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ABSTRACT
Alterations of gut microbiota have been implicated in multiple diseases including cancer.
However, the gut microbiota spectrum in lung cancer remains largely unknown. Here we profiled
the gut microbiota composition in a discovery cohort containing 42 early-stage lung cancer
patients and 65 healthy individuals through the 16S ribosomal RNA (rRNA) gene sequencing
analysis. We found that lung cancer patients displayed a significant shift of microbiota composi-
tion in contrast to the healthy populations. To identify the optimal microbiota signature for
noninvasive diagnosis purpose, we took advantage of Support-Vector Machine (SVM) and found
that the predictive model with 13 operational taxonomic unit (OTU)-based biomarkers achieved
a high accuracy in lung cancer prediction (area under curve, AUC = 97.6%). This signature
performed reasonably well in the validation cohort (AUC = 76.4%), which contained 34 lung
cancer patients and 40 healthy individuals. To facilitate potential clinical practice, we further
constructed a ‘patient discrimination index’ (PDI), which largely retained the prediction efficiency
in both the discovery cohort (AUC = 92.4%) and the validation cohort (AUC = 67.7%). Together,
our study uncovered the microbiota spectrum of lung cancer patients and established the specific
gut microbial signature for the potential prediction of the early-stage lung cancer.

ARTICLE HISTORY
Received 6 September 2019
Revised 11 February 2020
Accepted 17 February 2020

KEYWORDS
Gut microbiota; early-stage
lung cancer; biomarkers;
noninvasive diagnosis;
patient discrimination index

Introduction

Lung cancer is one of the most devastating diseases
worldwide1, which is composed of small-cell lung
cancer (SCLC) and non-small cell lung cancer
(NSCLC). NSCLC accounts for over 80% of lung
cancer and is further divided into lung adenocarci-
noma (ADC), squamous cell carcinoma (SCC) and
large cell carcinoma (LCC).2,3 Most of the lung cancer
patients are initially diagnosed at advanced disease
stages, often accompanied by poor prognosis. Thus,
early diagnosis of lung cancer would tremendously
improve disease management and patient survival.4 It
is therefore clinically important to develop noninva-
sive biomarkers with high sensitivity and specificity.

The gut microbiota strongly influences metabolic,
endocrine and immune systems, not only locally at

the mucosal level but also systemically at the host
level. Recent studies have demonstrated that the gut
microbiota is in connection with multiple diseases,
including autism spectrum disorder, stroke, nonalco-
holic fatty liver disease, atopic dermatitis and type 2
diabetes.5–11 These studies suggest the valuable diag-
nostic potential of microbiota-derived signatures.
Interestingly, recent studies uncover the potential
association between gut microbiota and lung diseases
such as asthma, chronic obstructive pulmonary dis-
ease (COPD) and respiratory infection.12–16

Microbiota-accessible carbohydrates can change the
gut microbiota and increase short-chain fatty acid
(SCFA) to shape the lung immunity.17 SCFAs may
stimulate regulatory T cell, Th2 cells and IL-22+ type 3
innate lymphoid cells in the lung to protect against
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airway inflammation via T cell receptor signaling.18,19

Moreover, the mouse model study also establishes the
link between the microbiota-immune crosstalk and
lung cancer development.20 Population study shows
that the increase of antibiotic usage correlates with the
increase of lung cancer incidence.21 Despite the exten-
sive progression in linking gut microbiota with lung
disease (‘gut-lung axis’),22–25 the lung cancer-related
microbiota spectrum remains largely unknown.

Here we recruited a discovery cohort containing
42 early-stage lung cancer patients and 65 healthy
individuals for 16S rRNA gene sequencing analysis
of gut microbiota. We uncovered the microbial
spectrum of lung cancer patients and identified
the specific microbiome signature potentially use-
ful for early-stage lung cancer prognosis.

Results

Gut microbial profile of early-stage lung cancer
patients

To determine whether gut microbial changes were
associated with early-stage lung cancer, we performed
the 16S rRNA gene sequencing using fecalmicrobiome
samples from a Chinese cohort containing 42 lung
cancer patients and 65 healthy individuals. This cohort
served as the ‘discovery cohort.’ To validate the find-
ings from this cohort, we recruited another indepen-
dent cohort of 34 patients and 40 controls (referred to
as the ‘validation cohort’). None of these patients had
gastrointestinal tract disorders or took antibiotics/pro-
biotics within last 8 weeks. The age and body mass
index (BMI) were comparable between the lung cancer

group and healthy control group (Table 1). The male/
female ratio was slightly low in healthy group in con-
trast to lung cancer group in the discovery cohort (10/
55 versus 18/24), whereas this ratio was comparable in
the validation cohort (22/18 versus 16/18) (Table S1).
All the patients are NSCLC (37 ADC, 3 SCC and 2
LCC in the discovery cohort, 29 ADC, 4 SCC and 1
LCC in the validation cohort), consistent with the
epidemiological characteristic of lung cancer in recent
decades.26

Patients in the discovery cohort were at early stages,
including stage 0 (adenocarcinoma in situ, AIS)
(14.29%), stage I (76.19%) and stage II (9.52%).
Most of these patients (92.86%) had non-metastatic
lung cancer (Table 1). Through sequencing data ana-
lyses, approximately 6,000,000 sequences were anno-
tated against the rRNA library database (Greengenes)
and analyzed at the operational taxonomic unit
(OTU) level (Table S2). The 97% identity of rRNA
sequence was used as the cutoff to define the OTUs.
We identified 1175 OTUs from the discovery cohort.
Both lung cancer group and healthy control group
showed comparable numbers of average OTUs
(Figure 1a). Moreover, the richness and diversity of
microbiota assessed by Shannon and Chao indices
were also comparable (Figure 1b). These data indi-
cated similar global community α-diversity between
the lung cancer and healthy groups.

Detailed analyses uncovered certain unique micro-
bial taxa in either lung cancer group or healthy group
(Figure S1 and Table S3). A total of 97 OTUs, 18
species, 12 genera and 1 phylum were detectable
only in the cancer group, whereas another 163

Table 1. Baseline characteristics of the discovery cohort.
Patients with lung cancer (n = 42) Healthy control (n = 65) P value*

Demographics/anthropometric
Age yr (mean ± SD) 57.48 ± 12.49 58.60 ± 4.86 0.51
Male/female (No.) 18/24 10/55 0.003
BMI (kg/m2) (mean ± SD) 23.73 ± 2.87 23.37 ± 2.45 0.49

Tumor stage (%)
0 6 (14.29%) N/A
I 32 (76.19%) N/A
II 4 (9.52%)

Tumor type (%)
ADC 37 (88.10%) N/A
SCC 3 (7.14%)
LCC 2 (4.76%)

Tumor metastasis (%)
N/AMetastasis 3 (7.14%)

Non-metastasis 39 (92.86%)
Smoking status (%)

Never smoker 41 (97.62%) N/I
Ever smoker 1 (2.38%)

Unpaired t-test was used to compare age and BMI between lung cancer group and healthy controls; Fisher’s exact test was used to compare gender
distribution between the two groups. N/A, not applicable; N/I, no information.
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OTUs, 33 species and 22 genera were only in the
healthy group. This indicated that the composition
of gutmicrobiotamay have changed during the devel-
opment of lung cancer. Principle coordinates analysis
(PCoA) and ANOSIM test revealed a significant glo-
bal difference of microbiome composition and abun-
dance (UnweightedUniFrac p = .003 and Bray–Curtis
p = .007) (Figure 1c).

Specific gut microbial signature in lung cancer
patients

We next examined the abundance of each phylum,
genus and species detected in the discovery cohort.
In total, 3 phyla, 13 genera, and 20 species showed
significantly lower abundance among lung cancer
patients (Figure 2a, File S1), whereas 4 phyla, 11

genera, and 15 species were conversely enriched
(Figure 2b, File S1). Despite some low-abundant
phyla characteristically present in the cancer group,
several abundant phyla, such as Firmicutes,
Bacteroidetes, Proteobacteria and Actinobacteria,
also differed significantly between these two groups.
Proteobacteria, which included many known patho-
genic microorganisms,27,28 was found highly abun-
dant in the cancer group. At the genus level,
Ruminococcus, an uncharacterized genus of family
Enterobacteriaceae, and an uncharacterized genus of
family Lachnospiraceae were highly enriched in the
cancer group (Figure 2b), whereas Faecalibacterium,
Streptococcus, Bifidobacterium and Veillonella were
significantly enriched in the healthy group
(Figure 2a). More abundant species in the cancer
group were primarily from the Bacteroides and

Figure 1. Gut microbiota dysbiosis in lung cancer patients. (a) Numbers of OTUs observed in patients and healthy controls. (b) Microbial
richness based on the Chao index and diversity based on the Shannon index. The box represented the interquartile range (IQR) between the
first and the third quartiles, and the midline represented the median. Whiskers extended to values within 1.5 times IQR. Circles indicated
outliers beyond the whiskers. (c) Principal coordinates analysis (PCoA) for lung cancer (orange) and healthy control samples (green). Left,
Unweighted UniFrac; right, Bray–Curtis. Significant differences were observed between patients and healthy controls with ANOSIM test
(UniFrac, R = 0.0912, P = .003; Bray–Curtis, R = 0.0739, P = .007). The first two principal coordinates (PCs) were each labeled with the
percentage of variance explained.
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Figure 2. Differential abundance of gut microbiota in lung cancer and healthy controls. The taxa decreased (a) and increased (b) in
patients with lung cancer at the phylum, genus, and species levels, p < .05. Green and orange represented the healthy controls
(n = 65) and lung cancer patients (n = 42), respectively. The distributions of taxa were based on the number of reads post-filtering
and rarefying. The abundance in each group was plotted as log10 scale on the y axis. P values were calculated using the two-tailed
Wilcoxon rank-sum test. Description of boxplots was the same as in Figure 1. Taxa were named as their lowest possible level of
classification, with unclassified (unc) indicating no further classification available.
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Proteobacteria phyla. In contrast, species decreased
significantly in the cancer group were mainly from
the Firmicutes and Actinobacteria. Firmicutes and
Actinobacteria are known to promote colonic lumi-
nal SCFA production and modulate inflammation
and tumor formation in mice and humans.29–31

Moreover, reduced ratio of Firmicutes/
Bacteroidetes in the lung cancer group may result
in decreased circulating SCFA and thus influence
host systemic immunity and inflammation.32 These
data indicate that lung cancer might be associated
with the increase of pathogens and the decrease of
certain probiotic microbes.

Gut microbial compositions correlate with tumor
stages and subtypes

We next compared the microbial compositions
according to tumor subtypes and metastatic status in
the discovery cohort (Figure 3a-d). Several lung can-
cer-related microbes such as Blautia obeum,
Akkermansia muciniphila, Lactobacillus salivarius and
an uncharacterized genus of family Coriobacteriaceae
increased only in the three metastatic patients (Figure
3b). No microbe was found to be specifically increased
only in the non-metastatic patients when compared
with the healthy controls and the metastatic patients.
The three main subtypes of NSCLC (ADC, SCC, and
LCC) seemed to have differential microbiota profiles
(Figure 3c, d). It is worth noting that the numbers of
SCC and LCC (three cases and two cases, respectively)
were too small to draw a conclusive point. Future
efforts are certainly necessary to recruit more patients
for subtype-specific microbial studies.

Altered pathways in gut microbial communities
of lung cancer patients

We further performed the PICRUSt analysis to pre-
dict and test the difference of KEGG pathways
between the cancer and healthy groups. Among the
328 metabolic pathways tested, we found 19 pathways
increased and 12 decreased in the cancer group
(Figure S2). The cancer group was enriched with
pathways associated with cellular antigens, steroid
biosynthesis, ubiquitin system, transcription-related
proteins, bile secretion, and fatty acid elongation in
mitochondria. In contrast, the pathways related to

bacterial motility proteins, bacterial chemotaxis, fla-
vone, and flavonol biosynthesis apoptosis and
G protein-coupled receptors decreased in the cancer
group. These data indicated the potentially interesting
metabolic reprogramming in the gut microbiota dur-
ing lung cancer development.

Identification of gut microbial signature for lung
cancer prediction

It remains clinically important to develop noninva-
sive diagnosis biomarkers for early-stage lung
cancer.33 With the motivation of constructing
a clinical index for early diagnosis using either
sequencing or real-time quantitative PCR, we devel-
oped a reference-based strategy for biomarker devel-
opment. For this, we first identified the top reference
OTUs that were relatively abundant in both healthy
(n = 65) and cancer (n = 42) groups (OTU1063 of
Blautia_unc, OTU14 of Faecalibacterium prausnitzii,
OTU163 of Bacteroides_unc, OTU312 of
Blautia_unc). All other OTUs were then compared
against these reference OTUs to determine their
relative logarithmic changes (RLCs). Those OTUs
with significantly different RLCs between cancer
patients and healthy controls were further selected
for the identification of candidate markers with the
minimum-redundancy maximum-relevancy
(mRMR) method. We used the top 30 OTU candi-
dates to train an initial support-vector machine
(SVM) model to predict disease status. We then
employed a backward selection strategy to gradually
narrow down the OTU list using 10-fold cross-
validation for performance assessment. The predic-
tion accuracy and true negative rate (TNR) were
both considered during the optimization process.
To control the error rate of predicting healthy indi-
viduals (false positive rate), we emphasized TNR
minimization. Thirteen OTU-based markers were
finally chosen (Table 2, File S2), which highly accu-
rately predicted the disease status in the discovery
cohort (AUC = 97.6%) (Figure 4a). To further eval-
uate whether these markers could be generalized to
other samples, we used the validation cohort as an
independent test and found a reasonably high pre-
dictive power (AUC = 76.4%), albeit lower than that
in the original cohort.
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In order to facilitate more convenient diagnosis
application, we further constructed a clinical index,
the ‘patient discrimination index’ (PDI), which was
a weighted score based on the logistic regression
coefficients of those OTU markers. Notably, the PDI
had a predictive power almost as high as the more
complex SVM model, with AUC = 92.4% in the
discovery cohort and AUC = 67.7% in the validation
cohort (Figure 4b). Distribution of PDIs in the healthy
individuals and patients also showed a clear diversifi-

cation pattern (Figure 4c), indicating its effectiveness
in distinguishing lung cancer from healthy
individuals.

Discussion

We have demonstrated the characteristic changes of
the gut microbiota in early-stage lung cancer patients
and identified those microbial candidates that might
contribute to lung cancer development. The genus

Figure 3. Association between clinical variables and gut microbiota abundance. Heat map showing the relative abundances of the 50
most abundant species in samples grouped by metastatic status (a) and lung cancer subtypes (c), respectively. Species were in rows, and
the relative abundance was indicated by color gradient. The most significantly changed species were further analyzed in each group (b, d).
Description of boxplots was the same as in Figure 1. Two-tailed Wilcoxon rank-sum test, *p < .05, **p < .01, ***p < .001.
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Bifidobacterium and Faecalibacterium are more abun-
dant in controls, whereas the lung cancer patients
show the elevated Bacillus (Figure 2). Members of
Bifidobacterium have a variety of probiotic functions,
and achieve anti-cancer effects and reduce the inflam-
mation caused by TNF-⍺ and lipopolysaccharides
(LPS).34 TNF-⍺ can promote lung cancer metastasis
by inducing epithelial–mesenchymal transition.35

A major member of Faecalibacterium,
Faecalibacterium prausnitzii, is associated with anti–
inflammatory functions via inhibiting NF-κB activa-
tion and IL-8 secretion.36 Bacillus spp. in lung sputum
may be correlated with an increased lung cancer
risk.23

Beyond the simple description of gut microbiota
changes in lung cancer patients,37 our study pro-
poses the idea of species-based and OTU-based
predictors for early-stage lung cancer. We find
that the OTU-based predictor is more accurate
and reproducible, possibly due to the usage of
detailed 16 S rRNA gene sequences. In the optimal
13 OTU-based microbial markers, several species
have been reported to functionally impact upon
the host. Roseburia spp. can affect immune main-
tenance and anti–inflammatory effects through
a variety of metabolic pathways.38,39 Similarly,
Ruminococcus bromii-related microbes are abun-
dant in human and promote intestinal health by

degrading starch and producing SCFAs.40

Streptococcus infantis, significantly reduced in
lung cancer patients (Figure 2), is a microbe colo-
nized in the respiratory tract and causally linked to
the chronic lung disease via modulating pulmon-
ary innate immunity with detoxifying polycyclic
aromatic hydrocarbons (PAHs).23 The genus
Veillonella is associated with Th17-mediated
immunity in the lungs.41 Veillonella has been
linked to COPD,41 SCC and ADC.42 It may be
involved in tumor metastasis through VEGF-
b-mediated processes43 or the PI3K signaling
pathway.44 In addition to the above metabolic
pathways, bile acids (BAs) can activate various
nuclear receptors including TGR5, which is
recently shown to associate with advanced clinical
stages in NSCLC.45 Moreover, we have found
increased steroid biosynthesis, bile secretion, and
carbohydrate metabolic pathways in gut micro-
biota of lung cancer patients (Figure S2). It seems
possible that the lipid metabolites produced by gut
microbiota interact with host lipid homeostasis
and even get involved in the pathophysiological
processes. However, the detailed link between the
gut-lung axis and lung immunity or cancer devel-
opment remains to be further clarified.

Several other species enriched in lung cancer
patients are also reported in other diseases or
infections, such as Bacteroides thetaiotaomicron.
BLAST analysis of the sequence of
Bacteroides_unc gave the maximum of identity
(99.55%) with the 16S rRNA gene sequence of
Bacteroides thetaiotaomicron. This microbe can
infect tissues exposed to gut microbiota and
increase the free sialic acid in the gut, which can
contribute to the growth of pathogenic microbes
such as Clostridum difficile and Escherichia
coli.46–48

Different cancer types appear to have their own
unique gut microbial characteristics.49–53 In our
study, lung cancer patients also show a distinct
microbial signature (Figure 2), which is partially
shared by other cancer types. For example, phyla
Bacteroidetes also increases in colorectal cancer
and breast cancer,50,53 whereas genera
Bifidobacterium and Faecalibacterium prausnitzii
similarly decrease in pancreatic cancer and color-
ectal cancer, respectively.51,53 Interestingly,

Table 2. Thirteen OTU-based markers.
No. OTU ID and species level name

1 OTU818: Bacteroides_unc. versus OTU939:
Bacteroides_f__Bacteroidaceae ovatus

2 OTU163: Bacteroides_unc. versus OTU939:
Bacteroides_f__Bacteroidaceae ovatus

3 OTU786: Streptococcus infantis versus OTU312: Blautia_unc
4 OTU358: Erysipelotrichaceae_unc versus OTU1063: Blautia_unc
5 OTU236: Clostridiales_unc versus OTU1100:

Lachnospiraceae_unc
6 OTU1283: Roseburia faecis versus OTU1063: Blautia_unc
7 OTU888: Bacteria_unc versus OTU939:

Bacteroides_f__Bacteroidaceae ovatus
8 OTU163: Bacteroides_unc versus OTU1002: Bacteroides_unc
9 OTU1222: Clostridium_unc versus OTU1002: Bacteroides_unc
10 OTU1285: Ruminococcus bromii versus OTU1100:

Lachnospiraceae_unc
11 OTU890: Enterobacteriaceae_unc versus OTU312: Blautia_unc
12 OTU1353: Veillonella dispar versus OTU1100:

Lachnospiraceae_unc
13 OTU1222: Clostridium_unc versus OTU312 Blautia_unc

These markers were each formatted as “OTU1: species1 versus OTU2:
species2,” where OTU1 belonged to species 1 and the reference OTU2
belonged to species2.
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Akkermansia muciniphila, which increases in lung
cancer, is found to be altered in all the other four
cancer types discussed here.49–53 Moreover, this
microbe is further enriched in the patients with
advanced-stage lung cancer (Figure 3b), indicating
that it potentially contributes to lung cancer malig-
nant progression.

We also recognize several limitations of our
study. Although the 16S rRNA gene sequencing
is widely applied for microbiota characterization, it
has a limitation in uncovering the full genetic
contents when compared to metagenomic

sequencing. This method is also not very powerful
in characterizing microbiota at the species level.
Nonetheless, it is technically mature and afford-
able for large-scale study. Smoking is known to
increase the lung cancer risk by altering the pul-
monary microbial composition.54 We find that
smoking status has a significant impact upon cer-
tain microbes (Table S4), but three smokers could
not be distinguished from the nonsmokers by the
OTU markers (Figure S3). However, the fact of
only three patients in our study cohort requires
future recruitment of more smokers. Moreover, we

Figure 4. OTU-based diagnostic biomarkers for lung cancer. (a, b) Receiver operating characteristic (ROC) curves of prediction
efficacy for the OTU-based predictors using SVM (a) and PDI (b), respectively. Solid and dashed lines indicated the discovery
(patient = 42, healthy = 65) and validation (patient = 34, healthy = 40) cohorts, respectively. (c) PDI distributions in early-stage
patients and healthy controls. Two-tailed Wilcoxon rank-sum test, **p < .01.
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observe the decrease of the predictive accuracy in
the validation cohort. We reason this could be due
to the high inter-sample and inter-cohort variabil-
ity. Future enlargement of study cohort is expected
to further improve the prediction power.

In conclusion, we characterize the systemic
alterations of gut microbiota in lung cancer
patients. We uncover the microbial signature asso-
ciated with early-stage lung cancer and develop
a highly accurate OTU-based predictor for early
diagnosis of lung cancer.

Patients and Methods

Patient recruitment

All 76 fecal samples from lung cancer patients
were collected in Shanghai Pulmonary Hospital,
Tongji University School of Medicine. The 105
fecal samples from healthy volunteers were col-
lected in The Tenth People’s Hospital Affiliated
to Tongji University upon routine physical exam-
ination. Fecal samples were collected according to
the approved protocol by the local ethics commit-
tees ahead of procedure of enrollment, and written
informed consent was obtained from all patients
and volunteers. Lung cancer was diagnosed
according to the international guidelines by com-
prehensive consideration of lung biopsy, imaging
examination, clinical symptoms, physical signs,
laboratory tests, medical history, progress notes
and cancer-associated comorbidities. All clinical
information was collected according to standard
procedures. Patients suffering from gastrointest-
inal tract disorders were excluded. Individuals
who received antibiotics or probiotics within latest
8 weeks were excluded. As for healthy control
samples, physical examination including routine
examination of blood, urine, and feces, liver func-
tion, renal function, electrocardiogram, and chest
X-ray results were used to exclude any unhealthy
sample. Comprehensive clinical information for
the enrolled participants, including age, gender,
body mass index (BMI), tumor stage, tumor type,
tumor metastasis, and smoking status are summar-
ized in Table 1 and Table S1. The study was con-
ducted in accordance with the Declaration of
Helsinki and Rules of Good Clinical Practice.

Sample collection, DNA extraction, and
sequencing

Fecal samples freshly collected from each partici-
pant were immediately frozen and stored in −20°C
freezer as described.55 Total DNA was extracted
using the QIAamp DNA Stool Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s
protocols. The extracted products were deter-
mined by agarose gel electrophoresis (1% w/v
agarose). DNA quantification was measured
using NanoDrop 2000 (Thermo Scientific, USA).
The V3-V4 region of 16S rRNA gene was ampli-
fied with barcode-indexed primers 338F
(5’-ACTCCTACGGGAGGCAGCA-3’) and 806R
(5’-GGACTACHVGGGTWTCTAAT-3’), using
TransStart FastPfu Polymerase. Amplicons were
then purified by gel extraction (AxyPrep DNA
GelExtraction Kit, Axygen Biosciences, Union
City, CA, USA) and were quantified using
QuantiFluor-ST (Promega, USA). The sequencing
reaction was conducted using Illumina MiSeq
instrument (Illumina, San Diego, USA).

16S rRNA gene sequencing data analysis

Raw reads were processed using the QIIME software
package.56 In the discovery cohort, the average reads
and sequences were 44628.05 (min = 37036;
max = 44550), 437.19 (min = 430.42; max = 442.93)
in lung cancer group and 54293.15 (min = 48360;
max = 72175), 435.58 (min = 427.89; max = 445.46)
in healthy control group. In the validation cohort, the
average reads and sequences were 36754.50
(min = 30093; max = 44732), 436.42 (min = 430.94;
max = 441.39) in lung cancer group and 37909.93
(min = 30166; max = 44984), 433.69 (min = 427.13;
max = 444.96) in healthy control group. Each sample
has the reads number 22804 post-filtering and rarefy-
ing. Operational taxonomic units (OTUs) were
picked at 97% similarity cutoff, and the taxonomy
was analyzed by the RDP Classifier algorithm against
the Greengenes database. α-diversity was measured
from the OTU table post-filtering by the Chao and
Shannon indexes. β-diversity was estimated by
Unweighted UniFrac and Bray–Curtis measures,
which were applied to build phylogenetic distance
matrices and perform principal coordinates analysis
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(PCoA). ANOSIM analysis, namely the similarity
analysis, was a nonparametric test to compare groups
(two or more). These analyses were performed with
the free online platform of Majorbio I-Sanger Cloud
Platform (www.i-sanger.com).

Statistical analyses

Statistical analyses were carried out in GraphPad
Prism Software (San Diego, CA), QIIME and in
R packages (V.2.15.3). To work with normalized
data, we analyzed an equal number of sequences
from all samples in the discovery cohort. Wilcoxon
rank-sum test was used to identify microbiota differ-
ences. We performed Fisher’s exact test to analyze
contingency tables. P < .05 was considered significant.
Receiver operating characteristic (ROC) was used to
evaluate the performance of potential biomarkers.

Marker selection by mRMR

All markers retained were first filtered by the
minimal-Redundancy-Maximal-Relevance
(mRMR) algorithm,57 and the top 30 best ones
were screened from the discovery cohort and
selected for further analysis. Then, we performed
a backward selection strategy and a 10-fold cross-
validation search to select the optimal subset of
microbes, named as markers. We finally selected
a set of 13 gut microbial markers as the optimal
combination for patient discrimination.

Definition of PDI

To facilitate the clinical application of the selected
microbial markers, we further constructed a clinical
index, patient discrimination index (PDI), which is
partly related to a previously proposed index,22 for
discrimination of patients. However, one important
difference from its original version is that eachmarker
has been assigned with a weight, which could be
estimated through logistic regression. The PDIs
based on OTUs and species were calculated,
respectively:

PDIOTU=1-1/(1+exp(0.00142+
OTU818:s__Bacteroides_unc.VS.OTU939:
s__Bacteroidaceae ovatus×0.509+
OTU163:s__Bacteroides_unc.VS.OTU939:
s__Bacteroidaceae ovatus×-1.06+

OTU786:s__Streptococcus infantis.VS.OTU312:
s__Blautia_unc×-0.837+
OTU358:s__Erysipelotrichaceae_unc.VS.
OTU1063:s__Blautia_unc×-0.23+
OTU236:s__Clostridiales_unc.VS.OTU1100:
s__Lachnospiraceae_unc×-0.0581 +
OTU1283:s__Roseburia faecis.VS.OTU1063:
s__Blautia_unc×0.113+
OTU888:s__Bacteria_unc.VS.OTU939:
s__Bacteroidaceae ovatus×0.979+
OTU163:s__Bacteroides_unc.VS.OTU1002:
s__Bacteroides_unc×1.38+
OTU1222:s__Clostridium_unc.VS.OTU1002:
s__Bacteroides_unc×-0.668+
OTU1285:s__Ruminococcus bromii.VS.OTU1100:
s__Lachnospiraceae_unc×-0.185+OTU890:
s__Enterobacteriaceae_unc.VS.OTU312:
s__Blautia_unc×-0.0239+
OTU1353:s__Veillonella dispar.VS.OTU1100:
s__Lachnospiraceae_unc×0.0151+
OTU1222:s__ Clostridium_unc.VS.OTU312:
s_Blautia_unc×0.392))

PDISpecies=1-1/(1+exp(-8.07+
s__Odoribacte_unc.VS.
s__Oscillospira_unc×0.538+
s__Clostridium_unc.VS.s__Blautia_unc×-0.222+
s__Ruminococcus bromii.VS.
s__Lachnospiraceae_unc×-0.165+
s__Streptococcus_unc.VS.s__Coprococcus_unc×-
0.408+
s__Bifidobacterium longum.VS.
s__Lachnospiraceae_unc×-0.0764+
s__Ruminococcus_unc.VS.s__Blautia_unc×-
0.248+
s__TM7-3_unc.VS.s__Coprococcus_unc×-0.0978+
s__Erysipelotrichaceae_unc.VS.
s__Lachnospiraceae_unc×-0.833+
s__Roseburia faecis.VS.s__Coprococcus_unc×-
0.267))
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