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ABSTRACT
Background: Gut microbiota, by influencing multiple metabolic processes in the host, is an
important determinant of human health and disease. However, gut dysbiosis associated with
metabolic complications shows inconsistent patterns. This is likely driven by factors shaping gut
microbial composition that have largely been under-evaluated, at a population level, in school-
age children, especially from developing countries.
Results: Through characterization, by 16S sequencing, of the largest gut microbial population-
based school-aged children cohort in Latin America (ORSMEC, N = 926, aged 6–12 y), we identified
associations of 14 clinical and environmental covariates (PFDR<0.1), collectively explaining 15.7%
of the inter-individual gut microbial variation. Extrinsic factors such as markers of socioeconomic
status showed a major influence in the most abundant taxa and in the enterotypes' distribution.
Age was positively correlated with higher diversity, but only in normal-weight children (rho =
0.138, P =2 × 10−3). In contrast, this correlation although not significant, was negative in over-
weight and obese children (rho = −0.125, P = 0.104 and rho = −0.058, P = 0.409, respectively).
Finally, co-abundance groups (CAGs) were associated with the presence of metabolic
complications.
Conclusions: Our study offers evidence that the presence of overweight and obesity could impair
the microbial diversity maturation associated with age. Furthermore, it provides novel results
toward a better understanding of gut microbiota in the pediatric population that will ultimately
help to develop therapeutic approaches to improve metabolic status.
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Introduction

The complex microbial community that inhabits
the gastrointestinal tract is essential for human
health. Over the past decade, the influence of
microbial dysbiosis has been shown for a variety
of chronic diseases such as inflammatory bowel
disease (IBD), obesity and other metabolic

conditions.1,2 However, there are inconsistent
dysbiosis patterns reported through-out the
literature.3,4 Multiple studies have shown that
gut microbiota is highly variable among indivi-
duals and that a combination of lifestyle as well as
intrinsic factors shape its structure and function.
Thus, suggesting that these may partly explain the
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inconsistent findings.4 In addition, human gut
microbiome changes significantly over a lifetime,
and age-specific differences may be another key
to understanding microbiome-mediated effects
on health.5

Studies in neonates and toddlers have observed
a significant influence of the type of delivery and infant
feeding practices on gutmicrobiota composition.6-11 In
addition, large-scale population studies in adults,
mainly from westernized countries have described
that environmental factors such as medications use
and long-term dietary patterns have a significant
impact on gut microbial communities,12-14 while host-
intrinsic factors such as genetics, although significant,
have a low effect size.15-19 Other studies contrasting
rural and urban communities highlight that gutmicro-
bial variabilitymay respond to geographical origin, and
associated lifestyles.20-24 Latin America includes coun-
tries with multiple lifestyles, genetic backgrounds and
socioeconomic conditions, which may determine gut
microbiome differences of individuals from these
countries.25 Moreover, the prevalence of overweight,
obesity and metabolic complications in children and
adults of these countries, specially Mexico, has rapidly
increased over the last decades.26,27 Although new
studies on the microbiome composition of Latin
American countries are becoming available, the knowl-
edge on the factors influencing gut microbial commu-
nities is still scarce.28-30 Furthermore, while numerous
studies have investigated the composition and
dynamics of the intestinal microbiota in infants and
adults only a few have specifically examined major
modifying factors within childhood and early
adolescence.6,31-33 Most of these studies have
a relative small sample size to discover novel
associations.31 Therefore, the gut microbiota of school-
age children, including early adolescents, remains
poorly characterized, representing a missing link in
the long-term dynamics.

Thus, our aim was to characterize the gut
microbiota of children and adolescents in a large-
scale cross-sectional study to understand the cor-
relation between environmental variables and host
intrinsic factors with the gut microbial commu-
nities and, ultimately, their link to overweight,
obesity and metabolic complications.

Results

Description of study population

Data presented here included 926 children from 6
to 12 y old, representing a sub-cohort who parti-
cipated in the Obesity Research Study of Mexican
Children (ORSMEC) cohort which has been
extensively phenotyped for a variety of metabolic
and metabolomic parameters.34 Of the 926 parti-
cipants, 49.3% were female and 30% of the chil-
dren were classified as early adolescents (≥11
y old).35 Notably, 41% of the children were over-
weight or obese, 31% had hypertriglyceridemia
and 18% presented low HDL cholesterol levels.36

In addition, 69% were born by C-section and only
33% were breastfeed for at least 6 months. Further
characteristics of study participants are summar-
ized in Supplemental Table S1.

Gut microbial characterization

We performed amplicon-based sequencing of the
V4 region of the 16S rRNA gene on 926 fecal
samples.37 Sequence analysis using quantitative
insights into microbial ecology (QIIME) resulted
in 99,700,401 high-quality reads, with a mean
sequencing depth of 107,667 sequences per sample
(range 17,555–249,455). Characterization of the
phylogenetic variation showed 18 phyla and 380
genera in the whole data set, where 7 phyla and 87
genera were found in at least 25% of the popula-
tion. In addition, the core microbiota in these
children (genera shared by 95% of the samples)
yielded 31 genera distributed among 4 phyla
(Firmicutes, Bacteroidetes, Proteobacteria and
Actinobacteria; Figure 1a) and comprising 96% of
the total abundance. In accordance with other
populations, Firmicutes and Bacteroidetes were
the dominant phyla (median abundance 34.41%,
IQR: 25.23–45.90, and 62.07%, IQR: 50.00–71.72;
respectively); however, a great variability was
observed among subjects (Figure 1b). At genus
level, the more abundant taxa were Bacteroides
followed by Prevotella and an unclassified
Ruminococcaceae genus (Figure 1c).
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Microbiome variation and clustering

We next assessed, by unconstrained canonical corre-
spondence analysis, the genera contributing to the
greatest variation within the dataset. Microbiome var-
iation resulted mainly from changes in the abundance
of two genera included in the core taxa (Prevotella from
Prevotellaceae family and Bacteroides from
Bacteroideaceae family), and of genus Prevotella from
Paraprevotellaceae family (Figure 2a). As the previous
results partially correspond to the proposed enterotype
distribution and considering that bacteria in the gut
constitutes a complex ecosystem in which different
species interact as a community,38 we applied the
clustering analysis suggested by Arumugam et al.39

As suggested by the Calinski-Harabasz (CH) index,
we identified an optimal of two clusters driven by
Bacteroides (E1) and Prevotella (E2), supporting the
enterotypes distribution (Supplemental Figure S1
A-C). Classification of the 926 samples showed that
63%of the children belonged to Bacteroides enterotype
while 37% to Prevotella (Figure 2b). The alpha diversity
indexes observed in each sample indicate that indivi-
duals within the Bacteroides enterotype harbor
a greater richness and diversity than Prevotella subjects
(Chao; P =1.3 × 10−6, Shannon; P =3.9 × 10−13;
Supplemental Figure S1D).

To further explore patterns in the microbial
structure, we identified co-abundance groups

(CAGs). This type of analysis is based on the
frequency of concomitant detection of two bacter-
ial groups. We performed co-abundance analysis
based on correlations between genera (see the
“Methods” section) and then clustered by applying
hierarchical clustering with Ward’s linkage to
define co-abundance groups.40 We identified
four CAGs significantly different from each other
(p < 0.01; permutational multivariate ANOVA).
Prevotella-CAG and Bacteroides-CAG comprised
18 genera each and were named after the taxon
with greater abundance. The two other CAGs had
more homogenous abundance distribution lacking
a single dominant taxon, thus were named after
higher taxonomical orders; Clostridiales-CAG and
Lachnospiraceae-CAG. Each one comprised 25
and 26 genera (Figure 2c and Supplemental Table
S2 for genera full list).

Identification of microbiome covariates

To identify microbiome covariates, we selected
variables that were representative of socioeco-
nomic status (SES), clinical and anthropometric
traits, as well as lifestyle factors. We correlated 61
out of the 104 factors with microbial diversity and
richness. At a false discovery rate (FDR) of <0.1,
13 factors were associated with microbial diversity
(Shannon index) and 14 with richness (Chao

Figure 1. Summary of core gut microbiota in Mexican children. (a) Total number of core genera in each phylum (defined as present
in >95% of samples children). (b) Abundance of core phyla across samples. (c) Median relative abundance of the 17 top core genera.
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richness estimate) (Supplemental Figure S2).
Serum amino acids were the main metabolites
associated with alpha diversity, where after nor-
malizing for sequencing depth, a higher concen-
tration of amino acids correlated to lower richness
and diversity. Interestingly, an amino acid signa-
ture composed of branched-chain (BCAA), aro-
matic amino acids (AA), arginine and proline,
previously associated with obesity and hypertrigly-
ceridemia in these children34 was negatively corre-
lated with Chao and Shannon indexes even after
adjusting for BMI percentile (rho = −0.08, P =
0.012). In addition, C-reactive protein and serum
aspartate aminotransferase (AST) levels were nega-
tively correlated with the Shannon index, while
high-density lipoprotein (HDL) cholesterol levels
correlated positively. Body mass index (BMI) per-
centile, months of exclusive breastfeeding and
mother educational level were nominally asso-
ciated with Shannon index or trended (<0.1), but
lost their significance after multiple corrections.
Surprisingly, age was not associated with any of

the alpha diversity measurements. Given that over-
weight and obesity have been shown to negatively
impact microbial diversity, we analyzed
a subsample considering only normal-weight
(NW) children and performed the association
between age and alpha diversity (n = 505). As
expected, in NW children, age was positively cor-
related with microbial diversity as evaluated by the
Shannon index (rho = 0.138, P = 2 × 10−3; Figure
3b). In contrast, although not significant, this cor-
relation was negative for overweight and obese
children (Figure 3a–b). In accordance, alpha diver-
sity indexes of older NW children (>12 y, n = 64)
were significantly higher than those of children
(<7 y n = 40; P < 0.05), while indexes of over-
weight-obese older children were not (n = 59, P
> 0.40).

A binary analysis (presence/absence) of identi-
fied genera in NW children (<7 y) and their older
counterparts showed that 116 out of 191 identified
genera (see the “Methods” section) were more
frequent in older children samples. Interestingly

Figure 2. Structure and variation of microbial community in 926 participants of the ORSMEC cohort. (a) Top genera contributing to
microbial community variation within the dataset as assessed by canonical correspondence analysis. (b) Clustering of the 926
participants based on genera composition data and using the JSD and PAM clustering. The optimal number of clusters was chosen
by the Calinski–Harabasz index and validated based on the prediction strength and average silhouette width (SW). (c) Hierarchical
Ward-linkage clustering based on Kendall correlation coefficients of the relative abundance of genera present in at least 25% of the
samples. Co-abundance groups (CAGs) were defined based on the clusters in the vertical tree and named after their most
representative taxon.
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of those, only 35 genera (representing the 30%)
were also as frequent in overweight-obese older
children samples (Supplemental Table S3).
A further analysis of the genera identified in over-
weight-obese older children showed the presence 6
of genera absent in their NW counterparts.

Furthermore, by comparing diversity indexes
with a small sample of a normal-weight Mexican
adults (aged > 18 y old, n = 26), we confirmed that
beyond the gradual increase in alpha diversity
throughout childhood (6–10 y) and early adoles-
cence (11–12 y), microbial diversity continues to
increase until adulthood (rho = 0.1581, P = 8.26 ×
10−5). Microbial diversity of early adolescents
(11–12 y) seems to be lower than in the adult
population although the difference did not reach
statistical significance (P = 0.17: Figure 3c).

We next performed NMDS analysis to investigate
factors associated with inter-individual distance of
microbial composition (Bray–Curtis distance). To
avoid redundancy among highly correlated variables,
we selected the most representative factors (see the
“Methods” section). Overall, 14 factors (FDR<0.1)
were significantly associated with inter-individual
microbial distance in the whole dataset, including

ten intrinsic factors, and 4 environmental variables
(Figure 4). All together, these factors explained
15.7% of the variance in microbial composition.
Among metabolic traits, uric acid, BMI percentile,
the amino acid signature and serum methionine
levels contributed the highest (>1% each). While
among environmental variables, markers of SES
(such as monthly family income and mothers’ edu-
cational level) and antibiotic use in the last 6 months
contributed the highest (>1% each). Interestingly,
factors previously associated with microbiome com-
position such as infant feeding practices (breastfeed-
ing duration) and gender, were only borderline
associated with gut microbial variation before FDR
correction (P < 0.1, PFDR > 0.10). While birth mode
and age showed no association (Supplemental
Table S3).

To further understand if there were specific
factors influencing gut microbial composition at
different childhood stages, we stratified the sample
into younger children (6–10 y, n = 639) and early
adolescents (≥11 y, n = 287).35 In early adoles-
cents, gender was nominally associated with
microbial composition and explained ~1% of the
variance. In addition, gestational age and hip

Figure 3. Age-related changes in alpha-diversity indexes of gut microbiota. (a–b) Scatter plots of Chao richness and Shannon
diversity showing the progression of diversity indexes with increasing age, stratified by nutritional status. Regression lines are drawn
using the loess model in R. (c) Box plot showing the Shannon diversity in normal-weight individuals per age group. The center line
denotes the median, the boxes cover the 25th and 75th percentiles and points outside the whiskers represent outlier samples.
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circumference explained almost 4% and 2.5% of
microbial variation in this age group. Interestingly
the association with antibiotic use remained sig-
nificant only in children (Figure 4).

Diet as gut microbial covariate

Diet is known to be a driver of gut microbial varia-
tions in diversity and structure.41 In this study, the
influence of dietary components, such as food groups
and nutrients, onmicrobial composition (alpha diver-
sity and inter-individual microbial distance) was eval-
uated in a subsample of 438 individuals. Although
none of the correlations with alpha diversity indexes
remained significant after FDR correction, consump-
tion of crude fiber was positively correlated with
microbial richness (Chao richness: rho = 0.1398, P =
3.44 × 10−3 PFDR = 0.14), while frequency consump-
tion of white bread and wheat tortillas correlated
negatively (rho = −0.1283, P = 8.59 × 10−3, PFDR =
0.17). In addition, frequency consumption of yogurt
was nominally associated with inter-individualmicro-
bial distance (at genus level), explaining around 2% of
the microbial variation (P = 7.99 × 10−3, PFDR = 0.35,
Supplemental Table S5).

Associations of gut microbiota composition with
lifestyle and environmental variables

In our cohort, the use of antibiotics over the
previous 6 months, family monthly household
income, mothers’ educational level and hours of
moderate and vigorous physical activity explained
a modest but significant proportion of gut micro-
bial inter-individual variability (Figure 4). Thus,
we performed multivariate analysis to assess the
association of these environmental factors with
community-wide microbial composition (shared
by at least 25% of the individuals). Eleven taxa
showed a significant association with monthly
household income. Interestingly, Prevotellaceae
family and specifically genus Prevotella, which
have been previously associated with a rural life-
style, were negatively associated with monthly
income (P =1.3× 10−3, PFDR = 0.04). In addition,
an unclassified genus of Veionellaceae and genus
Megamonas from the same family were negatively
associated with income. In contrast, greater abun-
dance of Rikenellaceae family as well as genera
Holdemania and Oscillospira, and at species levels
Eggerthella lenta, Bacteroides fragilis and
Eubacterium dolichum were significantly

Figure 4. Explained variance of selected microbiome covariates. Horizontal bars show the amount of variance (R2) explained by each
covariate in the model as determined by EnvFit function in R. The rest of the covariates and the groups within are detailed in
Supplementary Table 3. Covariates are colored based on the overall metadata group. Asterisk denotes significant covariates [false
discovery rate (FDR) P < 0.10] while dot denotes significant covariates in each age group before FDR correction (P < 0.05).
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associated with a higher income (Table 1).
Interestingly, most of the latter genera clustered
in the Bacteroides CAG, which was also positively
associated with a higher family income
(Supplemental Table S6).

Given that genus Prevotella was among the
main taxa associated with household income
and that Bacteroides was also nominally asso-
ciated but in the opposite direction (P = 0.03),
we tested whether enterotype distribution was
related to household income and other markers
of SES. The distribution analysis confirmed that
indeed Prevotella enterotype was significantly
enriched among children whose families were
within the lower-income quartile (P = 0.022), as
well as in subjects whose mothers had a lower
level of education (P = 0.013). Whereas
Bacteroides enterotype was more prevalent
among children with a higher family income,
and whose mothers had a higher educational
level (Figure 5a,b). These findings were further
supported by co-abundance group analyses
(Supplemental Table S6).

Associations of gut microbiota structure with
phenotype

The ORSMEC study was initially designed to assess
in children the prevalence and determinants of

overweight, obesity and metabolic complications;
thus we tested whether the microbiome was asso-
ciated with adiposity markers, overweight and obe-
sity, as well as with metabolic complications.

As previously described, alpha diversity indexes
were negatively correlated with BMI percentile
(Supplemental Figure S2A); thus, we assessed the
relationship with overweight and obesity.
Overweight and obese children showed a slight
decrease in richness and diversity (Supplemental
Figure S2B). Altogether overweight-obese children
harbored lower richness and diversity (P = 0.0162
and P = 0.0265, respectively; Supplemental Figure
S2C). Furthermore, higher diversity and richness
was associated with a lower risk for overweight/
obesity (OR = 0.79, 95% CI 0.65–0.94; P = 0.0108
and OR = 0.33, 95% CI 0.13–0.82; P = 0.0172,
respectively). Using a stepwise modeling, we
observed that this association was independent of
other risk factors such as mode of delivery and
monthly family income. However, the association
was partially lost after adjusting for the amino acid
signature (Supplemental Table S7).

We next assessed the relation of adiposity
markers with gut microbial taxonomy. After
adjusting for basic explanatory variables (age
and gender), as well as environmental factors
driving microbiome composition (monthly
household income), adiposity markers (waist

Table 1. List of taxa significantly associated with monthly household income.
Positive association

β p PFDR
Actinobacteria
Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae.g__Eggerthella.s__lenta −0.039* 2.1 × 10−03 4.6 × 10−2

Bacteroidetes
Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Bacteroidaceae.g__Bacteroides.s__fragilis 0.366 5.9 × 10−05 2.9 × 10−03

Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Rikenellaceae 0.080 1.6 × 10−03 4.3 × 10−02

Firmicutes
Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae.g__Holdemania 0.124 3.0 × 10−08 4.4 × 10−06

Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae.g__Oscillospira 0.026 8.3 × 10−06 6.1 × 10−04

Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae.g__Eubacterium.s_dolichum −0.056* 5.9 × 10−05 2.9 × 10−03

Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae.g__[Ruminococcus] unclassified specie 1.128 2.4 × 10−03 5.0 × 10−02

Negative association

β p PFDR
Bacteroidetes
Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Prevotellaceae 0.145* 1.4 × 10−03 4.0 × 10−02

Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Prevotellaceae.g__Prevotella 0.145* 1.4 × 10−03 4.0 × 10−02

Firmicutes
Firmicutes.c__Clostridia.o__Clostridiales.f__Veillonellaceae. unclassified genus 0.048* 4.2 × 10−03 7.6 × 10−02

Firmicutes.c__Clostridia.o__Clostridiales.f__Veillonellaceae.g__Megamonas 0.794* 1.1 × 10−03 3.9 × 10−02

All models are adjusted for age, gender and previous antibiotic use, *β values in the opposite direction are due to normalization procedures of
relative abundance.

906 S. MORAN-RAMOS ET AL.



circumference, BMI percentile and body fat per-
centage) were significantly associated with the
abundance of 8 taxa (Supplemental Table S8).
Moreover, Christensenellaceae was associated
with a lower risk of overweight and obesity
(OR = 0.90, 95% CI 0.84–0.97; P =3.9 × 10−3).
In contrast, a novel association of Dialister with
a higher risk (OR = 1.55, 95% CI 1.06–2.26; P =
0.024) was observed.

To further investigate the influence of gut
microbial taxonomy on the phenotype, we
assessed the association with metabolic traits.
After further adjusting for BMI percentile,
Coprobacillus and Eggerthella lenta were negatively
associated with serum triglycerides (TG) (P= 9 ×
10−4, PFDR = 0.08 and P =1.3 × 10−3, PFDR = 0.08,
respectively). In addition, species previously
known to confer metabolic benefits such as
Bifidobacterium longum and Akkermansia mucini-
phila were also negatively correlated with serum

TG levels (P = 0.037, PFDR = 0.26 and P = 0.029,
PFDR = 0.26, respectively). Interestingly, the pre-
sence and higher abundance of Eggerthella lenta
was further associated with a lower risk for hyper-
triglyceridemia (OR = 0.62, 95% CI 0.46–0.83;
P =1.4 × 10−3), and this association remained sig-
nificant after adjusting for potential confounders
such as HOMA index and the amino acid signa-
ture (OR = 0.56, 95% CI 0.41–0.76; P = 2.67
× 10−4).

Co-abundance groups are associated with
metabolic complications

Although we identify individual taxa significantly
associated with adiposity markers, most correlations
with metabolic traits, lost significance after FDR
correction. CAGs analysis offers an ecologically rele-
vant method for reducing dimensionality of gut
microbial data and has been shown to be more

Figure 5. Association of enterotypes and CAGs with environmental variables and metabolic traits. (a) Proportional distribution of
household income quartiles among enterotype. (b) Distribution of enterotypes among levels of education in children’s mothers. (c)
Regression plots of Clostridiales-CAG normalized abundance with metabolic traits, controlling for technical covariates, sex, age and
BMI percentile. Shaded areas show confidence intervals.
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informative than abundance differences of indivi-
dual taxa.40,42 Thus, to test their potential combined
effect onmetabolic output, we analyzed the influence
of CAGs in the phenotype. The analysis confirmed
and extended previous taxa–phenotype relation-
ships. For instance, Clostridiales-CAG, including
Christensenellaceae, Rikenellaceae, Akkermansia
and Bifidobacterium was negatively associated with
the three adiposity markers, with metabolic traits
(TG, HOMA index and nominally with HDL levels;
Figure 5c and Supplemental Table S9) and with
a lower risk for metabolic syndrome (OR = 0.97
95% CI 0.95–0.99, P = 0.0045). In contrast,
Prevotella-CAG including Prevotella, Dialister and
Suterella was positively associated with adiposity
markers (Supplemental Table S9) and as a trend
with the risk of being overweight or obese (P =
0.0752)

Discussion

Dysbiosis has been associated with a wide range of
metabolic conditions and chronic medical
illnesses.43 However, patterns of dysbiosis have
been inconsistently found across the different coun-
tries and life stages.3,44 Thus, there is a need for
large-scale studies to identify microbiome covari-
ates across populations and life stages in order to
draw reliable conclusions on specific
phenotypes.4,45 To address this, we profiled the
gut microbial composition of 926 children of the
ORSMEC cohort by 16S sequencing. This large-
scale cross-sectional cohort of children (including
early adolescents), is in our knowledge, the largest
gut microbial-based study in Latin America and the
largest of school-age children worldwide. Our study
highlights three major findings (i) among environ-
mental variables, SES is the leading factor influen-
cing gut microbial composition in Mexican
children, (ii) overweight and obese children do
not show the gradual increase in gut microbial
diversity associated with age, (iii) CAGs are asso-
ciated with the presence of metabolic complications
in children and these patterns are consistent with
microbial signatures observed in other populations.

The first aim of our study was to assess factors
influencing gut microbial composition in
a pediatric Latin American population. Previous
studies from different geographic regions and

contrasting lifestyles have reported that the abun-
dance of genus Prevotella as well as the classifica-
tion into the corresponding Prevotella enterotype
has been shown to represent the country of resi-
dence and linked to rural lifestyles and certain
dietary components.32,46,47 In our study, which
represents a rather homogeneous cohort within
a single ethnogeographic region and where effects
of climate, culture and nationality are not
a confounding factor, genus Prevotella is one of
the major drivers of microbial variation and its
abundance and enterotype classification are asso-
ciated to markers of lower SES but not to a specific
diet (data not shown). This is consistent with two
recent reports of Chinese and Ecuadorian
adults30,48 which highlight that this finding could
be particularly true for nations undergoing eco-
nomic development. Although our study does not
provide mechanistic insights of why markers of
SES are associated to gut microbial composition,
it is possible that these markers reflect differences
in lifestyle factors such as drinking water, hygiene
conditions or even dietary components that were
not detected in the subsample analysis of our
study. In this respect, an interesting finding was
the lower microbial diversity observed in the
Prevotella enterotype. Previous studies have
shown that a lower dietary diversity is associated
with a lower microbial diversity.40 In addition,
studies from developing countries also show that
a poor dietary diversity is also linked to a lower
socioeconomic status.49 Although the FFQ per-
formed in this study does not allow to obtain
a food diversity index, we might speculate that
subjects within the Prevotella enterotype, who
also report a lower SES, have a lower dietary
diversity which could be related to the observed
lower microbial diversity.

Adolescence represents a particular stage of life
that is associated with major physiological
changes, including male/female specific variations
that could also influence the microbiome.50

However, reports on the factors influencing gut
microbial variation at this stage are still scarce.
The size of our study allowed for a stratified ana-
lysis of early adolescence, with three important
findings. First, similar to previous reports in
adults,12 gender was able to explain around 1% of
the microbial variation. Second, we observed an

908 S. MORAN-RAMOS ET AL.



association with gestational age, which explained
around 4% of the microbial variation. A significant
influence of gestational age on gut microbial com-
position was previously reported but only in
infants up to 24 months.51 It has been proposed
that health in adolescents results from an interac-
tion between prenatal and early childhood devel-
opment and that early life events can have lifelong
effects on host health.52 Thus, it is plausible that
the influence of gestational age in adolescent
microbial variation could be a signature of early
life events on host physiology; however, if there is
any impact of microbiome differences on host
physiology warrants further study. Lastly, the
effect of previous antibiotic use on microbial com-
position seems to become less relevant at this
stage. It has been suggested that during the
maturation from infancy to adolescence, the
microbiome acquires a repertoire of antibiotic-
resistance genes termed the “resistome.”50,53 If
this holds true for our population, it will be inter-
esting to investigate whether the resistome repre-
sents an advantage toward a more resilient
microbiome during adolescence.

Our second aim was to test for associations
between the gut microbial structure and over-
weight, obesity and metabolic complications. In
recent years, one recurring pattern associated to
host health status is a greater richness and
diversity at structural and functional level.54 In
fact, it has been hypothesized that microbial
richness across westernized populations are
needed to maintain health and prevent meta-
bolic diseases.55 We show that through-out
childhood and early adolescence overweight
and obese children do not show the natural
increase of microbial diversity associated with
age. Indeed, only a fraction of genera (~30%)
were as frequent in overweight-obese older chil-
dren when compared to their age-counterparts
NW children. Interestingly, the presence of cer-
tain genera in overweight-obese older children
not identified in their NW counterparts may
also suggest a divergent microbiota in these
children.

Although the cross-sectional nature of our study
does not allow for causation, this could imply that the
presence of overweight or obesity during childhood
impairs the natural development in microbial

diversity observed with age in NW children possibly
leading to an immature gut microbiota. In addition, it
could also contribute into a divergent gut microbial
profile. Furthermore, since during childhood gut
microbiome has not fully acquired its maturation
and diversity, which has been commonly used as
a marker of stability,56 it would also be interesting to
assess whether the lower diversity and divergent gut
microbiota at this age period could predispose chil-
dren to the development of other complications in
adulthood.

In addition to changes in diversity, certain
taxonomic signatures have been correlated with
overweight, obesity and metabolic complications.
Our study yields similar results to other
populations.17,57-59 First, consistent with ours
and others' previous findings, greater abundance
of Christensenellaceae family was associated with
a lower BMI percentile.17,37 Furthermore, the
CAGs analysis allowed us to identify that
the combined effect of several taxa included in
the Clostridiales CAG, individually associated
in previous studies to metabolic health
(Christensenellaceae, Rikenellaceae, Akkermansia
and Bifidobacterium)12,14,17,57-61 seem to be pro-
tective of metabolic complications in children.

It has been reported that communities of co-
abundant microbes can be driven by factors such as
cross-species metabolism or by their responses to
environmental conditions.62 While members of the
Clostridiales-CAG have been previously reported to
be co-abundant and associated with extreme
longevity,50,63 the understanding of the mechanisms
leading to their co-abundance requires further
research.

The previous findings highlight that despite
population and age-related differences in gut
microbial determinants, there are consistent signa-
tures associated with metabolic complications. In
addition, novel significant associations were
detected. Specifically, the presence as well as
greater abundance of a low abundance taxon
Eggerthella lenta was associated with lower serum
TG levels. Although this taxon has been mainly
studied through its effects on xenobiotics
metabolism,64,65 animal models have shown that
it is associated with hepatic lipid metabolism.66

Even though further studies are needed to test
whether the abundance of Eggerthella lenta is
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causally related to lower hypertriglyceridemia, it
has been hypothesized that this bacterium could
have pleiotropic effects on host health through
multiple mechanisms such as its ability to meta-
bolize bile acids.67

This study has some strengths and limitations.
One limitation is the lack of follow-up. Such
a clinical follow-up would have allowed us to
establish whether the impaired increase of micro-
bial diversity observed in overweight and obese
children has a causal relationship, and thus, if the
presence of obesity could prevent gut microbiota
maturation. In addition, the study of the 16S
rRNA gene only allows the analysis of microbial
structure; thus, to further extend our results to
a functional level, a metagenomic approach will
be valuable. In contrast, a major strength of this
study is the large sample size which allows for
properly taking into account the natural biological
variability in microbiota composition across sub-
jects. In addition, the evaluation of the gut micro-
biota effect on the phenotype considers
confounding variables, including age, gender and
household income.

Conclusions

To our knowledge, this is the largest cross-
sectional gut microbial-based study in school-
aged children. Our data support that in devel-
oping countries, markers of SES capture impor-
tant determinants of gut microbial variation.
Furthermore, and although longitudinal studies
are needed, our study provides evidence that
the presence of overweight and obesity during
childhood may impair the microbial diversity
maturation associated with age. Finally, it also
highlights that there are specific signatures
associated with obesity and metabolic complica-
tions beyond geographic variation, that could
represent new targets toward the prevention or
treatment of overweight and obesity.

Future studies should include metagenomics
analysis to explore the influence of such envir-
onmental factors on gut microbial functionality.
In addition, the study of other microbial com-
munities in the GI tract such as the virome
could aid in the understanding of the gut micro-
biota maturation during childhood through

interaction analysis between gut bacteria and
viruses.

Methods

Study participants

This study was embedded in the “Obesity Research
Study for Mexican Children” (ORSMEC), which is
a population-based study in Mexico City including
6–12-y-old children recruited from a summer
camp of children of employees of the Mexican
Health Ministry (Convivencia Infantil, Sindicato
de la Secretaria de Salud) and Hospital Infantil de
Mexico. The study was designed to assess in chil-
dren the prevalence and genetic determinants of
obesity and metabolic traits. All children included
were free of chronic medical illness. Parents or
guardians of each child signed the informed con-
sent form and children assented to participate. The
study was approved by the Ethics Committee of
participant institutions and was in accordance
with the Helsinki declaration II.

This study includes the subset of 926 children
from ORSMEC who provided a fecal sample, and
whose sample provided high-quality Illumina data.
Each participant was thoroughly assessed includ-
ing demographic information and health-related
phenotyped, via a self-administered questionnaire
to the parents (including information about clin-
ical history, current health status, and drug treat-
ment) as well as a health assessment and extended
clinical blood profiling included metabolomics.

For comparative purposes on alpha diversity,
a small adult group was included. This comprised
26 normal-weight non-related subjects aged 18–60
y, with no reported chronical illnesses, recruited
from different institutions in Mexico (Hospital
Infantil de Mexico Federico Gomez, Instituto
Mexicano del Seguro Social and Universidad de
Guadalajara).

Stool sampling and DNA extraction

Fecal samples were collected at home in a sterile
cup, and refrigerated overnight prior to storage at
−70ºC until processing. DNA was extracted from
200 mg of feces using the QIAamp® DNA Stool
Mini Kit (Qiagen, Inc.), eluted in a final volume of

910 S. MORAN-RAMOS ET AL.



200 µl and stored at −70°C until further analysis.
Concentrations of extracted DNA from each sam-
ple were determined by spectrophotometry
(Nanodrop 2000c) measurement, and an estimate
of sample purity was determined by measuring the
A260/A280 absorbance ratio.

Anthropometric and clinical parameters

Anthropometric measurements were determined
as previously described34 and included weight,
height, waist and hip circumferences. All instru-
ments were calibrated following the standard
methods of the manufacturers. Blood pressure
(BP; mmHg) was measured using an automatic
manometer (Microlife). Body fat mass percentage
was obtained by bioelectrical impedance analysis
(Quantum X Body Composition Analyzer, RJL
Systems). Centers for Disease Control and
Prevention 2000 growth charts were used as refer-
ence to determine body mass index (BMI) percen-
tiles. Obesity status was defined as BMI percentile
≥95th, overweight between 85th and 95th percen-
tile, normal-weight between the 5th and 85th per-
centile and underweight <5th BMI percentile for
age and gender.68 National Heart, Lung, and Blood
Institute reference data were used to determine BP
percentiles based on height, age and gender.69 As
suggested by the Expert Panel on Integrated
Guidelines for Cardiovascular Health Risk
Reduction in Children and Adolescents, hypertri-
glyceridemia was defined as serum triglyceride
levels ≥100 mg/dL in children under 10 and
≥130 mg/dL in children ≥10 y old. While hypoal-
phalipoproteinemia was defined as HDL levels
<40 mg/dL.36 Metabolic syndrome was defined as
established by De Ferranti,70 with 3 or more of the
following characteristics: TG≥100 mg/dL, HDL
cholesterol <50 mg/dL, BP percentiles >90, glucose
≥ 110 mg/dL and waist circumference >75th

percentile.

Blood sampling and biochemical analyses

Five milliliters of the blood samples were drawn
after 8–12 h of fasting. For serum samples, a 30-
min period was allowed for clotting before
serum separation and then stored at −80ºC
until further analysis. Serum levels of glucose,

creatinine, uric acid, total cholesterol, HDL cho-
lesterol, LDL cholesterol, TG, aspartate amino-
transferase (AST), alanine aminotransferase
(ALT), gamma-glutamyl transpeptidase (GGT)
and C-reactive protein (CRP) were measured
with commercially available standardized meth-
ods (UNICEL DxC600, Beckman Coulter).
Insulin was determined using an Access 2
Immunoassay System (Beckman Coulter).
Insulin resistance was indirectly estimated with
the homeostasis model assessment for insulin
resistance (HOMA-IR).

Metabolomics analysis

Serum amino acids and carnitines were measured
by a targeted metabolomics approach using elec-
trospray tandem mass spectrometry (Quattro
Micro API tandem MS), as previously described.34

Dietary records

In a subsample of the study population, a semi-
quantitative Food Frequency Questionnaire (FFQ),
previously validated for the Mexican population,
was answered by the parents to estimate children’s
dietary intakes over the previous year. This instru-
ment includes 116 food items and 10 consumption
frequencies.71 Food items were grouped based on
nutrients similarities as described in Flores et al.72

Average daily energy and nutrient intakes were
computed from consumption frequencies through
the Evaluation System of Nutritional Habits and
Nutrient Intake (SNUT). Food questionnaires with
more than 30% of the food groups with extreme
consumption, or considered outliers (established
as >95th percentile from each food group73 and
those with energy intakes higher than 2.5 SD
above the mean were excluded from the analysis.
For non-metric multidimensional analysis, missing
values due to failure by participants, in variables
with less than 10% of missing values, were
imputed via the NIPALS algorithm. To control
for the confounding effect of energy intake being
associated with the phenotype food groups were
adjusted by kilocalorie intake.74 The final sample
with dietary assessment comprised 438 children
and had a similar distribution in age, gender and
phenotype, compared to the whole dataset.
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Sequencing of 16S rRNA

The V4 hypervariable region was sequenced
using 515F and 806R primers, as suggested by
the Earth Microbiome Project75 and as pre-
viously described.37 Briefly, PCR was performed
on 100 ng DNA, and products were purified
using Agencourt AMPure XP beads (Beckman
Coulter) with an automatized protocol in the
Agilent Bravo Automated Liquid Handling
Platform (Agilent Technologies). Equimolar
ratios of amplicons from the individual samples
were pooled and sequenced using an Illumina
MiSeq 2 × 250 platform. Size and concentration
of each sequencing pool were determined by an
Agilent D1000 ScreenTape for 4200 TapeStation
System (Agilent Technologies) and a Qubit 2.0
fluorometer (Invitrogen), respectively.

Data processing and statistical analysis

Sequences were analyzed using QIIME 1.9.0.76

Quality filters were used to remove sequences con-
taining barcode mismatches, ambiguous bases, or
low-quality reads (Phred quality score <30). After
trimming barcodes, demultiplexing was per-
formed. Operational taxonomic unit (OTU) read
counts were calculated using the QIIME pipeline75

(version 1.9.1; default parameters) with closed-
reference OTU picking at 97% identity against
the Greengenes database (version 13_08).
Potential chimeras were detected with USearch61
and excluded from further analysis. Taxonomical
classification was performed to generate phylum to
species-level composition matrices.

Rarefactions curves were calculated using
QIIME, subsampling in the range of 10–17,000
sequences, with a step of 1,000 sequences, and
ten re-samplings on each step. Values were
obtained for the Shannon diversity index,
observed species and Chao1 richness estimate
at a standardized sequencing depth. To explore
the gut microbial “maturation” of older over-
weight/obese children (>12 y old, n = 59), we
performed comparisons with normal-weight
children <7 years old (n = 40), and normal-
weight older children (>12 y old, n = 64).
Particularly, a binary analysis at genus level
(presence/absence) was performed, including

only genera with a binary behavior (191/380
genera) in this children subset and, that were
present in more than 1 subject among groups.
Frequency was calculated as the number of chil-
dren with non-zero abundance divided by the
number of children within each group.

Core-microbiota was generated as OTUS
observed in 95% of all individuals. Enterotyping
was performed according to the original method
described by Arumugam et al.39 where the
Calinski–Harabasz (CH) index suggested the opti-
mal number of clusters and classification validity
was evaluated using the Silhouette index. For asso-
ciation with environmental variables, a Pearson’s
chi-squared test with 5% level of significance was
used to compare the distribution of the enterotype
among the mothers’ educational groups and
monthly family income quartiles.

Bacterial co-abundance groups (CAGs)

CAGs were defined according to the methods
described by Claesson et al.40 Briefly, Kendall cor-
relation coefficients between genera present in at
least 25% of the individuals were calculated and
then Hierarchical clustering with the Pearson cor-
relation distance metric and Ward clustering was
used to define co-abundant groups. Taxa with the
highest median abundance served to name each
CAG. The Kendall correlations were converted to
a correlation distance metric and used as input for
a permutational multivariate analysis of variance
(PERMANOVA) to determine if the CAGs were
significantly different from each other. The score
of each CAG within each individual was calculated
as the sum of z-scores from the relative abundance
of genera belonging to the same CAG.77

Microbiome variation

The contribution of each genus to microbiome
variation was derived from canonical correspon-
dence analysis (CCA) using normalized genus
abundances. CCA was performed using the vegan
R package function cca, which performs ordina-
tion based on abundances and variations of each
taxa.12
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Covariate analysis

Metadata variables were considered if answered in
at least 90% of all individuals via the self-
administered questionnaire and to prevent redun-
dancy they were further screened to detect correla-
tion. Spearman’s correlations were calculated
pairwise between these, and when the correlation
was >0.8, the most representative feature was
selected for further analysis. We next assessed
how much variation of Bray–Curtis distance (at
OTUs and genus level) can be explained by each
of the continuous or categorical factors using the
function envfit from the R package vegan. The
P value was determined by 1000× permutations
and was further adjusted for multiple testing
using the Benjamini and Hochberg method.78

Metadata including dietary information were also
tested for associations with alpha-diversity mea-
sures (Chao richness estimate and Shannon
index) by the Spearman rank correlation, adjusted
by sequencing depth and corrected for multiple
testing. Significance levels were defined at
FDR<10%. To identify influencing factors differing
between age stages, the sample population was
stratified into two age groups (children: 6–10
y old vs early adolescents: ≥11 y old).

Furthermore, microbiome covariates were tested
for association with abundances of common micro-
bial taxa (defined as genera present in at least 25% of
the individuals). For these, taxa abundance was first
converted to log-transformed relative abundances,
with zero counts handled by the addition of an arbi-
trary value, (10−6) 79. The residuals of the taxa abun-
dances were taken from linear models, accounting for
technical covariates including sequencing depth,
sequencing run, extraction technician and sample
collection year.16 As residuals were not normally dis-
tributed, they were further normalized according to
the Box–Cox method, which transforms data into
a normal shape by using the parameter λ, and used
in downstream analyses. Significance levels were
defined at FDR<10%

In associations of microbial taxonomy with extrin-
sic factors, microbial taxonomy was considered the
dependent variable while for association with pheno-
typic traits it was considered as the independent
variable. In the latter, multivariate models included
age, sex and monthly income as fixed covariates.

Targeted analysis of factors

Hypothesis-driven associations between specific
taxa and phenotypes were assessed with multivari-
ate logistic regression analysis, using stepwise
modeling to determine the effect of other risk
factors or potential confounders.
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