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ABSTRACT
The intestinal mucosal barrier, which is composed of epithelial cells and mucus layers secreted by
goblet cells and contains commensal bacteria, constitutes the first line of defense against
pathogenic gut microbiota. However, homeostasis between the microbiota and mucus layer is
easily disrupted by certain factors, resulting in alteration of the gut microbiota and entry of
pathogens to the intestinal mucosal barrier. In this review, we describe the structures and
functions of the mucus layer, expound several crucial influencing factors, including diet styles,
medications and host genetics, and discuss how pathogenic microorganisms interact with the
mucus layer and commensal microbiota, with the understanding that unraveling their complex
interactions under homeostatic and dysbiosis conditions in the colon would help reveal some
underlying pathogenic mechanisms and thus develop new strategies to prevent pathogenic
microbiological colonization.
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Introduction

The human colon harbors a diverse community of
commensal microorganisms to promote the degrada-
tion of some indigestible residues and to resist colo-
nization by pathogenic species under healthy
conditions.1 Over the past decade, several studies
have focused on the composition of the gut micro-
biota under healthy and diseased conditions of the
host.2 Today, more studies have been carried out to
explore the interactions between the microbiota and
the host.

The first line of defense against pathogenic micro-
organisms is the mucosal barrier, which is made up of
the epithelium and a protecting overlying host-
secreted mucus layer and contains commensal
microorganisms.3 Colonic epithelial cells are com-
posed of five differentiated cell types, including enter-
ocytes, enteroendocrine cells, tuft cells, goblet cells, and
microfold (M) cells, which are responsible for absorp-
tion, hormone secretion, the taste-chemosensory
response, mucus production and antigen sampling,
respectively.4,5 The mucus secreted by goblet cells

continuously replenishes the mucus layer to lubricate
and protect the epithelial cells. In recent years, increas-
ing attention has been paid to the role of the mucus
barrier owing to changes in dietary habits and lifestyles,
such as the reduced consumption of fiber polysacchar-
ides and overuse or abuse of antibiotics.6–8 Such
changes in the composition of the colon microbiota
may eventually cause damage to the mucus barrier,
compromising the resistance to colonization by
incoming pathogenic bacteria.9,10

In this review, we describe the structures of the
colon mucus layer to gain a better understanding
about the mechanisms of the first-line defense
against pathogenic gut microbiota. In addition to
the interactions between the gut microbiota and
the host under homeostatic conditions, we also
explore the interactions between the gut micro-
biota and the host under dysbiosis conditions
such as drug usage, diet styles and host genetics.
Once the gut environment is disrupted, pathogens
have opportunities to invade the host, which will
be the focal point of the present review article.
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The structures of the colon mucus layer

The mucus layer of the colon contains two layers.
The thickness of the outer layer is 100 μm as
measured in mice and is approximately twice
that of the inner layer.11 The inner layer is strati-
fied into several thin sheets which are densely and
firmly attached to the epithelial cells and imper-
vious to bacteria.12 The outer layer, which is the
habitat of the commensal bacteria, is less dense
and unattached. The protective effect of the colon
mucus layer becomes weaker as a result of the
increasing permeability of the inner layer, increas-
ing bacterial colonization and encroachment on
the epithelial cells once the luminal microbiota
migrate from the disrupted outer layer to an inter-
ior position. (Figure 1)

The mucus layer is mainly composed of mucins
that are complex agglomerates of heavily
O-glycosylated proteins. Mucins are named in
order of their discoveries rather their functions and
structures. However, mucins can be functionally
classified in two major categories: transmembrane
mucins and gel-forming mucins. Transmembrane

mucins are usually produced by enterocytes to
cover their surface and regulate the local milieu. Gel-
forming mucins are secreted by goblet cells and
constitute the mucus layer. (Table 1) The MUC2
mucin is the most abundant secretory mucin synthe-
sized and secreted by goblet cells in the colon. The
MUC2 monomer forms dimeric COOH-termini
and trimeric NH2-termini, which together establish
large polymeric netlike structures that make up the
stratified inner mucus layer.11,13

Glycoproteins contain different glycans, which
provide nutrients and attachment sites for micro-
organisms and secrete antibodies targeting specific
microbial antigens to prevent pathogens from per-
sistently remaining on the intestinal epithelial
surfaces.24,25 In addition, O-glycosylated proteins
built in the protein core are rich in the amino
acids serine, proline and threonine; these struc-
tures are called PTS domains or variable number
tandem repeats (VNTRs).26 These PTS domains
provide sites for the attachment of polysaccharides
and bond with them through a series of glycosyl-
transferase enzymes. Four types of polysaccharide

Figure 1. The structures of the mucus layer in the colon.
The colon epithelium is covered by the mucus layer, which is mainly composed of mucins secreted by goblet cells. The colon mucus
layer contains two layers: the outer mucus layer is loose and thick, with diverse intestinal bacteria, and the inner mucus layer is
dense and thin, almost without any bacteria.
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core structures, which are attached by various gly-
cans, are composed of three polysaccharides
(galactose, N-acetyl-galactosamine and N-acetyl-
glucosamine).27,28 Different glycan chains will be
attached to the polysaccharide core structure, and
the terminal monosaccharide is usually fucose or
sialic acid. Eighty percent of the mucin biomass is
from the high polysaccharide content, which
simultaneously provides an important nutritional
resource for the mucus layer and an attachment
site for the gut microbiota.29

Commensal microorganisms and mucus
layers

Homeostasis between commensal
microorganisms and the mucus layers

The properties of the mucus layer play a crucial
role in protecting intestinal homeostasis. In addi-
tion to mucins, the mucus layers also contain
other substances such as TFF3, RELMβ, and
Fcgbp secreted by goblet cells; antimicrobial pep-
tides such as β defensin and lysozymes secreted by
Paneth cells; and secretory IgA secreted by enter-
ocytes, all of which contribute to the physical,
biochemical and immunological protection of the
mucus layer. The question arises of how the com-
plex protective system defends against pathogenic
microbiota without attacking the commensal
microorganisms. This defense is mainly attributed
to the immune system in that the epithelial cells
have the ability to distinguish commensal micro-
biota from pathogenic microbiota by pattern
recognition receptors (PRRs), such as cell surface

Toll-like receptors (TLRs) and cytoplasmic nucleo-
tide-binding oligomerization domain (NOD)
proteins.30–32

Four major phyla account for most of the intest-
inal microbiota, among which Firmicutes and
Bacteroidetes make up more than 90% of the total
intestinal microbes, while Proteobacteria and
Actinobacteria constitute the rest. However, it is
difficult to study the mucus bacteria by simply inter-
preting a fecal taxonomic analysis. Fecal samples, or
even luminal samples, cannot fully represent the
mucus populations.33 Several studies also found sig-
nificant heterogeneity between intestinal luminal,
mucosal and fecal microbiota.34–36 Hence, it is neces-
sary to establish innovative methods such as laser
capture microdissection and in vitro continuous cul-
ture systems to further identify the intestinal bacter-
ial populations growing on mucin surfaces.33,37

Commensal microorganisms rely on absorbing
undigested food polysaccharides and endogenic
glycans of the host as energy sources to feed
themselves. They also rely on binding sites to
create niches for themselves. Simple dietary sugars
are absorbed in the small intestine, while undi-
gested plant polysaccharides and host glycans are
utilized in the colon. To depolymerize these poly-
saccharides and glycans, the host-associated bac-
teria produce thousands of carbohydrate-active
enzymes (CAZymes), which encompass four dif-
ferent groups of enzymes: glycoside hydrolases,
polysaccharide lyases, carbohydrate esterases and
glycosyltransferases.4 Hence, the gut microbiome,
especially anaerobic bacteria such as Bacteroides,
mobilizes its machinery to metabolize complex
carbohydrates, leading to the production of diverse
metabolites such as short-chain fatty acids
(SCFAs), bile acids and other organic acids.

Because of its high polysaccharide content, the
mucus layer also serves as a nutrient source for
a distinct subset of gut microbiota species. In addi-
tion to these direct metabolic impacts, some nutri-
tional generalists could in turn regulate the synthesis
and secretion of mucins. Laura et al. found that
Bacteroides thetaiotaomicron could exert a positive
effect on the thickness and composition of the
mucus layer by increasing the differentiation of gob-
let cells and modulating the expression of mucin-
related genes.38 Furthermore, microbiota, especially
those colonized in the mucus layer, have proved to

Table 1. Expression of mucins in the colon.

Mucin
Produced
by cell type Function Reference

Transmembrane mucins
MUC1 enterocyte intracellular signaling; local milieu

sensing and regulation at the
surface of the enterocytes

13
MUC3 enterocyte 14, 15
MUC4 goblet cell;

enterocyte
16

MUC12 enterocyte 17
MUC13 enterocyte 18
MUC15 enterocyte 19
MUC17 enterocyte 20
MUC20 enterocyte 21
Secreted mucins
MUC2 goblet cell;

Paneth cell
the skeleton of the mucus layer 22

MUC5B goblet cell 22
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possess powerful immunomodulatory properties.
Akkermansia muciniphila, a representative mucus-
degrading bacterium, exhibits potential anti–inflam-
matory responses, maintains intestinal integrity and
regulates the resident gut microbiota under healthy
conditions.39,40 Bacteroides fragilis stimulates inter-
leukin 10 (IL-10) secretion and differentiation of
Treg cells to protect the host against colitis
by expressing polysaccharide A (PSA).41,42

Faecalibacterium prausnitzii could secrete microbial
anti–inflammatory molecules (MAM) to inhibit NF-
κB signaling and gut inflammation.43

Dysbiosis between commensal microorganisms
and the mucus layers

The dynamic intestinal balance is easily disrupted
under conditions such as unhealthy life styles,
consumption of drugs, or variants in the host
genetics, which would likely result in the loss of
beneficial and protective bacterial species, reduced
microbial diversity, or even the invasion of patho-
gens. Here, we discuss some factors affecting the
mucus layer. (Figure 2)

Diet
Diet has a very significant influence on the gut
microbiota and may change the mucus layer
directly or indirectly. Different food components
could shape the composition, diversity, and rich-
ness of the intestinal microbiota. Known to be
high in fat and sugar and low in dietary fiber,
a western-style diet (WSD) may reduce the diver-
sity of the gut microbiota, cause the disappearance
of beneficial species, and impair the mucus layer,
especially in the colon. Schroeder et al. found that
a reduction in gut microbiota diversity paralleled
or even preceded the increase in mucus penetr-
ability under a WSD, and the microbiota trans-
ferred from chow-fed mice could reverse the
WSD-induced impairment of the mucus
physiology.9 Another study reported a similar
finding that a WSD and a fructose diet induced
a sharp loss in the mucus thickness and defensin
expression in the colon.44 Desai et al. further dis-
covered that dietary fiber deprivation promoted
the erosion of the mucus by commensals and
allowed deeper access to the epithelial cells by
some pathogens.10 All of these findings proved

Figure 2. Dysbiosis between commensal microorganisms and the mucus layers.
A Western-style diet increases the number of mucus-degrading bacteria and weakens the thickness of the mucus. Drugs decrease
the diversity of the intestinal bacteria and cause overgrowth of opportunistic pathogens. Specific host genetics defects, such as
a decrease in some innate immune-related genes, cause abnormal changes in the mucous layer and induce gut microbiota dysbiosis.
All of these factors promote the growth of pathogens that erode the epithelium.
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that dysbiosis in the gut microbiota may be
responsible for mucus defects.

Themechanisms of how diets modulate gut micro-
bial ecology need further consideration. Long-term
dietary patterns can shape the gut microbiota, parti-
cularly protein and animal fat for Bacteroides versus
carbohydrates for Prevotella.45 The ratio of Prevotella/
Bacteroides has been used as an indicator of differ-
ences in industrialized and nonindustrialized human
populations, due to their different diets, e.g., the
amount of red meat and dietary fiber.46 For people
who have a tendency to eat a more non-Westernized
diet, the bacterial taxa in their gut would be enriched
in Prevotella to adapt for fiber and carbohydrate
fermentation. The main exogenous nutrient source
for colonic microorganisms is fiber. A long-term
reduction in fiber intake may lead to the permanent
extinction of some important microbial species.6

Some other commensal microbial taxa such as
Akkermansia muciniphila would instead switch to
binding glycans of the mucus layer with the increased
expression of the mucus-degrading CAZymes to
absorb mucin as a nutrient,47 Bacteroides thetaiotao-
micron would shift from fermentable polysaccharides
binding mucus glycans as a food source.48 However,
some probiotics such as Bifidobacterium strains can
repair the mucus defects by strengthening epithelial
function and promoting themucus growth.9 The food
source shapes the composition and function of gut
microbiota, thereby affecting the interactions between
diet and the mucus layer.

Drugs
Conventional antibiotics indiscriminately kill or
suppress the growth of both pathogenic and com-
mensal microbiota because of their general bacterio-
static and bactericidal effects. The use of these
antibiotics decreases the diversity of the microbiota
and compromises resistance to colonization by
potential pathogens. These pathogens that colonize
in the gut would utilize the mucus as their nutrient
source and establish themselves by suppressing com-
mensal microbiota. Carlstedt-Duke et al. found that
intestinal mucins broke down in healthy volunteers
who were administered with different oral antibio-
tics, especially bacitracin, clindamycin and
vancomycin.49 In addition, several studies demon-
strated that a metronidazole treatment reduced the
intestinal expression of MUC2 and diminished the

thickness of the mucus layer, thereby enhancing its
susceptibility to gut pathogens.50,51

Different kinds of antibiotics have different
impacts on the gut microbiota. One study chose
several different classes of antibiotics to observe
the alterations of the microbiota and assess their
resistance to C. difficile colonization on a murine
model. The results suggested that the diverse anti-
biotic perturbations varied in their susceptibility to
C. difficile colonization due to the diverse micro-
biome alterations. Individuals who were treated
with ampicillin showed the highest amount of
C. difficile colonization.52 Antibiotics can directly
perturb the taxonomic, genomic and functional
features of the microbiota and the species-species
interactions rapidly or persistently. A recent work
in a mouse model demonstrated that antibiotics
could also alter the availability of mucosal carbo-
hydrates by inducing a spike in the abundance of
host-derived free sialic acid in the gut, which can
be utilized by opportunistic pathogens to enhance
their growth and resistance.53 It is worth mention-
ing that clones carrying resistant genes could be
detected even several years after treatment.54

These evidence warrant remarkable prudence in
the administration of antibiotics during medical
treatments.

In addition to antibiotics, some commonly used
nonantibiotics such as antidiabetics, proton pump
inhibitors (PPIs), nonsteroidal anti–inflammatory
drugs (NSAID) and atypical antipsychotics
(AAPs), have been found to be associated with
alterations in the composition of the gut
microbiome.55–58 Maier et al. reported that 24%
of more than 1000 market drugs inhibited the
growth of at least one strain when cocultured
with 40 representative gut bacterial strains, resem-
bling antibiotic-like side effects.59 Although there
is little evidence on the direct effects of nonanti-
biotics on the colon mucus layer and mucins,
several studies reported that naproxen could
reduce the expression of gastric mucins and that
metformin could increase the abundance of the
mucus-degrading Akkermansia muciniphila and
SCFA-producing microbiota in the gut.60,61These
findings hint at a close relationship between some
nonantibiotics and the gut mucus layer, which
may open a new path for studying the impact of
medications on the health of the host.
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Host genetics
Some recent studies have demonstrated that host
genotypes can affect the composition of the gut
microbiome and the abundance of some of the gut
microbial taxa in both human and mouse
models.62,63 The innate host immune system has
been demonstrated to be a major determinant in
shaping the microbiome by genome-wide mbQTL
studies, especially via the innate molecules of pat-
tern recognition receptors (PRRs) including TLRs,
C-type lectins, NOD genes and RIG-I-like
receptors.64 Knocking out several of these mole-
cules in animal models resulted in gut dysbiosis.65–
67 Several studies in human populations also high-
lighted the importance of these host genotypes,
especially in patients with inflammatory bowel
disease (IBD). NOD2 is known to be the strongest
immunity-related IBD risk gene which could
change the gut microbiome composition.68 The
interaction of C-type lectin Dectin-1 with com-
mensal fungi was reported to be related to refrac-
tory ulcerative colitis.69 Chen et al. compared
monozygotic twins and found that the expression
of NLRP12 was downregulated in patients with
ulcerative colitis.70 NLRP12 could attenuate colitis
by maintaining colonic microbial diversity and
promoting protective commensal bacterial
growth.70 In addition to immune-related genes,
genes related to the mucus barrier and sugar diges-
tion also affect the gut microbiome, and variants
in these host genetics could lead to gut dysbiosis
and even to the occurrence of the disease.64

However, some major challenges hinder the devel-
opment of using the host genetics to regulate the
gut microbiome. It is difficult to eliminate the
environmental factors that mask the effect of
genetic variants. The complexity and heterogeneity
of the data require extensive histological examina-
tion and molecular characterization in future
cohort studies.

Pathogenic microorganisms and the mucus
layers

The mucus layer serves as an important firewall
during the invasion of enteric pathogens such as
Clostridium difficile, S. Typhimurium and entero-
toxigenic E. coli (ETEC). Here, we focus on how
pathogenic microorganisms interact with the

mucus layer and commensal microbiota and
expound the underlying mechanisms applied by
pathogens to promote colonization.

Pathogenic adhesion and damage to mucins

As mentioned above, mucins are highly glycosy-
lated proteins which provide attachment sites for
the gut microbiota. Bacteria can express specific
proteins to bind to mucins directly, such as
mucus-binding proteins (MUBs). Cell-surface
appendages, such as pili, fimbriae and flagella,
also play a key role in the attachment of bacteria
to the mucins. In addition, virulent strains bind
more tightly and efficiently to the mucus than
avirulent strains.71 Numerous studies have demon-
strated that specific pathogens colonize the gut by
adhering to the mucins; these include Clostridium
difficile, Escherichia coli, Listeria monocytogenes,
Salmonellae enterica serotype Typhimurium and
Vibrio cholerae.72 In addition, some microbiota
could be embedded in self-produced polymeric
matrices, known as biofilms, whereby they adhere
to other microbial populations and mucosal sur-
faces for the enhancement of antimicrobial resis-
tance, virulence and other functions.73

Adherence to the mucus layer is a requisite step
before pathogenic colonization. The pathogens
subsequently disrupt the colon mucus and epithe-
lial tight junctions. Some pathogens have the abil-
ity to break colonic mucin structures such as
peptide bonds, glycosidic linkages and/or epithelial
tight junctions.4 StcE and SslE, both belonging to
a metalloprotease of pathogenic E. coli, cleave the
mucins to make the epithelial cells accessible.74,75

EHEC also generates mucinases to degrade the
mucus and create a nutrient-poor environment
near the epithelium where the pathogens most
likely colonize.76 Additionally, Shigella utilizes
fimbria to attach to the mucins to deliver
a subset of effectors via a type III secretion system
(T3SS) into the colonic epithelium to alter cellular
and immune functions and promote infection.77

Mucin and commensal microbiota in
pathogenicity

To colonize themucus layer, pathogenic bacteria have
to compete with the commensal microbiota to harvest
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nutrients for their expansion. One method is to
exploit the oligosaccharides released from the mucins
by saccharolytic members of the microbiota. For
instance, Bacteroides thetaiotaomicron, widely used
as a model of Bacteroides to investigate syntrophic
links, has sialidase activity to harvest sialic acid but
lacks the catabolic pathway for its utilization.
Therefore, the sialic acid released by
B. thetaiotaomicron can be catabolized by C. difficile
and S. typhimurium to promote pathogen growth and
expansion.53 B. thetaiotaomicron can also cleave
fucose from host glycans via multiple enzymes, and
free fucose can be used as another carbon source for
S. typhimurium.53 Fucose is also a signaling molecule
to regulate the expression of EHEC’s virulence
repertoire.78 EHEC aims to achieve a particular
niche by closely adhering to the intestinal enterocytes
and competes with the commensal E. coli for nutri-
ents. EHEC can also use specific sugars that commen-
sal E. coli cannot utilize, such as galactose, mannose,
hexuranates and ribose.79

There is no doubt that the metabolites of commen-
sal microbiota, such as SCFAs and organic acids, are
ubiquitous and abundant in the gut. These metabo-
lites also have diverse impacts on pathogenic coloni-
zation. SCFAs such as butyrate protect mice against
some pathogens by reinforcing the defense of epithe-
lial cells and suppressing pathogenic virulence gene
expression.79,80 Jacobson et al. reported that propio-
nate could directly limit the growth of the pathogen
S. typhimurium by disrupting intracellular pH home-
ostasis to restrain pathogenic colonization.81 The
acidification of the SCFAs further promotes mineral
solubility and absorption by the colon.82 Ions such as
zinc possess anti-microbial ability to avoid gut
infections.83,84

However, microbial metabolites also have been
demonstrated to enhance pathogen growth under
some specific conditions. Zumbrun et al. found
that the elevation of the butyrate level in the gut
paradoxically enhanced the cell-killing capacity of
the Shiga toxin by feeding mice a high fiber diet
(HFD).85 Ferreyra et al. illustrated that Clostridium
difficile obtained a notable advantage through
metabolizing the organic acid succinate, especially
after a selective killing of succinate consumers
with an antibiotic treatment.86 All of these phe-
nomena seem to illustrate the complexity and
variety of the gut microbiota functions under

different circumstances, though more in-depth
studies are required to explore the underlying
mechanisms.

Conclusion

The intestinal mucosal barrier physically protects
the gut epithelial cells against pathogenic micro-
biota. Mucins are the main structural components
of the mucus layer, emphasizing their essential
biological status. The integrity of the mucus layers
depends on a number of genetic and environmen-
tal factors. These factors shape the gut microbiota
and change the mucus layer directly or indirectly.
Once the homeostasis between the mucus layer
and commensal microbiota is disrupted, patho-
genic microbiota would have opportunities to
attach to and encroach upon the mucus layer,
leading to enteric diseases.

A deep understanding of the mechanisms under-
lying the associations between the mucus layer, com-
mensal microbiota and pathogenic microbiota can
help develop new preventive strategies and therapies.
The prudent use of certain drugs, especially antibio-
tics, is advised due to their side effects on the micro-
biome. Moreover, some healthy diet styles should be
advocated to promote a stronger intestinal ecosystem.
Dietary fiber, which is considered a key ancestral
prebiotic, can help preserve gut ecology and regulate
macronutrients and host physiology.46 Currently,
polymicrobial biofilms, mostly consisting of patho-
genic species, have been observed in oral and intest-
inal infections, IBD and colorectal cancer.87,88 These
biofilms appear to be an early warning signal pro-
nouncing degenerative changes in the gut mucosa.
However, there are technological challenges inherent
in in situ microbiome research. Clinically reflective
models of intestinal biofilms, such as organoids, are
urgently needed to grasp the functional dynamics of
this complex community.37,89 Although more recent
research has started to illustrate specific interactions
of gut microbiota with mucins, epithelial cells or
immune cells, there is still a long way to go before
we can determine their relationships.
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