyzed by Majorbio Bio-Pharm
Technology Co. Ltd. (Shanghai, China). The data
analysis, principal coordinates analysis (PCoA) and

alpha diversity were calculated using the I-Sanger
platform (http://www.i-sanger.com). The estimate
of richness index was calculated by the breakaway
method implemented in Quantitative Insights Into
Microbial Ecology (QIIME) version 2.0.60 Briefly,
sequences were qualified by Quantitative Insights
Into Microbial Ecology (QIIME) version 1.9.1
(http://qiime.org/scripts/assign_taxonomy.html)
Chimera sequences were detected using UCHIME
algorithm (http://www.drive5.com/usearch/manual/
uchime_algo.html) and compared with “Gold” data-
base (http://drive5.com/uchime/uchime_download.
html).61 Operational taxonomic units (OTUs) were
clustered using Uparse 7.1 (http://drive5.com/
uparse) with sequences similarity ≥97%.62 The anno-
tations of taxonomic information were used the RDP
classifier algorithm (http://sourceforge.net/projects/
rdp-classifier) according to the GreenGene version
13.5 database.63 All 16S rRNA raw data have been
submitted to GEO (accession number GSE113701).

Metagenomic sequencing and assembly

Fifty-two out of 143 ASD children have constipa-
tion symptoms. The 30 constipated ASD partici-
pants and their aged-matched TD were picked out
to perform metagenomics analysis. About 2 μg
DNA per sample were prepared. Sequence libraries
were generated using NEBNext® Ultra™ DNA
Library Prep Kit for Illumina (NEB, USA). The
libraries were sequenced on the Illumina Hiseq
X platform (insert size 350 bp, read length 150
bp) at the Novogene Bioinformatics Technology
Co., Ltd. (Tianjin, China). The human reads
(according to alignment to hg19) or low-quality
sequences were discarded, and the high-quality
sequences were assembled using SOAPdenovo ver-
sion 2.04 (http://soap.genomics.org.cn/soapde
novo.html).64 All metagenomic raw data have
been submitted to GEO (accession number
GSE113540).

Gene catalog (Unigenes) construct, taxonomy
predication

The genes were predicated using the Meta
GeneMark version 2.10 (http://topaz.gatech.edu/
GeneMark/).65 Redundant genes (95% identity,
90% overlap) were removed by CD-HIT version
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4.5.8 (http://www.bioinformatics.org/cd-hit),
resulting in a non-redundant gene catalog.66 The
reads were aligned using DIAMOND version 0.9.9
(https://github.com/bbuchfink/diamond/) for tax-
onomy functional assignment and taxonomic
identity.67 The LCA algorithm of MEGAN soft-
ware system was used to conduct annotation.68

Gene functional annotations

Predicted unigenes were used DIAMOND Version
0.9.9 to assign to the kyoto encyclopedia of genes
and genomes (KEGG), evolutionary genealogy of
genes: non-supervised orthologous groups
(eggNOG), and carbohydrate-active enzymes data-
base (CAZy).69,70 The abundances of each func-
tional annotations were the sum of the abundance
of annotation of each functional level.

Resistance gene annotations

The predicated antibiotic resistance genes (ARGs)
were searched in the Antibiotic Resistance
Database (ARDB) (http://ardb.cbcb.umd.edu/)
using the DIAMOND version 0.9.9 with para-
meters set as blastp, -e 1e-5.71 The reads of align-
ment length ≥25 amino acids and BLASTx ≥90%
were the final annotation.72

Co-occurrence network analysis

To understand the correlations among different
genera or species, we constructed co-occurrence
network based on the 16S rRNA or metagenomic
data.73 The bacterial correlations in the TD and
ASD samples were analyzed, respectively, accord-
ing to the relative abundance of each species/genus
using Spearman’s correlation coefficient to con-
struct the co-occurrence network. The significant
correlated genus/species (false discovery rate
<0.05, rho ≥0.25) were visualized by Cytoscape
version 3.6.1 (http://www.cytoscape.org).74 Then,
the similarity between the two network structures
was measured by node closeness and shared cor-
relations. Closeness of the nodes was analyzed by
Cytoscape to predicate node centralities in each
network. The shared correlations between two
groups were defined the edges with the same
nodes in two co-occurrence networks. The results

were visualized by R version 3.5.1 Venn Diagram
and ggplots package. Only genera or species
existed in at least 10% sample were included in
the network analysis.

Identification of driver microbiome between
ASD-TD association networks

We used Netshift web tool to identify important
microbial taxa which serve as “drivers” in the most
common sub-network between TD and C-ASD
networks.75

Metabonomic analysis based on liquid
chromatography-mass spectrometry (LC/MS)

Feces of 30 C-ASD and 30 TD children were sub-
jected to metabolomics analysis according to the
LC/MS method (Gene Denovo Co. Ltd,
Guangzhou, China), which was consistent with
the Metagenomic sequencing. Each 50 mg feces
were mixed with 1 mL water-methanol-
acetonitrile (1:2:2), vortexed for 30 s, homogenized
at 45 Hz for 4 min, sonicated 5 min at 4°C, and
then incubation 1 h at −20°C. The mixtures were
centrifuged at 12000 rpm for 10 min at 4°C, then
the supernatant was transferred to UHPLC-QE
Orbitrap/MS analysis.76

The LC/MS analyses were performed according to
the previous study.77 In brief, the UHPLC system
(1290, Agilent Technologies) with a UPLC HSS T3
column (2.1 mm * 100 mm, 1.7 μm) coupled to
Q Exactive Orbitrap (Thermo Fisher Scientific)
were used. The formic acid (0.1%) and ammonium
acetate (5 mM) were the solvent A for positive (ES+)
and negative (ES-), respectively. Solvent B was the
acetonitrile. About 2 μL fecal sample were injected at
4°C for analysis. The gradient elution of solvent B as
follows: 1%, 0–1 min; 99%, 8 min; 99%, 10 min; 1%,
10min; 1%, 12min. The thermoQExactiveOrbitrap
mass spectrometer can control the Xcalibur version
4.0.27 to acquire the full scan surveyMS andMS/MS
spectra. The spray voltage of ES+ was 3.8 kV, and 3.1
kV for ES-. The capillary temperature was 320°C.
About 70–1000 m/z masses were acquired. The
resolved power of full MS and MS/MS was set to
70,000 and 17,500, respectively.

The raw data were converted into mzML format
using ProteoWizard, and preprocessed with
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R package XCMS v3.2.78 The processed data include
peak intensity, mass-to-charge ration (m/z), and
retention time (RT). The metabolites were identified
with the featured peaks according to the softwareOSI/
SMMS version 1.0. Impurity peaks and duplicate
identifications were eliminated. For each data set, we
removed the compounds that were present in fewer
than 50% of samples within a study. The identification
of tentative metabolite was mapped in MS and MS/
MS database using the HMDB (https://hmdb.ca).79 If
some peak both mapped in MS andMS/MS database,
MS/MS data was the result. Unmappedwas defined as
MS or MS/MS neither mapped.

We used partial least squares discriminant ana-
lysis (PLS-DA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) to eval-
uate the difference in metabolic profiles between
TD and ASD children.80 The analysis was per-
formed using the ropls version 1.12.0 (http://bio
conductor.org/packages/release/bioc/html/ropls.
html). All the observed and predicated compounds
also were imported KEGG database. The signifi-
cant metabolites with variable important in projec-
tion (VIP) ≥1, and P value (T test) <0.05. We
further choose the significant metabolites with
>1.25-fold change for next analysis.

Random forest model prediction

Considering the robustness of the algorithm, ran-
dom forest provided in the R package random
Forest was used to build the prediction model to
identify the potential diagnostic biomarkers. The
16S rRNA abundance profiles were collected in the
work, and the model training was carried out
using the 80% of sample set. The core genera in
TD or ASD groups were filtered as prediction
input variables. The important genera contributed
to prediction were identified via a nested 10-fold
cross-validation procedure. The area under curve
(AUC) index and receiver operating characteristic
(ROC) analysis were used to predicate the effi-
ciency of possible cutoff values of the tests.81

Correlation analysis of species and metabolites

Todetermine theassociationbetweengutmicrobiota and
metabolites inASDchildren,weconstructedacorrelation
analysis between gut microbiota and differential

metabolites using Spearman’s correlations in R version
3.4.3 (Hmisc package). The top 45 species between two
groups, and metabolites with >2-fold changes between
TDandASD,VIP≥1,P< .05 (T test)were also analyzed.

Data analysis

To identify features (taxa and functional modules)
differentially represented between any two groups, dif-
ferentially abundant taxa or functional modules were
selected using the LEfSe (linear discriminant analysis
(LDA)) effect size.82 Differential abundance of phy-
lums, genera, species and functional modules between
any two groups was tested byWilcoxon rank-sum test,
P value was corrected as false discovery rate (FDR)
with the Benjamini–Hochberg method.83
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