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Metagenomic analysis of the human microbiome reveals the association
between the abundance of gut bile salt hydrolases and host health
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ABSTRACT
Bile acid metabolism by the gut microbiome exerts both beneficial and harmful effects on host
health. Microbial bile salt hydrolases (BSHs), which initiate bile acid metabolism, exhibit both
positive and negative effects on host physiology. In this study, 5,790 BSH homologs were
collected and classified into seven clusters based on a sequence similarity network. Next, the
abundance and distribution of BSH in 380 metagenomes from healthy participants were analyzed.
It was observed that different clusters occupied diverse ecological niches in the human micro-
biome and that the clusters with signal peptides were relatively abundant in the gut. Then, the
association between BSH clusters and 12 human diseases was analyzed by comparing the
abundances of BSH genes in patients (n = 1,605) and healthy controls (n = 1,540). The analysis
identified a significant association between BSH gene abundance and 10 human diseases,
including gastrointestinal diseases, obesity, type 2 diabetes, liver diseases, cardiovascular diseases,
and neurological diseases. The associations were further validated by separate cohorts with
inflammatory bowel diseases and colorectal cancer. These large-scale studies of enzyme
sequences combined with metagenomic data provide a reproducible assessment of the associa-
tion between gut BSHs and human diseases. This information can contribute to future diagnostic
and therapeutic applications of BSH-active bacteria for improving human health.
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Introduction

Humanmicrobiome studies have shown thatmicrobes
play a crucial role in maintaining health. In particular,
gut bacteria benefit humans in a number of ways: they
metabolize inaccessible components of food, synthe-
size molecules used in human metabolism, offer pro-
tection from pathogens, and regulate the immune
system.1 Alterations in the gut microbiome are linked
withmany human diseases, such as pathophysiological
obesity, inflammatory diseases, metabolic syndromes,
cancer, and neurodegenerative diseases.2 The causal
relationship between dysbiosis and obesity has been
established from animal studies.3 Induction and pro-
motion of liver cancer through the regulation of the
immune system by dysbiosis has also been reported.4

However, the biochemical mechanisms by which gut
microbes influence host physiology remain unknown.
Providing a mechanistic understanding of microbial
functions and their metabolic capabilities would

illustrate the impact of these organisms on human
health. This knowledge can be used in the treatment
of relevant diseases.

The investigation of the biochemical functions
of microbial species and their metabolites repre-
sents an exciting opportunity to bridge the knowl-
edge gap between gut bacteria and their effect on
host metabolism.1,5 Microbial symbionts derive
different metabolites from different sources.
Some metabolites are derived from carbohydrate
and protein fermentation, including short-chain
fatty acids, branched-chain fatty acids, and
indoles.6 Dimethylamine and trimethylamine are
products of the metabolism of dietary choline by
intestinal bacteria.7 Secondary bile acids (BAs) are
produced by the bacterial metabolism of primary
BAs, which are produced in the liver.8 These mole-
cules are strongly involved in the gut microbiome–
host metabolic axis. Among them, secondary BAs
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have been reported to be associated with obesity,
diabetes, colon cancer, polycystic ovary syndrome,
liver cancer, and other liver diseases.9–11 The
transformation from primary BAs to secondary
BAs primarily includes two steps: the hydrolysis
of conjugated BAs to free primary BAs and the 7α/
β-dehydroxylation of cholic acid and chenodeoxy-
cholic acid, yielding deoxycholic acid and litho-
cholic acid, respectively. Bacterial bile salt
hydrolases (BSHs) are responsible for the hydro-
lysis of conjugated BAs in the gut.12 BSHs display
both positive and negative effects on host health:
BSH activity reduces serum cholesterol levels and
confers bacterial resistance to BAs; however, it also
leads to lipid metabolism disorders.13 As key med-
iators and gatekeepers of BA transformation, these
enzymes have been considered a promising target
in the manipulation of gut microbiota to benefit
human health.12,14

Whole metagenome shotgun sequencing technol-
ogies have provided important information regard-
ing the connection between the gut microbiome and
its host. Considering the gatekeeper role of BSHs in
secondary BA metabolism and their important rela-
tionship with human health, we first collected the
experimentally characterized BSH sequences and
performed protein sequence similarity network
(SSN) analysis to cluster the BSH homologs. Then,
we analyzed the abundance and distribution of BSH
genes in 380 metagenomes from healthy partici-
pants. Finally, we mapped the BSH gene sequences
to the gut metagenomic data of 1,605 participants
with disease symptoms from publicly available data-
sets, which were geographically and technically
diverse. The large-scale studies indicate that the
abundances of different BSH clusters are signifi-
cantly associated with gastrointestinal diseases, obe-
sity, diabetes, liver diseases, and other remote organ
diseases.

Results

Enzyme sequence similarity network classified
BSHs into seven clusters

We reviewed the experimentally characterized BSHs
in previously published papers.15–17 A total of 44
enzymes that had been previously characterized
were selected (Supplementary Table S1). These

proteins were used as query sequences to search the
UniProt protein database. A total of 5,790 BSHhomo-
logs were obtained (Supplementary Dataset S1). We
further used the Enzyme Function Initiative-Enzyme
Similarity Tool (EFI-EST) to build SSNs with these
sequences and mapped the experimentally character-
ized BSHs on the SSN. The SSN was built with an
e-value threshold of 10−40 initially, at which >30%
sequence identity was the cutoff for an edge between
proteins. The results showed that the enzymes can be
grouped into four clusters; however, the enzymes
belonging to cluster 1 can further be separated into
four sub-clusters (Supplementary Figure S1). When
we increased the e-value threshold of SSN to 10−60

(>40% sequence identity), the four sub-clusters were
separated and the 5,790 BSH homologs were resolved
into seven distinct clusters. In the SSNwith an e-value
of 10−60, each cluster contained at least one enzyme
that had been biochemically characterized (Figure 1).
Further increasing the e-value to 10−75 (>50%
sequence identity) led to the overclassification of the
proteins into >20 clusters since many clusters did not
contain any experimentally characterized BSH
(Supplementary Figure S1). We chose the SSN with
an e-value of 10−60 for further analysis, which is con-
sistent with previous studies that have shown that
homologous proteins with >40% identity are more
likely to share biochemical or functional similarity,
as judged by their Enzyme Commission numbers.18

We chose one protein sequence from each cluster,
and the alignment of these sequences showed that
the catalytic cysteine at the N-terminus was highly
conserved (Supplementary Figure S2). To illustrate
the phylogenetic relationship among the clusters, phy-
logenetic analysis was performed. The proteins from
the same cluster always clustered together with a high
level of bootstrap confidence (>85%) in the phyloge-
netic tree, which further supported the classification
of BSHs (Supplementary Figure S3). Moreover, the
low bootstrap values (<40%) between the clusters
indicated that the evolutionary relationship of the
enzymes from different clusters was not particularly
significant.

The SSN was analyzed by taxonomic classification
at the phylum level to explore the origin of these
sequences. Cluster 1 contained 2,342 BSH homologs,
which were dominantly from Proteobacteria (50.52%)
and Bacteroidetes (18.46%). The archaeal BSHs pre-
sent in Cluster 1 accounted for only 2.44% of total
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BSHs in the cluster. In Cluster 2 (1,961 protein
sequences), the proteins were primarily from
Firmicutes (73.12%) and Actinobacteria (18.46%).
The BSHs in Cluster 3 (813 protein sequences) were
also predominantly fromProteobacteria (53.67%) and
Bacteroidetes (24.32%), similar to the case for those
from Cluster 1. The BSHs in Cluster 4 (175 protein
sequences) were mainly from Firmicutes (79.52%)
and Spirochetes (9.64%). In other clusters (Cluster
5–7), most BSHs were from Firmicutes. We further
characterized whether the proteins in each cluster
contained signal peptides, which are the N-terminal
sorting sequences for targeting proteins into or across
membranes (Supplementary Figure S4). The results
showed that 75% of proteins in Cluster 1 and 89% of
proteins in Cluster 3 contained signal peptides, while

the proteins in other clusters did not contain signal
peptides. Based on the phylogenetic and signal pep-
tide analysis, the BSH classification indicated a strong
likelihood that the enzymes in each cluster shared an
immediate common ancestor, as well as similar phy-
siological functions.

Use of SSN and ShortBRED to estimate the
distribution and abundance of BSHs in healthy
human microbiomes

ShortBRED was used to profile the abundances of the
7 BSH clusters in 380 high-quality metagenomes
sequenced from healthy participants during the
human microbiome project (HMP) (Supplementary
Dataset S2). The metagenomic data were taken from

Figure 1. Protein sequence similarity network (SSN) of bile salt hydrolases (BSHs).
The proteins listed in Supplementary Table S1 were used as queries to perform a BLAST search against the UniProt database with the
parameters described in the “Methods” section. The queries and BLAST results (5,790 proteins in total) were used to generate the
network using an e-value threshold of 10−60 (>40% sequence identity). The network displayed 2,396 nodes representing 5,790
proteins filtered at 90% sequence identity. Each cluster was sequentially ranked and labeled based on the node number. The protein
sequence amount of each cluster is shown in the brackets after the cluster name. A representative node from each cluster listed in
Supplementary Table S1 is enlarged. Nodes from the same phylum are represented by the same color. The relative protein
percentage in each phylum of the cluster is listed at the bottom.
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six different sites in the human body: the stool, buccal
mucosa, supragingival plaque, tongue dorsum, ante-
rior nares (skin on the face), and vaginal fornix. The
microbiome of the stool was used to represent the
microbiome of the lower gastrointestinal tract. The
data from the buccal mucosa, supragingival plaque,
and tongue dorsum were reflective of the oral micro-
biome. The body sites covered aerobic (face skin),
microaerobic (oral and vagina), and anaerobic (gas-
trointestinal tract) environments. The unique protein
sequence markers (85% amino acid identity) were
identified for BSHs from each cluster using
ShortBRED-Identify. The abundance of each marker
in the metagenomic reads was then measured using
ShortBRED-Quantify. The abundance of each BSH
cluster within each metagenome was quantified by
cataloging the sequence markers in the SSN. Finally,
the differential abundance values were normalized
using previously estimated average microbial genome
sizes.19

ShortBRED, together with the SSN, revealed the
distribution and abundance of each BSH cluster in

human microbiomes from healthy participants
(Figure 2a). BSH gene sequences from all seven
clusters in the SSN were detected in the human
microbiome; however, the abundances and distri-
butions of the clusters were quite different. The
enzymes from Cluster 1 were the most abundant
in stool samples (median value = 0.25) (Figure 2b).
Cluster 3 enzymes were the second most abundant
enzymes in the stool samples (median value = 0.16).
The median value of Cluster 2 was 0.10; however,
the enzymes belonging to this cluster were most
abundant in the posterior vagina (median
value = 0.09). Cluster 4 enzymes showed relatively
low abundances in samples from all body sites but
showed higher abundances in samples from both
the face skin and oral cavity. The enzymes from
other clusters (Clusters 5–7) showed quite low
abundances and narrow distributions in human
microbiomes (Supplementary Figure S5). The
varying abundances of BSHs shed light on the
ecological contexts of the enzymes from different
clusters and also suggested that enzymes from

Figure 2. The abundance and distribution of the bile salt hydrolases (BSHs) in the 380 microbiomes from healthy human
participants.
(a) Heatmap of the abundance and distribution of seven BSH clusters from six body sites based on measurement by ShortBRED. (b)
Boxplots of the abundances of Clusters 1–4 across six body sites. Tukey boxplots in the main text show the median, first quartile (Q1)
, and third quartile (Q3). Whiskers are extended to include data points between Q1–1.5 (Q3–Q1) and Q1 and between Q3 and Q1 + 1.5
(Q3–Q1) (the lower and upper inner fences, respectively). Values outside this range are individually marked with dots.
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each cluster may have a different association with
the host physiology and health.

Comparative analysis of metagenomic datasets
identifies the relationship between the gut BSHs
and human diseases

The high abundance and broad distribution of the
BSHs form Cluster 1–4 in healthy human gut meta-
genomes suggested that these clusters might be asso-
ciated with certain disease states. We performed
a comparison analysis of these genes across multiple
shotgun metagenomic case-control studies to
explore any association between microbiome and
diseases. We reviewed the metagenomic whole-
genome sequencing datasets of the human gut
microbiomes from NCBI Sequence Read Archive
(SRA) section (recorded until June 2019). These
microbiomes were sequenced on the Illumina plat-
forms. Totally, 20 publicly available and geographi-
cally diverse metagenomic studies were retrieved,
which covered 12 diseases, including gastrointestinal

diseases [ulcerative colitis (UC), Crohn’s disease
(CD), colorectal adenomas (CA), and colorectal can-
cer (CRC)], obesity, type 2 diabetes (T2D), liver
diseases [mild nonalcoholic fatty liver disease
(NAFLD), advanced NAFLD, and liver cirrhosis],
cardiovascular diseases (CVDs), neurological dis-
eases (Parkinson’s disease and epilepsy), and breast
cancer (BR) (Supplementary Table S2). In total,
1,605 samples from patients with the above diseases
and 1,540 healthy control (CTRLs) samples were
analyzed in our study. The DNA sequences of the
genes from Clusters 1–4 were retrieved from the
UniProt database. The abundances of the genes in
Clusters 1–4 were quantified by mapping the genes
to the gut metagenomic datasets and the significant
value was calculated using the Wilcoxon rank sum
test if not specifically indicated (Figure 3 and
Supplementary Figure S6). The abundance of BSHs
from Clusters 5–7 was low in healthy individuals
(Figure 2). Further mapping of the genes to the
metagenomic cohorts associated with the diseases
indicated that the genes from these clusters were

Figure 3. Bubble plot of the association between the abundance of bile salt hydrolases (BSHs) and host diseases.
The bubble size was set to three levels corresponding to statistical significance (0.01 < p < 0.05, 0.001 < p < 0 .01, and p < 0.001) as
determined by Wilcoxon rank sum test or two-sample Student’s t-test, which were used to compare the metagenomes of healthy
controls and patients. The generalized fold change is displayed as a heatmap. Red bubbles are used to indicate the increase in the
abundance of BSH genes in the disease condition, whereas blue bubbles are used to indicate the decrease in the abundance of BSH
genes. The abbreviations of the diseases are as follows: CD: Crohn’s disease, UC: ulcerative colitis, CA: colorectal adenomas, CRC:
colorectal cancer, T2D: Type 2 diabetes, m-NAFLD: mild nonalcoholic fatty liver disease, a-NAFLD: advanced NAFLD, LC: liver cirrhosis,
CVD: cardiovascular disease, PD: Parkinson’s disease, and BC: Breast cancer.
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present at a low abundance in the human gut
(Supplementary Figure S7). Therefore, these clusters
were not considered for further analysis.

The fact that BAs affect the gastrointestinal tract
motivated us to examine the abundance of BSHs in
inflammatory diseases (UC and CD), CA, and CRC
(Figure 3). The results showed that the BSH abun-
dance was significantly associated with inflammatory
bowel diseases (IBDs) (Figure 3). Based on the ana-
lysis of the two cohorts from Europe (Denmark and
Spain) and USA, the abundance of enzymes with
signal peptides (Cluster 1 and Cluster 3) increased
significantly in the gut of patients with CD (n = 190,
n = 174 CTRLs, p = 2.2e-16 and 0.003 for Clusters 1
and 3, respectively) and UC (n = 148, n = 174
CTRLs, p = 0.004 and 0.034 for Clusters 1 and 3,
respectively). In contrast, enzymes from Cluster 2
(without signal peptides) displayed a significantly
reduced abundance in the gut of patients with CD
(p = 2.2e-16). The data for CA (n = 117, n = 152
CTRLs) were collected from three independent stu-
dies from five countries, namely Austria, Canada,
France, Germany, and the USA. The abundance of
the genes in the Clusters 1 and 3 showed a negatively
significant association with the disease (p = 3.6e-10
and 2.5e-8, respectively). A similar relationship was
observed with regard to the abundance of Cluster 2
BSHs between CRC patients and CTRLs (n = 254,
n = 285 CTRLs, p = 2.7e-05), where the data for
CRC were retrieved from six independent cohorts
from Austria, China, Canada, Italy, Germany,
France, and the USA. Based on these analyses, we
propose that BSH gene abundance is significantly
associated with various gastrointestinal tract diseases
including CD, UC, CA, and CRC; however, the
positive or negative relationship varied between the
BSH clusters.

A “Western” diet that is high in fats and low in
fiber contributes to the increased occurrence of
metabolic diseases such as obesity and diabetes.
Obesity is a major risk factor for T2D and
accounts for 90–95% of all diabetes cases.20 The
concentration of BAs increased in the patients
with obesity or T2D; modulation of BA levels
and signaling has been recognized as a potent
therapeutic approach to treat these diseases.21

We compared the abundance of BSHs in the gut
between patients and controls. The results
showed that Cluster 3 was significantly increased

in the obesity cohort from Denmark (n = 169,
n = 123 CTRLs, p = 0.021). Similarly, the abun-
dance of enzymes from Cluster 1 was increased in
the gut of patients with T2D, compared to that in
case of the cohort from China (n = 187, n = 183
CTRLs, p = 0.028). Interestingly, both the clusters
contained enzymes with the N-terminal signal
peptides. Furthermore, the increased level of
enzymes from these two clusters is consistent with
the increased level of total BAs in the patients.

BAs are synthesized and conjugated in the liver.
Furthermore, the secondary BAs produced in the
gut; they can be transported to the liver via the
hepatic portal vein and can affect liver health.4 We
further measured the BSH gene abundance in the
gut microbiome of patients with liver diseases
using the NAFLD cohort from USA and the LC
cohort from China (Figure 3). In case of mild
NAFLD (n = 72, n = 308 CTRLs), the abundances
of enzymes from Clusters 1–4 showed a significant
relation with the disease (p = 1.4e-06, 5.0e-08,
1.0e-10, and 0.0004, respectively). The abundances
of BSHs from Clusters 2 and 3 were also related
with advanced NAFLD (n = 14, n = 308 CTRLs,
p = 1.3e-07 and 0.043). A negative relation was
also observed between LC patients and CTRLs in
case of the BSH genes from Clusters 1, 2, 3, and 4
(n = 123, n = 114 CTRLs, p = 0.008, 1.2e-06, 1.0e-
16, and 0.048, respectively). In these significant
relations, the abundance of BSH genes was always
reduced. Overall, the abundance of the majority of
BSH gene clusters in the gut was negatively related
with NAFLD and LC.

Gut microbiome alterations have also been
reported to be associated with additional condi-
tions in remote organs, such CVD, neurological
disorders, and BR.22 We were able to quantify the
abundance of different BSH clusters in the gut
microbiomes of subjects with related conditions
(Figure 3). All four BSH clusters were related
with CVD (n = 171, n = 214 CTRLs, p = 7.4e-04,
0.0011, 8.8e-07, and 6.9-e04, respectively) based on
the analysis of a metagenomic dataset from China.
The abundances of BSHs from Cluster 2 and
Cluster 4, which do not harbor signal peptides,
were significantly increased; the abundances of
BSHs from Cluster 1 and Cluster 3, which contain
signal peptides, were significantly reduced in the
patients with CVD. We also measured the
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abundance of BSH genes in a Parkinson’s disease
metagenomic cohort from Germany (n = 31,
n = 28 CTRLs). The results showed that the abun-
dance of BSH genes was not associated with the
disease (p > 0.05, Wilcoxon test or t-test).
However, the abundances of the BSH genes of
Cluster 1 and Cluster 2 were significantly associated
with epilepsy, based on the analysis of a dataset from
Germany (n = 24, n = 22 CTRLs, p = 0.002 and 2.3e-
15). An altered gut metagenome has been associated
with BR;23 however, we found that BSH gene abun-
dance was not significantly different between healthy
participants and breast cancer patients by analyzing
the metagenomic cohort from China (n = 62, n = 71
CTRLs, p > 0.05, Wilcoxon test or t-test). These
analyses demonstrate that the abundance of BSHs
in gut microbiomes is also related with the diseases
in remote organs.

Validation of associations between BSH
abundance and diseases in independent study
populations

To validate the associations between BSH gene abun-
dance in the gut and human diseases, we performed
independent cohort validation using two additional
independent metagenomic cohorts with CD (n = 13,
n = 236 CTRLs), UC (n = 69, n = 236 CTRLs), and
CRC (n = 91, n = 61 CTRLs) (Figure 4). The cohort
with UC and CD were retrieved from one indepen-
dent study in Denmark and Spain, while the cohort

with CRC was retrieved from another independent
study in France and Germany. The calculation and
statistical analysis methods used in validation studies
were identical to those used in testing cohorts.
Validation of the CD cohort showed that BSHs
from Clusters 1, 2, and 3 were significantly asso-
ciated with the disease status (p = 0.0042, 0.024,
and 0.046, respectively). Validation of the UC cohort
demonstrated that all clusters from 1 to 4 were
associated with the disease conditions (p = 0.031,
0.0074, 0.035, and 0.0001, respectively). Finally,
only Cluster 2 BSHs were significantly associated
with CRC in cohorts from France and Germany
(p = 3.8e-07, respectively). These results indicated
that the quantification of BSHs in the validation
cohorts was highly consistent with the changes in
BSH in testing cohorts with respect to significance.
Altogether, these results establish a relation between
BSHs and human diseases.

Discussion

Deciphering the function, classification, and evolu-
tion of a large protein family with diverse contem-
porary functions is a challenging task. Phylogenetic
trees, together with dendrograms, have long been
used to describe the sequence relationships between
protein families; however, this method is computa-
tionally intensive and requires an accurate sequence
alignment that is difficult to achieve on a large
scale.24 In contrast, protein SSN, which is based

Figure 4. Validation of the association between the abundance of bile salt hydrolases (BSHs) in the gut and the disease conditions
using independent study populations.
Abundance profiles of BSH genes in the test and validation cohorts were compared between healthy controls (C) and disease cases.
The abbreviations of the diseases are: CD: Crohn’s disease, UC: ulcerative colitis, and CRC: colorectal cancer. The sample numbers for
CD and UC were n = 13 CD, n = 69 UC, and n = 236 CTRLs. The sample numbers for CRC were n = 91 for CRC and n = 61 for CTRLs.
Significance was determined using two-sample Wilcoxon rank sum test.
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on a much larger number of sequences, can estab-
lish a global view to interpret sequences as well as
structural and functional relationships that are not
easily accessible from smaller scale approaches.
Although the SSN methods are based on sequence
identities from BLAST bit-scores, which is different
from sequence alignments in phylogenetic analyses,
previous studies have shown that SSNs serve as
a visually useful tool to reveal sequence–structure–
function associations and evolutionary relationships
between protein families.25,26 In case of BSHs, pre-
vious studies have classified BSHs into three, four,
or eight clusters based on phylogenetic analysis;
however, these analyses were based on <400 protein
sequences.15–17 Song et al. grouped BSHs into eight
clusters using phylogenetic analysis, but the classi-
fication separated several BSHs with high sequence
identity into different clusters,17 which led to over-
classification. In this study, we collected the experi-
mentally characterized enzymes from previous
studies and further extended the amount to 5,790
protein sequences. The SSN classified the enzymes
into 7 clusters, as shown in the phylogenetic tree
(Figure 1). The classification system imparted some
unique characteristics to each cluster. First, the
sequence identities among the proteins from differ-
ent clusters were <40%. Furthermore, the phyloge-
netic tree showed that there was no clear
evolutionary relationship among the 7 clusters.
This analysis suggested that the 7 clusters may
have evolved from different hydrolase precursors
and may have arisen multiple times throughout
the evolutionary history, which is consistent with
the previous study on BSH evolution.5 Second, the
classification system separated the enzymes with
and without signal peptides: most of the enzymes
in Clusters 1 and 3 have N-terminal signal peptides,
while those in other clusters lack these peptides.
Third, the classification system separated the
enzymes from different phyla (Figure 1). The
enzymes in Clusters 1 and 3 were mainly from
Proteobacteria and Bacteroidetes, while those in
other Clusters were mainly from Firmicutes.
Fourth, the classification linked the different ecolo-
gical niches of the bacteria with BSHs. The bacteria
encoding the BSHs in Clusters 1, 2, and 3 were
abundant in the human gut, while the bacteria
encoding the BSHs in Cluster 4 were abundant in
oral cavity. Furthermore, the bacteria encoding the

BSHs in Cluster 2 were abundant in the vagina.
Together, these analyses showed that the classifica-
tion of BSHs based on a large-scale SSN provides
new insights into the evolution, function, and ecol-
ogy of the BSH enzyme family.

Previous SSN studies of glycyl radical enzymes and
transporters have suggested that proteins in each
cluster of an SSN share a similar biochemical
activity;26,27 however, this conclusion does not seem
to apply to BSH clusters. The enzymes in Cluster 2
have been well-studied. Two enzymes in this cluster
(UniProt ID: R6GBZ3 and A0A380KNN4) have
shown 8-fold differences in the specific activity com-
pared to that of GCA even though they share only
60% identity.17 On the other hand, enzymes from
Cluster 2 (R6GBZ3) and Cluster 7 (E2YQS1) have
shown specific activity similar to that of GCA even
though they share only 20% identity.17 The experi-
mentally characterized enzymes from the 7 clusters
can hydrolyze both tauro- and glyco-conjugated bile
salts. BSH is closely related to penicillin V amidase,
and the substrate specificities of the two enzymes
cannot be distinguished on the basis of protein
sequence or phylogenetic tree analysis.16 Additional
studies on the biochemistry and structure of BSHswill
be needed to clarify the promiscuity and substrate
specificity of the enzymes.

The SSN, together with ShortBRED showed the
abundance and distribution of BSHs in human
microbiomes, which provided new insights into
the ecological niches of bacteria harboring different
clusters of BSHs (Figure 2). The BSHs in Cluster 2
were predominant in the vagina, suggesting that the
bacteria harboring the BSHs in Cluster 2 can colo-
nize the vagina. Similarly, the BSHs in Cluster 4
were highly abundant in the supragingival plaque,
implicating that these BSHs may be related to den-
tal health. These data provide important clues to
precisely manipulate BSH-active bacteria in order
to improve human health. For example, the bacteria
harboring the BSHs in Cluster 2, which show good
colonization in the vagina, may serve as promising
probiotics for improving vaginal health. These data
also helped us rank the priority of BSHs for further
study. Of the 44 experimentally characterized
enzymes, 34 enzymes belonged to Cluster 2, and
only 5 enzymes (two enzymes in Cluster 1 and
three enzymes in Cluster 3) harbored signal pep-
tides (Supplementary Table S1). However, the
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ShortBRED results showed that the enzymes
belonging to Cluster 1 and Cluster 3 were more
abundant in the gut than the enzymes in Cluster 2,
suggesting that the focus of BSH research should
switch from Cluster 2 to Clusters 1 and 3.

BA metabolism, which primarily involves
hydrolysis and 7α/β-dehydroxylation reactions, is
associated with many human diseases.22 Our
results showed that BSH gene abundance is asso-
ciated with IBDs, CA, and CRC (Figure 3). In the
present study, the decreased abundance of Cluster
2 BSH genes observed in CD conditions is consis-
tent with a previous study.28 We further showed
that the abundance of Cluster 1 and Cluster 3 BSH
genes is enhanced in the IBDs. These results are in
accordance with the two well-established IBD-
associated taxonomic signatures: (i) phylum-level
decrease in Firmicutes, and (ii) phylum-level
increase in Proteobacteria,29 since the BSHs in
Cluster 2 are predominantly from Firmicutes,
while the BSHs in Clusters 1 and 3 are predomi-
nantly from Proteobacteria. Furthermore, our ana-
lysis from six independent studies in seven
countries indicated that the abundance of Cluster
2 BSH genes, predominantly of Firmicutes, is asso-
ciated with CRC, which was consistent with the
previous studies that showed that Firmicutes were
significantly depleted in the gut microbiome of
CRC patients.30,31 Taken together, these analyses
suggest that the abundance of BSHs is highly
related with gastrointestinal diseases.

High-fat diets increase the levels of BAs in the
gut. The BA concentration can reach 1 mM in the
middle gut after the intake of a high-fat meal.32,33

The abundance of Firmicutes is shown to increase
and the abundance of Bacteroidetes is shown to
decrease in the guts of both a mouse model with
high-fat diet-induced obesity or humans with obe-
sity, compared to the respective lean control
subjects.34 High-level expression of recombinant
BSH in conventionally raised mice leads to
a significant reduction in conjugated BAs, plasma
cholesterol, liver triglycerides, and host weight
gain,35 suggesting that BSH is an important target
to regulate host lipid metabolism and weight gain.
Our analysis showed that the abundance of BSHs
from Firmicutes (Cluster 2 and 4) was not asso-
ciated with obesity and T2D. In contrast, the BSHs
from Cluster 1 and Cluster 3, which contain

N-terminal signal peptides and are predominantly
from Proteobacteria and Bacteroidetes, increased
significantly in the patients with T2D and obesity,
respectively, suggesting that BSHs from
Proteobacteria or Bacteroidetes may contribute
immensely to host health. This result is in accor-
dance with the previous study which showed that
the BSH with signal peptide from Bacteroides the-
taiotaomicron can alter the in vivo BA pool and
exert significant effects on the host metabolic
status.5 Considering the significance of probiotics
with BSH activity as a possible approach to pre-
vent and treat obesity, we propose that the bacteria
with BSH activity belonging to Bacteroidetes but
not Firmicutes can be potential probiotics to ame-
liorate obesity.

Fatty liver diseases are strongly associated with
obesity and T2D, and may develop to nonalcoholic
steatohepatitis, cirrhosis, and eventually, liver
cancer.36 In patients with NAFLD, total fecal BA
concentrations are elevated;37 in contrast, cirrhosis
is associated with a decrease in total fecal BA
concentration.38,39 Our analysis showed that the
majority of BSH clusters were less abundant in
patients with liver diseases than in control subjects.
The decrease of bacteria with BSH activity was also
observed in piglet model of short bowel syndrome-
associated liver disease, which was regulated by
altered farnesoid X receptor (FXR) signaling.40

Zhang et al. reported that FXR plays important
roles in shaping the gut microbiota of mice and
treatment with FXR antagonist can decrease both
the abundance of bacteria encoding BSHs and BSH
activity.41 Interestingly, the expression of FXR is
downregulated during the development of liver
diseases.42 On the basis of this background, we
proposed that the decrease of BSH abundance in
patients with liver diseases is associated with the
host FXR expression level; however, further experi-
ments need to be performed to elucidate the related
underlying mechanisms.

BSH gene abundance is also associated with
diseases in the remote organs, such as CVD and
epilepsy (Figure 3). The BSH-active probiotic bac-
teria have been shown to possess cholesterol-
lowering efficacy, and high cholesterol has been
closely associated with CVD, implying that these
bacteria may have great potential for improving
cardiovascular function.43 In addition, the BAs
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produced by BSH activity can regulate cardiovas-
cular function through G-protein-coupled recep-
tors (TGR5 and muscarinic receptors) and nuclear
receptors (FXR and pregnane X receptor), which
are expressed in cardiovascular tissues.44 In parti-
cular, the clusters of enzymes with and without
signal peptides displayed inverse relations with
CVD. These analyses suggest that BSHs in differ-
ent clusters may have varying associations with
CVD. Similarly, BAs also play important roles in
brain signaling, where they bind membrane-bound
or nuclear receptors. Therefore, the effects of BAs
can also be seen in neurological diseases.45

However, the mechanisms underlying the regula-
tion of neurological diseases by BSHs remain
poorly understood.

There is high variability between individuals
with respect to the composition of the gut micro-
biome, which can be explained by the diet, early
microbial exposure, genetic background, and other
factors; unfortunately, these factors can cause false
associations.46 In this study, we performed a large-
scale analysis of BSHs to overcome these con-
founding factors. We collected a large number of
BSH homologs for classification. Then, we quanti-
fied the abundance and distribution of the
enzymes in a large number of healthy participants.
Finally, we identified the associations between the
enzyme clusters and human diseases using large-
scale cohort studies. Taken together, we suggested
that the pipeline used in the present study from
enzyme sequences to metagenomic data can also
be applied to study the relationship between other
microbial enzymes and host health. The pipeline
can further be improved by augmenting the two
databases used in the study. First, the number of
BSH sequences can be increased. We collected
a large number of BSH sequences including the
experimentally characterized BSHs and their
homologs that should ideally cover the majority
BSHs in the gut; however, the “dark matter” in gut
microbiomes, which includes sequences that are
not annotated precisely, is yet to be explored.47

Hundreds of novel enzymes can be discovered
from metagenomes every year.48 It is very likely
that novel BSHs can be discovered and character-
ized experimentally from the human gut in the
near future, which can further increase our wealth
of knowledge about the relationship between BSHs

and host health. Second, the extension of metage-
nomic datasets can improve the accuracy of rela-
tionships between the diseases and the gene
abundance. We retrieved 20 metagenomic datasets
and all of them were sequenced on the Illumina
platforms ranging from Illumina Genome
Analyzer II to Illumina HiSeq 4000. However,
each methodological step including sample collec-
tion, storage, DNA extraction, and sequencing
may affect the overall end result.49,50 This issue
can be properly addressed by analyzing multiple
metagenomic case-control studies, which is an
effective way to increase the reproducibility and
predictive accuracy.51,52 In the present study, we
used more than one dataset to quantify the rela-
tionship between BSHs and gastrointestinal tract
diseases, including CD, UC, CA, and CRC, since
the microbiomes in these diseases have been well-
characterized and investigated in multiple research
studies. We only used one dataset to examine the
relationship between the microbiome and other
diseases; however, validation studies using inde-
pendent cohorts with UC, CD, and CRC suggested
that the relationships identified by the pipeline
were highly reproducible. Finally, we propose
that the pipeline used in the study is highly effi-
cient and reliable. In future, more metagenomic
datasets should be included with increased knowl-
edge of whole metagenomic sequencing, which can
provide more accurate and explicit details regard-
ing the relationships between the microbial gene
abundance and human diseases.

Conclusions

Taken together, we performed a large-scale study
using enzyme sequences and metagenomic data to
provide an assessment of the association between
BSHs and human diseases. First, a new classifica-
tion system was developed to separate the enzymes
into seven clusters. Second, the abundance and dis-
tribution analysis of the BSHs in healthy partici-
pants enabled the identification of the primary
clusters in the human microbiome. Third, the asso-
ciations between BSH clusters and several human
diseases were discovered. Our work elucidates the
association between a given BSH cluster and
a specific disease, even if it is challenging to clarify
the associate, contributing, or causal relationship
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between BSH and the diseases. However, our ana-
lysis provides the basis for future diagnostic appli-
cations of BSHs as a valuable noninvasive
biomarker of several diseases. Furthermore, our
data could contribute to future researches that aim
to precisely manipulate BSH-active bacteria for use
as probiotics to improve human health.

Methods

Enzyme discovery and in silico characterization
of BSHs

The complete amino acid sequences of experimen-
tally characterized enzymes with a representative
function in humans were collected from previously
published literature (publication cutoff:
January 2019). Summaries of their accession num-
bers, origins, signal peptides, and references are
listed in Supplementary Table S1. These proteins
were combined as seed sequences and putative
BSHs were searched in the UniProt database
(Version: 2019_02) using BLASTP with a cutoff
e–value of 10−5. The obtained BSH homologs are
listed in Dataset S1 (Supporting Information). The
EFI-EST tool was used to construct the protein
SSNs,24 which were visualized by Cytoscape 3.3.53

Networks were generated at score values of e = 10-
−40,10−60, or 10−75. The corresponding protein
sequence identity values were 30%, 40%, and
50%, respectively. To reduce the file size of the
networks, the networks were filtered as 90% repre-
sentative node networks. Each node in the SSN
contained sequences with >90% amino acid iden-
tity and each edge indicated that the two nodes
connected by that edge shared an e-value less than
the selected cutoff. Multiple alignments were con-
structed using the Clustal Omega server.54 The
phylogenetic trees were generated with MEGA
X based on Clustal Omega alignments using max-
imum likelihood (ML) methods and bootstrapping
with 1000 iterations.55 The signal peptides of the
proteins were predicted by SignalP 5.0.56

Determination of BSH abundance using healthy
human metagenomic data

ShortBRED was used to determine the abundance of
BSHs in human metagenomes as previously

reported.57 It was run on the EFI-chemically guided
functional profiling (EFI-CGFP) platform.47 The
BSHs in the clusters were filtered at an 85% amino
acid similarity threshold to identify non-redundant
representative sequences. UniRef90 (Version:
2019_02) was used as a comprehensive, non-
redundant protein reference catalog. These represen-
tative BSH sequences were compared with UniRef90
using ShortBRED-Identify, which was run with the
default parameters to identify representative peptide
markers for the BSH clusters. After obtaining distin-
guishing peptide markers, ShortBRED-Quantify was
carried out with the default parameters to quantify
the marker abundances against 380 metagenomic
datasets from the HMP and then map these to the
SSN clusters. The relative abundance based on reads
per kilobase million (RPKM) values calculated by
ShortBRED-Quantify was converted into “copies
per microbial genome” as previously reported.27

Abundance analysis of BSH genes in human gut
metagenomes under disease conditions

The metagenomic whole-genome sequencing
datasets of the human gut microbiomes that
were generated on Illumina platforms from
2012 to June 2019 were downloaded from the
SRA of the NCBI (Supplementary Table S2). The
datasets containing the sample record for ambig-
uous attributes were excluded. On the basis of
disease, data were classified into the individual
patient samples and corresponding healthy con-
trols to examine the association of BSH genes
with each disease. To homogenize diverse data-
sets, low-quality reads were trimmed at a quality
threshold of 30 bp and a minimum length of 50
bp using Sickle software (version 1.33, https://
github.com/najoshi/sickle). The high-quality
sequencing reads were matched to the nucleo-
tide sequences of each BSH cluster using the
Burrows-Wheeler Alignment (BWA) MEM algo-
rithm (version 0.7.17-r1194-dirty) with default
settings.58 The SAMtools program (version 1.9)
was used to filter aligned reads by only retaining
reads that showed mapping quality above 1.59

The reads matched to each BSH cluster were
counted using BEDtools (version 2.27.1-dirty,
https://bedtools.readthedocs.io/). The read
counts of BSH genes in the gut metagenome
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samples were normalized to read counts per million
metagenome reads and visualized by constructing
boxplots using the ggplot2 package (version 3.1.0)
in the R programming language.

Statistical analysis

All statistical analyses were performed using
R (version 3.5.3). Normality of a given abundance
of BSH genes was assessed by the Shapiro–Wilk test.
If the data were normally distributed, two-sample
Student’s t-test was performed. If the data were not
normally distributed, two-sample Wilcoxon rank
sum test (Mann-Whitney test) was employed to
calculate the significance of relative abundance
between healthy and diseased subjects. Logarithmic
general fold change was also calculated for diseased
subjects and healthy controls using quantiles ran-
ging from 0.1 to 0.9, with equal increments of 0.1.52
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