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ABSTRACT
The intestinal microbiota may be involved, through metabolic gut–brain interactions, in a variety of 
neurological conditions. In this addendum, we summarize the findings of our recent study inves
tigating the potentially modulatory influence of the microbiome in a transgenic ALS mouse model, 
and the possible application to human disease. We found that transgenic mice show evidence of 
dysbiosis, even at the pre-symptomatic stage, and have a more severe disease course under germ- 
free conditions or after receiving broad-spectrum antibiotics. We demonstrated that Akkermansia 
muciniphila ameliorated the disease in mice and that this may be due to the production of 
nicotinamide. We then conducted a preliminary study in human ALS and identified functionally 
similar alterations within the metagenome. Furthermore, we found that patients with ALS had 
lower systemic and CSF levels of nicotinamide, suggesting that the changes observed in the mouse 
model may be relevant to human disease.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neuro
degenerative disease causing relatively selective 
degeneration of upper and lower motor 
neurons.1 Host microbiome interactions can 
influence diseases in general, including neurolo
gical conditions.2–7 For example, distinct micro
biome and metabolomic profiles are observed in 
autism spectrum disorder,8 as well as in 
Alzheimer’s disease.9 Preliminary interventions, 
such as fecal microbiota transplantation or 
administration of probiotics may modulate 
brain activity10 and influence neurological disor
ders such as multiple sclerosis,11 Alzheimer’s 
disease,12 Parkinson’s disease,13 and epilepsy.14 

Generation of low molecular weight metabolites 
by the gut microbiome is one postulated mechan
ism; these compounds are capable of permeating 
the blood-brain barrier and influence neuronal 
function.2,3,15,16 Whether the gut microbiome 
influences ALS is controversial,17–20 leading us 
to further investigate the functional role of the 
microbiome in an ALS mouse model and in 
human disease.21

Lessons learned from the SOD1 transgenic ALS 
mouse model (Figure)

We used the G93A SOD1 transgenic (SOD1- 
Tg) ALS mouse model (Figure 1).22 In the first 
stage of our study, we used broad-spectrum 
antibiotics to deplete the microbiome of these 
mice. Microbiome-depleted SOD1-Tg mice had 
faster motor deterioration compared to SOD1- 
Tg mice with an intact microbiome. 
Comparison of the microbiome of SOD1-Tg 
mice to wild-type (WT) littermates showed 
SOD1-Tg mice had a distinctly different micro
biome composition, even before the onset of 
motor impairment; thus, suggesting alterations 
in the gut microbiome of SOD1-Tg mice were 
not secondary to motor dysfunction. When we 
examined the effects of the specific strains of 
commensal microbes on ALS progression, we 
identified a few commensals that adversely 
affected the disease, such as Parabacteroides 
distasonis and Ruminococcus torques. One com
mensal – Akkermansia muciniphila23 – stood 
out as having a favorable effect on the motor 
phenotype in SOD1-Tg mice. We then sought 
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to determine the possible mechanism by which 
A. muciniphila exerts its benefit on SOD1-Tg 
mice. The hypothesis underpinning this stage 
of the study was that A. muciniphila produces 
or modulates metabolites, which enter the ner
vous system of SOD1-Tg mice and exert 
a protective effect. Using a combination of 
untargeted metabolomic profiling and metage
nomics, we narrowed our search down to sev
eral metabolites. Of those, two metabolites – 
nicotinamide (NAM) and phenol sulfate – 
were further tested in mice. A. muciniphila is 
able to effectively increase NAM levels in the 
CSF of SOD1-Tg mice, we investigated whether 
continuous NAM supplementation could alter 
the disease course. We found that there was 
a significant improvement in motor function 
in the NAM-treated mice, with a non- 
significant trend toward improved survival. 

Phenol sulfate administration did not change 
the disease course.

A recent murine longitudinal study by another 
group – also on the SOD1-Tg mouse model – con
firmed that alternations within the microbiome are 
evident at the pre-symptomatic stage, being found 
as early as age 37 d – 27 d before motor 
deterioration.24 In contrast to our study, this 
study also found changes within the immune land
scape, occurring in parallel with dysbiosis; these 
changes were accompanied by epigenetic altera
tions, leading the authors to hypothesize that 
there is interplay between the microbiome, 
immune system and epigenetic shifts.

As SOD1 mutations are found in only a fraction of 
ALS patients,25 it will be important to investigate 
whether similar changes occur in other genetic ALS 
models and in the absence of identifiable mutations in 
human disease.26

Figure 1. The role of the gut microbiome and its metabolites in an ALS mouse model. (a) SOD-1 transgenic (SOD1-Tg) mouse model of 
ALS present a distinctly different microbiome composition, even before the onset of any motor impairment and altered metabolites 
configuration, leading to the deterioration of motor functions after 140 d. (b) Depletion of the gut microbiome by administration of 
broad-spectrum antibiotics in the drinking water or using germ-free SOD1-Tg mice induces a rapid exacerbation of the clinical 
symptoms of the disease. (c) Oral administration of Akkermansia muciniphila (AM), a specific commensal bacterium, has beneficial 
effects on the ALS clinical outcomes, slowing down its progression in SOD1-Tg mice. On the other hand, AM is able to produce 
metabolites which in turn reach the nervous system through the bloodstream and therefore could impact the course of the disease. 
Thus, systemic administration of nicotinamide (NAM) via osmotic pumps significantly improved motor functions in the SOD1-Tg 
treated mice.
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Potential relevance of our murine findings to 
human disease

The final stage of our study was to explore whether 
alterations observed in SOD1-Tg mice, were also 
present in human disease. We compared stool sam
ples from patients with ALS and healthy house
hold-matched controls. When we examined the 
global bacterial gene content, there was no clear 
difference between the abundance of specific bac
terial species. However, we found that patients with 
ALS had a functional decrease in key bacterial 
genes that were involved in NAM metabolism. 
Interestingly, we found that several of the genes 
mapping to the A. muciniphila genome were sig
nificantly less abundant in patients with ALS.

Our findings in mice suggest that A. muciniphila 
may be beneficial in ALS, mediated via changes in 
the NAM metabolic pathway. To test whether simi
lar changes in metabolic derangements occur in 
human disease, we obtained serum and CSF sam
ples from patients with ALS and compared them to 
healthy controls. NAM levels were markedly 
decreased in human ALS sera and CSF, compared 
to controls; significant alterations of serum meta
bolites of NAM were also observed between these 
groups. NAM levels in patients with ALS were 
related to levels of the microbiome gene encoding 
the rate-limiting step of NAM biosynthesis. 
Interestingly, serum NAM levels tended to be 
lower in people with more advanced disease.

Taken together, the preliminary human data 
supports the possibility that microbiome-derived 
metabolites (such as NAM) may ultimately reach 
the CNS where they can modify the disease process. 
Although the murine data provides evidence of 
cause and effect, the human studies were purely 
observational and do not support causality.

Our murine study established a possible causal 
relationship between the microbiome and ALS pro
gression. In order to assess causality in human 
disease, we believe there are a number of key ques
tions that should be addressed, namely: How may 
the ALS disease process itself affect the micro
biome? Do known ALS risk factors – both genetic 
and environmental – affect the microbiome? Do 
changes in the microbiome precede neurodegen
eration in human disease? In this regard, it is 
important to consider that secondary factors such 

as nutrition, physical activity, and autonomic 
changes, occurring during the course of the disease, 
could have an impact on the microbiome and meta
bolic features as well.

Finally, interventional studies are planned by our 
group as well as others,27,28 which will hopefully 
provide evidence of causality, and more impor
tantly therapeutic benefits.

How may ALS affect the microbiome?

The human form of ALS is a complex condition, 
and there are many ways in which the disease 
process itself could impact on the microbiome.29,30

Addressing these potentially confounding effects 
in human disease will be a major challenge to 
establishing causality.

Bulbar dysfunction affecting food and liquid 
consumption

ALS causes progressive degeneration of upper and 
lower motor neurons (UMNs and LMNs, 
respectively);1 the degeneration includes UMNs 
within the corticobulbar tract and LMNs within 
lower cranial nerve motor nuclei. Dysfunction of 
either of these neuronal populations results in weak
ness of the muscles involved in mastication, tongue 
mouth, cheek movement, and protection of the air
way during swallowing. Thus, people with ALS tend 
to eat and drink at a slower rate, often reducing the 
quantity and changing the quality of the food and 
liquids they consume. All these changes may impact 
the microbiome.31 Poor nutrition results in acceler
ated weight loss, including loss of muscle mass which 
worsens the prognosis.17 Furthermore, when cortico
bulbar dysfunction is prominent, patients will often 
complain that they become highly intolerant to spicy 
food,32 as this may often trigger laryngospasm.

The bacterial microbiome of the mouth is likely 
affected by bulbar dysfunction in ALS, as oral 
hygiene is a challenge in this scenario.33 Oral stasis 
in ALS would be expected to influence the oral 
microbiome and, in turn, the intestinal 
microbiome.34,35 Potential future avenues of 
research should include a comparison of the micro
biome in bulbar versus non-bulbar patients, to ascer
tain how bulbar dysfunction may affect both the oral 
and the intestinal microbiome.
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Infections and antibiotic exposure

Infections are common in people with ALS, pneu
monia being the most frequent, due to 
a combination of frequent aspiration, difficulty 
clearing secretions, and incomplete lung 
expansion.36 Gastrostomy tubes may also become 
infected37 and immobility may lead to pressure 
sores and skin infections.38 As such, people with 
ALS have more frequent exposure to antibiotics, 
which would impact the microbiome.39 Episodes 
of infection are a marker of poor prognosis in 
ALS, and pneumonia is often the cause of 
death.40–42 Infections could worsen the disease by 
a multitude of mechanisms, such as exacerbation of 
respiratory failure or promoting a hypercatabolic 
state. Nevertheless, it is possible that the effects of 
antibiotics on the microbiome in ALS could worsen 
prognosis. Future research directions could include 
evaluation of the microbiome before and after anti
biotic therapy in ALS patients, and an attempt to 
re-institute the pre-antibiotic microbiome after 
antibiotic therapy in these patients.

Food supplements and replacements

When dysphagia progresses, most people with ALS 
opt for gastrostomy feeding.32 There are various liquid 
formulae available and it is unclear how these affect 
the microbiome. At earlier stages of the disease, many 
patients with ALS choose to take a variety of food 
supplements, vitamins, and minerals, despite lack of 
evidence of efficacy.43,44 Some of these may also 
impact the microbiome. Given the plethora of sub
stances that people with ALS ingest in the absence of 
medical advice, it will be challenging to untangle this 
subject. That being said, it would be important to 
assess the relative effects of the various nutritional 
substitutes – those prescribed by nutritional consul
tants – on the microbiome.

Drugs

Riluzole and Edaravone are the only FDA- 
approved disease-modifying medications in ALS. 
Riluzole is absorbed via the GI tract, while 
Edaravone is given intravenously, but could still 
potentially affect the microbiome through the cir
culation. In addition, a variety of symptomatic 

treatments are frequency employed, which could 
all potentially affect the microbiome.32

GI function

Although ALS does not usually cause symptoms 
related to the autonomic nervous system, constipation 
is a frequent complaint in people with ALS.32 Indeed, 
gastrointestinal motor dysfunction – namely delayed 
gastric emptying and slowed colonic transit – are 
likely to be an under-recognized feature of ALS.45 

Altered dietary habits, dehydration, and the effect of 
drugs may also contribute. Drugs with anticholinergic 
effects are often taken to decrease airway secretions 
and sialorrhea – these drugs affect GI motility, which 
could have a knock-on effect on the microbiome.

In addition, structural alterations have been 
demonstrated at the cellular level within the intes
tine of SOD1-Tg mice.9 The authors found 
increased permeability and leakiness, occurring 
together with decreased expression of junctional 
proteins. These changes were accompanied by 
accumulation of abnormal Paneth cells, which reg
ulate innate immune responses, and shape the 
microbiome. They suggest these changes lead to 
systemic immune-dysregulation, thought to be an 
important pathogenic process in ALS.46

Other motor dysfunction

A general lack of movement can contribute to poor 
GI motility and constipation.32 Weakness of 
abdominal muscles can impair the process of fecal 
evacuation and contribute to constipation. As such, 
laxatives suppositories and enemas are frequently 
used, which can also alter the microbiome.47

Could known risk factors for ALS affect the 
microbiome?

Our mouse study provided evidence that the micro
biome can influence the disease phenotype, but does 
not give any insight as to whether the microbiome 
could influence the development of ALS, per se.

In recent years there has been an explosion of 
genetic research providing insights into the patho
genesis of ALS at the molecular level. Some people 
with ALS have a family history and have a known 
pathogenic mutation (such as C9Orf72 or SOD1).2 
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More importantly, many people without a family 
history of ALS are found to have genetic alterations 
which are either know to or suspected of causing 
ALS.48,49 As such, a concerted effort is being made 
to delineate the variety of genetic factors that could 
potentially contribute to the disease.

Nevertheless, there are a number of epidemiolo
gical factors that seem to be associated with ALS 
that have established links with the microbiome. 
A number of vascular risk factors seem to be pro
tective against the development of ALS;50 these 
include high BMI,51 type II diabetes,50 and 
dyslipidemia.52,53 Conversely, cigarette smoking 
increases the risk of ALS.54 All of these modifying 
factors have important interactions with the 
microbiome,55–60 which could be one mechanism 
via which these factors produce their effect, whether 
protective or conferring risk. Furthermore, people 
with high BMI or diabetes consume more non- 
calorific artificial sweeteners, which in turn produce 
changes within the microbiome.61,62 It is not clear 
how the genetic and environmental factors inter
play; it has been suggested, for example, that 
a genetic pre-disposition to athleticism may predis
pose to ALS, in other words, the same genetic var
iants that allow high performance in athletics could 
predispose to ALS.1,63,64 It is also possible that some 
genetic ALS risk factors could be influencing the 
microbiome in a way that predisposes to ALS.

A large case–control study in Sweden found that 
patients with ALS were more likely to have received 
antibiotic prescriptions in the 8 y prior to diagnosis. 
The authors speculated that differences could be 
due to an altered microbiome.65 Unfortunately, no 
genetic data was presented in this study, as this 
could indicate whether dysbiosis could be trigger
ing ALS onset in the genetically susceptible, or play 
a more central etiological role.

Potential future avenues of human research

Observational studies

A longitudinal study in pre-symptomatic ALS 
gene carriers would be a critical step to under
standing the temporal relationship between 
microbiome alterations, and disease course. It is 
of particular importance to determine whether 
dysbiosis is occurring prior to symptom onset in 

human disease, as neurophysiological and neuro
pathological changes precede ALS symptom 
onset.1,66 We have initiated such a study in pre- 
symptomatic C9Orf72 gene carriers. Longitudinal 
studies in the broader ALS population, starting at 
diagnostic suspicion, would also be valuable in 
identifying changes occurring earlier in the 
disease.

Therapeutic interventions

Studying the microbiome in ALS may uncover 
metabolic changes affecting the disease process. 
Our study established that A. muciniphila increases 
NAM levels in the CSF of SOD1-Tg mice, and 
treating these mice with NAM improved motor 
function.21 Although it is tempting to extrapolate 
these changes to other progressive neurological 
conditions, current evidence in both humans and 
mice suggests otherwise; for example, Akkermansia 
species may be enriched in Alzheimer’s disease,9,67 

Parkinson’s disease,68 and multiple sclerosis.69,70

In addition to therapeutic fecal microbiota trans
plantation trials in ALS, our findings also support 
metabolite-based treatment strategies, such as 
NAM supplementation.

Conclusion

The microbiome may be altered in ALS mice and can 
influence disease progression in this model. Some of 
these changes seem to be relevant to human disease. 
The mechanisms underlying these changes could 
involve an interplay between the microbiome, struc
tural changes within the gut, gut-derived metabolites, 
and the immune system. We believe that interven
tional human studies are now warranted. Whether the 
microbiome could have an etiological role in ALS is 
an important avenue for further research.
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