Table A2.
Identification of the most significant drivers to SCS using Pareto analysis.
No. | List of identified drivers to SCS | Code | 5: Very High important and 1: Very weakly important |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
1 | Efficient disruption risk management capacity | D1 | ||||||||||
2 | Supply chain agility | D2 | ||||||||||
3 | Delivery reliability | D3 | ||||||||||
4 | Build strong legislation facility to tackle COVID-19 for industry owners | D4 | ||||||||||
5 | Customer support, awareness and community pressure | D5 | ||||||||||
6 | Adopting block chain technology | D6 | ||||||||||
7 | Increasing the applications of data analytics in supply chain | D7 | ||||||||||
8 | Supply chain digitization & virtualization | D8 | ||||||||||
9 | Support from international forums (i.e. World Economic Forum) | D9 | ||||||||||
10 | Collaboration among supply chain partners to ensure materials supply | D10 | ||||||||||
11 | Building sustainable procurement strategies considering COVID-19 | D11 | ||||||||||
12 | Enable employees’ safety by providing PPE | D12 | ||||||||||
13 | Build resilient transportation and logistics facility | D13 | ||||||||||
14 | Development of health protocols for stakeholders across the supply chain | D14 | ||||||||||
15 | Policy development to recover the impact of COVID-19 | D15 | ||||||||||
16 | Financial support from supply chain partners | D16 | ||||||||||
17 | Expanding the application of internet of things (IoT) | D17 | ||||||||||
18 | Application of automation and robotics in manufacturing and logistics service | D18 | ||||||||||
19 | Use of 3D printing for rapid manufacturing | D19 | ||||||||||
20 | Financial support from the government through offering incentives, tax cuts, loans etc. | D20 |