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ABSTRACT
Immunotherapy using immune-checkpoint inhibitors is revolutionizing oncotherapy. However,
the application of immunotherapy may be restricted because of the lack of proper biomarkers in
a portion of cancer patients. Recently, emerging evidence has revealed that gut commensal
bacteria can impact the therapeutic efficacy of immune-checkpoint inhibitors in several cancer
models. In addition, testing the composition of gut bacteria provides context for prediction of the
efficacy and toxicity of immunotherapy. In this review, we discuss the impacts of gut commensal
bacteria on the tumoral immune milieu, highlighting some typical bacteria and their associations
with immunotherapy.
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Introduction

Immune-checkpoint inhibitors (ICIs) have opened
a new era of oncotherapy. Currently, numerous
clinical trials investigating ICI efficacy are ongoing
across a large range of cancer types.1 Accordingly,
first-generation ICI drugs targeting CTLA-4, PD-
1, or PD-L1 have been approved for fourteen
indications.2 In general, the response rates to one
of these drugs used alone vary from 20% to 40%.3,4

More strikingly, a portion of patients can achieve
complete remission of tumors after receiving this
therapy.5

Although ICI therapy tinctures offer cancer
patients hope of a cure, the priority task is determin-
ing the biomarkers with high specificity and sensi-
tivity to predict the candidates who can benefit from
ICI therapy with more precision. Currently, the
available biomarkers for selecting patients receiving
ICI therapy include PD-L1,6 tumor mutational bur-
den (TMB),7 high microsatellite instability (MSI-H),
and deficient mismatch repair (dMMR).8 On this
basis of MSI-H or dMMR, the drug approved by
the FDA is pembrolizumab, regardless of cancer
type.9 Nevertheless, different types of cancer have
express biomarkers useful for selecting candidates

for ICI therapy. For example, PD-L1 positivity and
a high TMB value in patients with non-small cell
lung cancer (NSCLC) and presentation with MSI-H
or dMMR by colorectal cancer patients have been
well-established markers.8,10 In addition to such bio-
markers, several other ICI-therapy-associated bio-
markers are being explored.11,12

As revealed by the molecular characteristics com-
mon across cancers, immune-associated biomarkers
are also being discovered.13–15 Hence, intestinal com-
mensal bacteria have attracted public interest because
it is believed that intestinal commensal bacteria shape
human immunity,16,17 presenting that disturbed
homeostasis of bacterial ecosystem enables host
immunity to be abnormal.18 This imbalance can be
translated into ICI therapy. Emerging data have sup-
ported the idea that evaluating intestinal bacteria is
a new route by which to predict the therapeutic
response to and toxicity of ICI drugs.11 For example,
commensal bacteria that can synergize with ICI ther-
apy in tumoricidal processes include Bifidobacterium
longum,19 Collinsella aerofaciens,19 Enterococcus
faecium,19 Faecalibacterium genus bacteria20 and
Akkermansia muciniphila in humans.21 In addition,
poor efficacy of ICI therapy appears to be associated
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with increased frequency of Bacteroides in the gut.20,22

Referring to ICI-associated toxicity, it has been
revealed that patients with a higher fecal level of
Bacteroidales commonly exhibit lower incidences of
colitis than those with lower levels.23 Conversely, can-
cer patients who have used antibiotics long term have
not only a poor response to ICI therapy but also an
increased incidence of ICI-related toxicity.24,25 It has
been shown that antibiotics are able to reduce the total
number and diversity of commensal bacteria in the
gut.25 In this regard, homeostasis in the ecosystem of
commensal bacteria is critical for ensuring the effec-
tiveness of ICI therapy. Thus, a prevailing proposal has
been presented suggesting that the richer of diversity
of the commensal bacteria, the better response to ICI
therapy is likely to be.19 Currently, several clinical
trials concerning oral supplementation of commensal
bacteria for improving the therapeutic efficacies of ICI
therapy are ongoing (NCT03772899 and
NCT03686202). However, the mechanisms by which
gut commensal bacteria mediate the efficacy of ICI
therapy are indeed complicated because bacteria-
primed immune processes that favor ICI therapy
have not been established for certain species. Instead,
a community of bacteria elicits the tumoricidal
response.26 In this review, we discuss the role of com-
mensal bacteria in regulating host immunity and their
influence on tumoral immune milieu formation, thus
providing a rationale for commensal bacteria in guid-
ing ICI therapy.

Composition and physiological functions of gut
commensal bacteria

The gut contains a microbial world. As esti-
mated, 3.8 × 1013 bacteria exist in the lumen,27

and most are commensal. Among these bacteria,
the number of species ranges from 500 to 1000.28

Approximately 98% of these bacteria belong to
Bacteroidetes and Firmicutes phyla, whereas
Fusobacteria, Actinobacteria, Proteobacteria,
Verrucomicrobia and Cyanobacteria account for
a only a minor portion.28–30 A healthy intestine
provides an environment that favors the growth
of anaerobes.31,32 However, significant differ-
ences characterize bacterial diversity among
individuals.33 Therefore, dietary habits and liv-
ing environment are factors influencing the bac-
terial diversity in gut.34,35

At steady state, gut commensal bacteria have ben-
eficial effects on the hosts in several respects, includ-
ing maintaining epithelial homeostasis and a barrier
function,36,37 facilitating food digestion and nutrient
absorption, synthesizing bioactive substances in
favor of cell metabolites, and shaping the host
immunity.38,39 In terms of host immunity, gut com-
mensal bacteria control the polarization of several
T cell subsets, such as Th1, Th2, Th17 and Treg cells,
thus enabling the host to defend against foreign
stimuli while sustaining an immunotolerant
milieu.40 During human evolution, the diversity of
commensal bacteria was reduced in the gut
constantly,35 causing abnormal colonization of com-
mensal bacteria, sluggishness in the physical func-
tions of the bacteria, and abnormal immunity.41

Consequently, hosts are prone to increased suscept-
ibility to autoimmune diseases or even cancer.18 This
notion has been typically translated into gastric and
colorectal cancer, in which collective commensal
bacterial dysbiosis is an intrinsic factor that induces
carcinogenesis.42,43 In fact, reduced diversity repre-
sents a paradigm of bacterial dysbiosis.

Gut commensal bacteria in the regulation of host
immunity

Gut commensal bacteria shape host immunity. In
general, gut bacteria use antigens and metabolites
to induce immune cell commitment.44 In contrast,
the composition of the gut bacteria is maintained
at a physical level by the substances provided by
the gut immune and epithelial cells.45 Therefore,
IgA secreted by gut B cells or IgM secreted by
plasma cells is critical in defending against the
outgrowth of pathogenic bacteria in the gut.46 In
parallel with these secretions, mature epithelial
cells, especially Paneth cells, can produce various
anti-microbial peptides to sustain the bacterial
ecosystem in the gut, enabling a moderate level
of fixed bacteria.45 On this basis, this bacterial
community is helpful in protecting against the
occurrence of immune abnormity.

In general, T cell polarization in the gut induced by
commensal bacteria can present in either a dendritic
cell (DC)-dependent or DC-independent manner.47

DCs are professional antigen-presenting cells in
humans.47 Especially in a bacterial antigen-enriched
milieu, the pattern recognition receptors (PRRs) and
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damage-associated molecular patterns (DAMPs) are
crucial molecules that mediate DCs in recognizing
and subsequently responding to antigens.48,49

Thereafter, DCs process such antigens into adaptive
immune cells by manipulating their survival and
function through DC-produced cytokines under
given conditions.50 After this process, commensal
bacteria such as Lactobacillus sakei and
Bifidobacteria are reported to have the capacity to
upregulateMHC-II expression by DCs while recruit-
ing them into the gut.51,52 Functionally, the antigens
presented by MHC-II molecules are able to activate
naïve T cells while priming their differentiation into
other T cell subsets (Figure 1). Independent of DCs,

gut B cells, macrophages, or other innate immune
cells, such as NK cells and innate lymphoid cells, can
also be activated by lumen bacteria presenting immu-
noregulatory phenotypes (Figure 1).53 For example,
in gut Peyer′s patches (PPs), bacterial antigen pre-
sentation by epithelial M cells serves as a route for
inducing B cell activation, allowing for IgA, IgM and
IgG to clear pathogens.54 In this situation, the com-
plex of commensal IgG can be cleared by residual
macrophages.55 In response, the macrophages
increase the production of IL-1β along with stimulat-
ing neutrophils and Th17 cells to clear the intestinal
infection.55 Similar effects can be induced byNKcells
as well. For example, Bacteroides fragilis and

Figure 1. Contributions of gut commensal bacteria and their metabolites to the host immune system. Based on the function of
antigen-presenting cells, such as DCs, NK cells, and macrophages, commensal bacteria mediate the differentiation of naïve CD4 + T
cells into different subgroups, such as T-bet+ Th1 cells, GATA3+ Th2 cells, RORγt+ Th17 cells, and FOXP3+ Tregs, which further
contribute to different immune modulation responses, and the production of various cytokines, such as TGF-β, IFN-γ and ILs.
Immune regulation can be mediated not only by bacteria but also by their metabolites, especially SCFAs and AHR ligands, exerting
functions by binding GPCRs and AHR on the surface of epithelial cells and immune cells, respectively, which subsequently contribute
to augmented epithelial barrier function and improved gut immune tolerance. Conversely, some immune cells and epithelial cells
can also mediate the balance of bacteria by secreting antibacterial substances, such as B cells secreting IgA, Goblet cells secreting
mucins and Paneth cells secreting antimicrobial peptides, etc. Overall, microbiota-immune cross-talk contributes to gut homeostasis
by forming a relatively stable feedback loop. SCFAs, short-chain fatty acids; AHR, aromatic hydrocarbon receptor; GPCRs, G protein-
coupled receptors; TCR, T cell receptor; PRR, pattern recognition receptor; DAMP, damage-associated molecular pattern; MHC-II,
major histocompatibility complex II; B7, B7.1(CD80)/B7.2(CD86); DC, dendritic cell; NK, natural killer cell; NE, neutrophil; Treg,
regulatory T cell; CTL, cytotoxic T lymphocyte; ILC, innate lymphoid cell; IFN-γ, interferon-γ; TGF-β, transforming growth factor;
and IL, interleukin.
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Salmonella can directly activate NK cells by interact-
ing with TLR4 or TLR9, thus increasing NK cell
cytotoxic activity.53,56

Similar to bacterial antigens, the metabolites
processed by commensal bacteria are critical in
immunity homeostasis.44 For example, the most
critical substances are short-chain fatty acids
(SCFAs) (Figure 1). SCFAs can be generated by
gut commensal bacteria such as Lactobacillus,
Bacteroides, Bifidobacterium, and Akkermansia

muciniphila after they conduct glycolysis of food
fibers.57,58 SCFAs are able to sense immune cells,
including DCs, T cells and B cells, with respect to
increasing the gut numbers of Treg cells and DCs
with a tolerogenic phenotype, minimizing Th2
cell-associated immune responses and improving
the secretion of IgA by gut B cells.59 Alternatively,
Lactobacillus spp. are able to utilize tryptophan to
produce indole-3-aldehyde, which interacts with
the aromatic hydrocarbon receptor (AHR) on

Figure 2. Potential mechanism that explains the anticancer or pro-cancer effects of some candidate ICI-therapy-associated bacteria
by shaping the host immune status. Lactobacilli may upregulate the expression of MHC-II on DCs, enhance the activity of NK cells
and macrophages, and improve Th1-mediated immune responses as well as increase the production of IFN-γ in tumors. The effects
described above facilitate the anticancer potential of Lactobacilli. Bifidobacteria can improve the efficacy of anti-PD-L1 therapy by
upregulating the expression of MHC-II on DCs, promoting Th1 polarization and CTL accumulation in the tumor microenvironments,
and reducing the toxicity of anti-CTLA-4 therapy through enhanced Treg cell metabolism. Akkermansia muciniphila can enhance the
efficacy of anti-PD-1 therapy in a manner dependent on the enhanced IL-12-dependent Th1-related immune response, along with
increased levels of IFN-γ and TNF-α and decreased levels of IL-4 and IL-10. The results from a preclinical trial confirmed that
Bacteroidetes can restore anti-CTLA-4 treatment efficacy by enhancing the IL-12-dependent Th1-related immune response, whereas
these bacteria are associated with poor clinical outcomes of anti-CTLA-4 or anti-PD-1 therapy in human clinical trials. Fusobacterium
nucleatum can promote tumor progression in gastrointestinal cancer and pancreatic cancer, and it is verified to be associated with
reduced density of CD3 + T cells, exhaustion of NK cells, and augmentation of M2 polarization along with accumulation of MDSCs in
tumor microenvironments. These effects may be closely linked with their colonization in tumors.
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innate immune cells to induce their secretion of
IL-22 (Figure 1).60 In addition, SCFAs can induce
epithelial cells to upregulate the production of
anti-microbial peptides.59,61 In summary, gut com-
mensal bacteria are essential for gut immunity.

Commensal bacteria, tumoral immune milieu
and effectiveness of ICI therapy

Immune deficiency serves as a critical factor for
cancer pathogenesis.62 Mechanically, an action
called immunoediting represents cancer cell clone
evolution over time after the host immune clear-
ance, thus enabling the clones with low immuno-
genicity to be preserved.63 In this setting,
commensal bacteria can cross-talk with the resi-
dual cancer cells directly or indirectly to facilitate
their aggressive behaviors.64 For example, intest-
inal bacterial dysbiosis is a state of early gut carci-
nogenesis, while intestinal bacterial dysbiosis
persists during cancer progression.65 For example,
Fusobacterium nucleatum (F. nucleatum) are
regarded as ‘Oncobacteria’ of colorectal cancer
because they can self-localize into tumors to facil-
itate their growth, induce chemoresistance and
conduct immunosuppression.66 In another para-
digm, an event called ‘bacterial succession’ suggests
that one type of bacterium, followed by the others,
continues to perform its oncogenic functions dur-
ing different periods.67 As an example of this
notion, Helicobacter pylori plays a pioneering role
in inducing early lesions of gastric cancer,68 and
other bacteria, such as F. nucleatum, continue to
perform their function in promoting tumor
progression.69 Similar to it effect in colorectal can-
cer, intestinal bacterial dysbiosis also influences
pancreatic cancer pathogenesis.42,70 For example,
antibiotics can be used to support the management
of pancreatic cancer when the tumoral neoantigens
share similarity with the antigens on bacteria.71 In
this situation, tumoricidal T cells potentially recog-
nize bacterial antigens, thus misleadingly clearing
bacteria instead of tumor cells. In this regard,
immunosuppression in tumors naturally requires
bacterial participation. In fact, recent data support
this notion, suggesting that intestinal bacteria
influence the tumoral immune milieu mainly by
altering the tumoral density of immune cells and
changing their cytokine production.72 In general,

commensal bacteria have discriminating roles in
this event. By using the syngeneic melanoma or
sarcoma transplantable tumor models, it was
revealed that supplying mice with feces of human
ICI responders can significantly enhance tumor
remission after anti-PD-1 or -PD-L1 therapy.19–21

For example, such feces were found to upregulate
PD-L1 expression in the tumor microenviroment
of melanoma mice.20 By contrast, feces from non-
ICI-responders can even promote tumor
progression.20 Therefore, commensal bacteria are
able to distort the effectiveness of ICI drugs.72 In
the following section, we introduce the contribu-
tions of some commensal bacteria in altering the
tumoral immune milieu and analyze their roles in
improving or distorting the efficacy of ICI drugs
(Figure 2).

Lactobacilli

Lactobacilli are the most common probiotics dis-
tributed in the gut. They belong to the Firmicutes
phylum. At the genus level, Lactobacillus includes
more than 150 species, and most of them are
facultative anaerobic bacteria. Among them,
Lactobacillus reuteri (L. reuteri), Lactobacillus acid-
ophilus (L. acidophilus) and Lactobacillus casei
(L. casei) serve as common bacteria corresponding
to intestinal health and disease.73

At steady state, several strains of L. reuteri can
exert their functions, including promotion of Treg
cell development and reduction in pro-
inflammatory cytokine production, thus protecting
against the exacerbated inflammation in gut.73 In
fact, independent of Treg cells, L. reuteri also exhi-
bits potency in inhibiting Th1- or Th2-related
immune responses because L. reuteri are capable
of restoring the levels of plasma inosine, which are
dedicated to reducing IFN-γ and IL-4 along by
inhibiting Th1/Th2 polarization via inosine–adeno-
sine A2A receptor interactions (Table 1).74

Similarly, the supernatant from in vitro cultured
L. reuteri is able to reduce TNF-α production by
human myeloid cells, suggesting that the metabo-
lites of L. reuteri also exert an anti–inflammatory
effect.75 In addition to the aforementioned intrinsic
roles, tryptophan catabolites generated by L. reuteri
can eventually promote the proliferation of
CD8+CD4+ double-positive intraepithelial
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lymphocytes (Table 1).76 After this proliferation is
initiated, tryptophan catabolites act as ligands of
AHR. Upon the AHR-ligand interactions, the pro-
duction of IL-22 by innate lymphoid cells is
improved.77 Functionally, IL-22 can protect the
intestine against infection synergistically with IL-
17 through the induction of enterocyte expansion
and antibacterial peptide production. However, in
colorectal cancer, IL-22 is able to promote tumor

progression.78 In the latter situation, administration
of the L. casei BL23 strain to mice bearing colorectal
cancer reportedly reduced the tumoral level of IL-
22; thus L. casei BL23 serves as a candidate treat-
ment against colorectal cancer progression
(Table 1).79

ConcerningL. acidophilus, previously reporteddata
suggested that oral administration of L. acidophilus to
breast cancer-bearing mice could activate NK cells

Table 1. Effects of potential immune-associated bacteria on the host immune system.
Bacteria Model Effects on the immune system Refs

Lactobacillus reuteri Treg-deficient mice Decreased levels of IFN-γ and IL-4;
Inhibition of Th1- or Th2- responses.

74

Germ-free mice and mice without
CD8+CD4+ double-positive intraepithelial
lymphocytes

Induction of CD8+CD4+ double-positive intraepithelial lymphocytes
cells.

76

Breast cancer-bearing mice Induction of CD4+CD25+ Treg cells;
Suppression of mammary tumorigenesis.

109

Lactobacillus
acidophilus

Breast cancer-bearing mice Increased levels of IFN-γ, IL-4 and TGF-β;
Establishment of a Th1 protective pattern.

80

Lactobacillus brevis Breast cancer-bearing mice Increased levels of IFN-γ, TNF-α, IL-2, IL-17;
Increased cytotoxic activity of NK cells.

81,82

Lactobacillus casei Colorectal cancer-bearing mice Reduced level of IL-22;
Increased levels of IL-6, IL-17, IL-10, TGF-β;
Mediation of Treg-to-Th17-biased immune response;
Protection against dysbacteriosis.

79,110

Lactobacillus
rhamnosus

Mice with depletion of EGFR in intestinal
epithelial cells

Promotion of epithelial cell proliferation, differentiation and tight
junction formation;
Regulation of the differentiation of T helper cells, Treg cells, and
B cells.

111

Bifidobacterium spp. Melanoma-bearing mice and melanoma-
bearing Foxp3-DTR mice;
Anti-CTLA-4 mAb

Amelioration of intestinal immunopathology without distorting
antitumor effects of anti-CTLA-4 mAb; Decreased levels of IL-6.

88

Bifidobacterium spp. Melanoma-bearing mice；
Anti-PD-L1 mAb

Upregulation of MHC-II by DCs;
Accumulation of CD8 + T cells in tumors;
Increased levels of IFN-γ in tumors.

52

Bifidobacterium
longum

Healthy adult mice Upregulation of IL-4, IL-6, IL-10, IFN-γ and TGF-β in ileal Peyer’s
patches

112

Mice with gliadin-induced enteropathy Reduction in CD4+Foxp3+ cells.
Increases in CD8+ T cell populations;
Upregulation of NF-kB and IL-10 expression;
Decrease in TNF-α production.

113

Healthy infant mice Increase in IFN-γ-secreting cells and ratio of IFN-γ-secreting to IL-
4-secreting cells;
Strengthened Th1-related immune response.

85

Bifidobacterium
adolescentis

Healthy conventional mice and germ-free
mice

Increased number of Th17 cells in the small intestine. 86

Akkermansia
muciniphila

Epithelial tumor patients
Sarcoma-bearing mice
Anti-PD-1 mAb

Beneficial clinical responses to anti-PD-1 mAb in patients;
IL-12-dependent recruitment of Th1 cells into tumor beds;
Increased levels of IFN-γ and TNF-α and decreased levels of IL-4
and IL-10.

21

Bacteroidetes Melanoma patients
Melanoma-bearing mice
Anti-PD-1 mAb

High number of Tregs and MDSCs;
Blunted cytokine response in melanoma patients;
Increased frequency of Th17 cells and Tregs in model mice.

20

Melanoma patients
Anti-CTLA-4 mb

Poor response to anti-CTLA-4 mAb;
High number of α4+β7+ T cells in the periphery.

22

Bacteroides Fragilis/
Bacteroides
thetaiotaomicron

Sarcoma-bearing mice
Anti-CTLA-4 mAb

Accumulation of CD11b+ DCs in the lamina propria
IL-12-dependent Th1 immune response in tumor-draining lymph
nodes.

103

Fusobacterium
nucleatum

Colorectal cancer patients Inverse correlation with CD3+ T cell density in tumors. 104

ApcMin/+ mice Accumulation of MDSCs and M2-like TAMs. 107
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while enhancing Th1-mediated immune responses
and increasing the production of IFN-γ in tumors,
thus eliciting antitumoral immunity (Table 1).80 In
parallel with L. acidophilus, L. plantarum and
L. brevis were found to generate effective immune
responses against tumors in breast cancer-bearing
mice because administration of these bacteria cause
increases of the production of IFN-γ, IL-2, and TNF-α
by activating T cells and macrophages and causes
increased cytotoxic activity of NK cells (Table 1).81,82

In this respect, tumoral upregulation of IFN-γ is
believed to be a biomarker that can be used to predict
the response of a tumor to ICI therapy. In this regard,
despite the lack of valid evidence suggesting the syner-
gistic effect of Lactobacillus in ICI therapy, it is reason-
able to speculate thatmaintaining the gut frequency of
Lactobacillus at a stable level assists in gut immune
homeostasis, therebyminimizing the distortion of ICI
drugs.

Bifidobacteria

Bifidobacteria are also commonly believed to be pro-
biotics in the human gut. They are anaerobic bacteria
that belong to the Actinobacteria phyla.83 In general,
Bifidobacteria exert beneficial effects on immunomo-
dulatory effects by using their own bacterial compo-
nents and various immune-related metabolites, and
they maintain immune homeostasis through a cross-
feeding mechanism.84 Typically, different species of
Bifidobacteria facilitate Th1 and Th2 polarization
and CTL accumulation.52,85,86 In addition, bacterial
metabolites also play an important role in stimulat-
ing immune function. Another study confirmed that
Bifidobacterium longum BB536 has positive effects
on the early establishment of healthy intestinal bac-
teria and plays a significant role in enhancing the
Th1 immune response (Table 1).85 Additionally,
Bifidobacterium dentium, as desirable mucus-layer
builders, have been shown to enhance the intestinal
mucus layer through autophagy and calcium signal-
ing pathways.87

In an experimental model, oral administration of
Bifidobacterium to melanoma-bearing mice was
found to synergize with anti-PD-L1 therapy to
induce tumor shrinkage.52 The underlying mechan-
ism is indicated by Bifidobacterium administration
enhancements of the antigen-presentation function
of DCs, thus facilitating CD8+ T cell activation and

infiltration into tumors (Table 1).52 In addition to
exerting a synergistic effect, Bifidobacteria were
found to reduce the toxicity of anti-CTLA-4 therapy
by modulating the metabolism of Treg cells rather
than altering Treg cell density in the tumors, thus not
distorting the efficacy of anti-CTLA-4 therapy
(Table 1).88 Upon integrating the above data,
Bifidobacteria can be regarded as beneficial for ICI
therapy.89

Akkermansia muciniphila

Akkermansia muciniphila (A. muciniphila) are
bacteria that are initialized in the early life of
humans.90 They are gram-negative and colonize
in the outer layer of the mucin covering the intest-
inal epithelium,91 In the gut, cecum has the largest
number of A. muciniphila. However, they only
account for 1 ~ 4% of all commensal bacteria.90

Despite being a small portion overall, they are
regarded as promising probiotics. At steady state,
A. muciniphila are capable of renewing the mucus
layer by degrading mucins, providing a route to
strengthened intestinal barrier function.92

Alternatively, the bacterial component Amuc-
1100 can interact with TLR2-positive cells, thereby
enhancing intestinal barrier function by upregulat-
ing tight-junction-associated proteins.93 Upon
epithelial damage, A. muciniphila preferentially
localize in the wound to elicit proliferation and
migration of enterocytes to this site.94 Once at
the wound, A. muciniphila can also increase the
levels of IFN-γ and TNF-α while decreasing IL-4
and IL-10 production (Table 1).95 In this regard,
A. muciniphila exhibits the capability to improve
the effect of ICI therapy (Table 1).21 In fact, basic
research has confirmed that A. muciniphila can
promote Th1 polarization.96,97 To show this effect,
A. muciniphila was administered to germ-free
mice bearing sarcoma to increase the Th1-related
immune response significantly, thus enhancing the
efficacy of anti-PD-1 therapy in causing tumor
shrinkage.21 Moreover, cancer patients with
a high number of A. muciniphila in the gut com-
monly show a better response to ICI drugs than
those with a low number of A. muciniphila.21

Therefore, A. muciniphila can be regarded as an
ICI therapy-favored bacterium.
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Bacteroidetes

In the healthy human gut, gram-negative
Bacteroidetes are universally distributed in the
colon.98 Herein, Bacteroidetes fragilis (B. fragilis) are
the most prominent bacteria and have long been
considered pathogens in humans.99 In fact, they are
capable of inducing immune tolerance of the gut.100

In parallel with tolerance induction, it has also been
revealed that nontoxigenic B. fragilis can counteract
enterotoxigenic B. fragilis to protect against colitis
and tumorigenesis in the gut.101

In summary, Bacteroidetes are able to induce
cell polarization, including Th1, Th17 and Treg
cells, in the gut.102,103 In the context of the admin-
istration of Bacteroidetes, the efficacy of anti-
CTLA-4 therapy was restored in germ-free mice
bearing melanoma or colon cancer (Table 1).103

Mechanically, in germ-free mice, pure coloniza-
tion of Bacteroidetes promoted the maturation of
IL-12-producing DCs in tumors and induced
a Th1-related immune response.89,103 However,
melanoma patients with a high fecal Bacteroidetes
count have poor clinical outcomes after receiving
anti-CTLA-4 therapy (Table 1).22 This outcome is
translated into anti-PD-1 therapy.20 The underly-
ing mechanism involves a reduced level of MHC-
II molecules and a higher number of Treg cells and
Th17 cells in nonresponders to anti-PD-1 therapy
than are presented by responders (Table 1).20 In
this context, different species of Bacteroidetes can
have different impacts on the efficacy of ICI
therapy.

Fusobacterium nucleatum

Fusobacterium nucleatum (F. nucleatum) has been
well established as pathogens in the induction of
colorectal cancer.43,66 They can infect CRC cells to
induce robust proliferation of CRC cells.
Immunosuppression is another hallmark of CRC
tumors after F. nucleatum infection. In general, in
CRC specimens, it was revealed that the tumoral
density of CD3+ T cells inversely correlated with
F. nucleatum number (Table 1).104 This result can
be attributed to T cell loss, which is driven by the
interaction between bacterial Fap2 and the TIGIT
inhibitory receptor on T cells.105 This outcome
also translates to NK cells. Thus, it was found

that exhaustion of NK cells occurs in early gut
carcinogenesis.105 After the initiation of these pro-
cesses, F. nucleatum facilitates M2-like TAM
polarization via IL-6/c-MYC/STAT3 axis
activation.106 In addition, F. nucleatum has been
shown to enhance the accumulation of myeloid-
derived suppressive cells in CRC tumors (Table
1).107 Thus, the immunosuppressive milieu for
CRC tumors is thus formed. Generally, CRC
patients with a high number of F. nucleatum in
their tumors commonly have poor clinical out-
comes than those without F. nucleatum infection.
Referring to its impact on ICI therapy, it was
found that the presence of F. nucleatum is inver-
sely related to tumoricidal infiltrates, even in MSI-
H tumors,108 thus implying that F. nucleatum
represents an ICI therapy-unfavorable bacteria.

Concerns related to the prediction of ICI
efficacy by testing fecal bacteria

Above information has exemplified some typical
bacteria that can impact the immune milieu in
tumors. Yet, there are some concerns still existing
in predicting the response of cancer patients to ICI
therapy by testing the composition of their fecal
bacteria. For example, albeit collecting data from
melanoma patients, two separate research groups
reported all the bacteria including Bifidobacterium
longum,19 Collinsella aerofaciens,19 Enterococcus
faecium,19 Faecalibacterium genus bacteria20 were
highly related to clinical response of patients to ICI
therapy. Moreover, high fecal frequency of
A. muciniphila was associated with well response
of NSCLC to ICI therapy.21 Although the specific
roles of aforementioned bacteria in improving
tumoral immune milieu have been well character-
ized in corresponding animal models,19–21 an open
question is emerged as which will be the most reli-
able bacteria in predicting or comparing the thera-
peutic efficacies of ICI drugs within a certain type of
cancer, or among different cancers? Remarkably,
a basic study has confirmed that a consortium of
eleven strains of bacteria function jointly in eliciting
CD8+ cell accumulation in gut, whereas such an
effect will be abated if in absence of one or more
certain strains of bacteria.26 Otherwise, it should be
asked whether the mice can support the coloniza-
tion of all bacterial species from human feces.11 In
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these situations, it is conceivable that the response to
ICI therapy should not be merely attributed to one
single major species of bacteria that increase their
frequency in cancer patient feces. Probably, other
bacteria will assist in this process albeit they do not
significantly alter their frequencies in gut. Thus, we
believe that defining a group of bacteria may be
more precise in predicting ICI response than
a certain type of bacteria does.

Another concern will be presented in the metho-
dology. As we know, 16 S rRNA or metagenomic
whole-genome shotgun sequencing can identify
most of the abundant bacteria that impact the effi-
cacy of ICI therapy.11 On this basis, we should note
the rare bacteria in feces, such as those residing in
the small intestine but with less frequencies in feces.
As estimated, these bacteria may distort the efficacy
of ICI therapy as well, but methods concerning
culture, isolation, identification and functional test-
ing for these bacteria are technically difficult.11

Thus, more advanced methods should be developed
to fulfill this aim. As we have exemplified the bac-
teria that can differ their roles in priming immune
cells even if they are from the same taxonomy; so in
our opinion, more deep sequencing or identification
work should be done in the future. For example,
a basic study has revealed that the non-toxigenic
strain and the enterotoxigenic strain of B. fragilis
exhibit opposite effects on gut tumor progression.101

Collectively, all these concerns will provide new
sparks for future research in this field.

Conclusion

Gut commensal bacteria can certainly influence the
therapeutic effects of ICI drugs. Due to the predo-
minance of gut bacteria in controlling host immune
integrity, maintaining homeostasis of gut commen-
sal bacteria appears to be the basis of ensuring the
effectiveness of ICI therapy. Moreover, due to the
certainty that some commensal bacteria impact the
effectiveness of ICI therapy and are predictive of the
response to ICI therapy in cancer patients, the com-
position of these bacteria provides context in the
field of oncotherapy.
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