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Abstract

Background and aims: Dyslipidemia has been identified as a major risk factor for 

cardiovascular disease. We aimed to identify metabolites and metabolite modules showing novel 

association with lipids among Bogalusa Heart Study (BHS) participants using untargeted 

metabolomics.

Methods and Results: Untargeted ultrahigh performance liquid chromatography-tandem mass 

spectroscopy was used to quantify serum metabolites of 1 243 BHS participants (816 whites and 

427 African-Americans). The association of single metabolites with lipids was assessed using 

multiple linear regression models to adjust for covariables. Weighted correlation network analysis 

was utilized to identify modules of co-abundant metabolites and examine their covariable adjusted 

correlations with lipids. All analyses were conducted according to race and using Bonferroni-

corrected α-thresholds to determine statistical significance.
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Thirteen metabolites with known biochemical identities showing novel association achieved 

Bonferroni-significance, p < 1.04×10−5, and showed consistent effect directions in both whites and 

African-Americans. Twelve were from lipid sub-pathways including fatty acid metabolism 

(arachidonoylcholine, dihomo-linolenoyl-choline, docosahexaenoylcholine, linoleoylcholine, 

oleoylcholine, palmitoylcholine, and stearoylcholine), monohydroxy fatty acids (2-

hydroxybehenate, 2-hydroxypalmitate, and 2-hydroxystearate), and lysoplasmalogens [1-(1-enyl-

oleoyl)-GPE (P-18:1) and 1-(1enyl-stearoyl)-GPE (P-18:0)]. The gamma-glutamylglutamine, 

peptide from the gamma-glutamyl amino acid sub-pathway, were also identified. In addition, four 

metabolite modules achieved Bonferroni-significance, p < 1.39×10−3, in both whites and African-

Americans. These four modules were largely comprised of metabolites from lipid sub-pathways, 

with one module comprised of metabolites which were not identified in the single metabolite 

analyses.

Conclusion: The current study identified 13 metabolites and 4 metabolite modules showing 

novel association with lipids, providing new insights into the physiological mechanisms regulating 

lipid levels.
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INTRODUCTION

As a key contributor to the development of atherosclerotic cardiovascular disease, 

dyslipidemia has been identified as a leading risk factor for morbidity and mortality globally.
1–4 Alterations in lipid metabolism may occur prior to observed dyslipidemia, as assessed by 

traditionally measured lipid parameters.5 Identification of metabolic abnormalities preceding 

the diagnosis of dyslipidemia could enhance efforts for the prevention of this condition and 

its known cardiovascular disease sequelae.

Lipids are influenced by the complex interactions of genomic and environmental factors. 

While numerous studies have successfully elucidated genetic and behavioral risk factors for 

dyslipidemia6–9, the physiological mechanisms linking them to serum lipids remain poorly 

defined. Because the human metabolome integrates the end-product of both endogenous and 

exogenous processes, its study may provide a powerful tool to better understand the 

biological pathways underlying sub-optimal lipid profiles.10 Metabolites such as α-

tocopherol, lactate, and pyruvate have already been demonstrated to associate with lipids 

levels in animal11,12 and epidemiologic studies13,14. Long-chain and branched-chain fatty 

acids may also be involved in the elevation of lipid levels.15 Although these findings are 

promising, limitations of past works include the small sample sizes employed and the sole 

use of targeted metabolomics approaches which are restricted to specific metabolites from 

pathways with presumed biological relevance.16,17 Research exploring the relation of the 

human metabolome to lipid phenotypes using an agnostic metabolite measurement strategy 

has yet to be conducted.18 Work in this area may not only provide novel biological insights 

but could also yield important prognostic information, allowing for the early prevention of 

dyslipidemia and its cardiovascular disease sequelae.
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In the current study, we employed untargeted metabolomics to identify novel serum 

metabolites and metabolite modules associated with total cholesterol (TC), low-density 

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and 

triglycerides (TG). Our cross-sectional analysis leveraged carefully collected information on 

metabolites, lipids, and important covariables among a large, biracial sample of 1 243 (816 

whites and 427 African-Americans) Bogalusa Heart Study (BHS) participants who took part 

in the 2013–2016 study visit.

METHODS

Study Population

The BHS is a community-based long-term study investigating the natural history of 

cardiovascular disease among a biracial sample (65% white and 35% African-American) of 

residents from Bogalusa, Louisiana, begun in 1973 by Dr. Gerald Berenson. From 1973 to 

2016, 7 surveys were conducted in children and adolescents aged 4 to 17 years, and 10 

surveys were conducted among adults aged 18 to 51 years who had been examined 

previously as children. The current BHS cohort includes 1 298 participants born between 

1959 and 1979 who were screened at least 2 times during childhood and 2 times during 

adulthood for cardiovascular disease risk factors. Data and specimens collected in the recent 

2013 to 2016 follow-up visit were leveraged in the current cross-sectional study of these 

participants. Among the 1 298 participants eligible for inclusion, those without metabolite (n 

= 37), lipid (n = 8) or covariable (n=10) data were excluded. A total of 1 243 participants 

remained for the analysis (95.8% response rate).

Informed consents were obtained from all the Bogalusa Heart Study participants after 

detailed explanation of the study. The study was approved by the Institutional Review Board 

at Tulane University.

Measurement of Metabolites

Untargeted, ultrahigh performance liquid chromatography-tandem mass spectroscopy 

(UPLC-MS/MS) was conducted by Metabolon© using BHS serum samples that had been 

stored at −80°C since the 2013 to 2016 visit.19 Rigorous quality assurance was conducted 

during measurement of metabolites which included the use of blanks, blind duplicates (5% 

of the BHS samples), and standard biochemical compounds which were curated into every 

analyzed sample. Compounds were identified by comparison to library entries of purified 

standards or recurrent unknown entities. The library was maintained based on authenticated 

standards that contains the retention time/index (RI), mass to charge ratio (m/z), and 

chromatographic data (including MS/MS spectral data) on all molecules present in the 

library. Furthermore, biochemical identifications are based on three criteria: retention index 

within a narrow RI window of the proposed identification, accurate mass match to the 

library +/− 10 ppm, and the MS/MS forward and reverse scores between the experimental 

data and authentic standards. The quality control and curation processes were designed to 

ensure accurate and consistent identification of true chemical entities, and to remove those 

representing system artifacts, mis-assignments, and background noise (Supplementary 

Methods).20 A normalization step was performed to correct variation resulting from 
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instrument inter-day tuning differences as this study spanned multiple days. Each compound 

was corrected in run-day blocks by registering the medians to equal one and normalizing 

each data point proportionately. Every run day block contains 36 samples randomly selected 

from all the samples of study participants. Untargeted metabolomics resulted in the detection 

and quantification of 1 466 metabolites, with their pathway information pre-specified by 

Metabolon© (Supplementary Table 1). These included 1 055 known biochemical compounds 

in pathways related to amino acids (n=201), carbohydrates (n=25), cofactors and vitamins 

(n=35), energy (n=9), lipids (n=435), nucleotides (n=42), peptides (n=52), and xenobiotics 

(n=256), and 18 known biochemical compounds whose pathways have yet to be determined 

(referred to as ‘partially characterized molecules’). An additional 393 unnamed compounds 

representing a distinct biochemical entity were also quantified. These metabolites were 

labeled with an “X” followed by numbers (e.g., X-12345) and may be identified upon the 

eventual acquisition of a matching purified standard (or via classical structural elucidation 

analyses). Our metabolite identification procedure included matching data to a library using 

three variables, mass-to-charge ratio (m/z), retention index (RI) and msn scan, followed by 

review by a human curator, yielding high confidence the metabolite identification calls. 

Pathway and sub-pathway information was derived from the literature or from internal 

expertise at Metabolon Inc. (Durham, NC). Metabolite identification levels, presented in the 

Supplementary Table 1 as numbers 1 through 4, were determined according to the 

metabolomics standards initiative.21 The unnamed compounds may be identified upon the 

eventual acquisition of a matching purified standard (or via classical structural analysis). 

Additional information on metabolite identification and relative quantification is also 

provided in Supplementary Table 1.

Prior to the statistical analysis, additional quality control and manipulation of the metabolite 

data was undertaken. Batch effects were assessed using principle components analysis with 

scaled data across all run-days and by selecting a random sample of two different run days, 

which revealed no evidence of clustering of metabolite data by run-days (Supplementary 

Figure 1). Data filtering included the exclusion of 213 metabolites that were missing or 

below the detection threshold in more than 80% of samples and 51 metabolites with a 

reliability coefficient <0.3 based on blind duplicate samples. Blind duplicate samples were 

from 64 BHS study participants randomly selected from all participants. Among the 1 202 

metabolites passing quality control, 167 were missing or below the detection threshold in 

50% to 80% of the samples. Similar to previous analyses22, these metabolites were analyzed 

as ordinal variables after categorization into one of three mutually exclusive groups: 1) 

missing or below-the-detection-limit; 2) below the median; or 3) greater than or equal to the 

median. The remaining 1 035 metabolites were analyzed as continuous variables, where the 

minimum observed value was imputed for metabolites with missing or below-the-detection-

limit values.

Measurement of Study Covariables and Phenotypes

Covariable and phenotype data were collected following stringent protocols that have been 

employed consistently at each clinical study visit.23 Questionnaires were administered to 

obtain information on demographic characteristics (including age, gender, race, and 

education), lifestyle risk factors (including cigarette smoking and alcohol consumption), and 
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personal medical history. Education was classified as ≥12 years or <12 years of education 

received. Smoking and drinking status was classified as current, former, or never smokers or 

drinkers. Anthropometric measures were obtained by trained staff with participants in light 

clothing without shoes. During each visit, body weight and height were measured twice to 

the nearest 0.1 kg and 0.1 cm, respectively. The mean values of height and weight were used 

to estimate body mass index (BMI), which was calculated as weight in kilograms divided by 

height in square meters.

Participants were instructed to fast for 12 hours prior to the blood sample collection. Serum 

TC, HDL-C and TG levels were assayed using an enzymatic procedure as part of a lipid 

panel (Laboratory Corporation of America, Burlington, NC, USA).24,25 LDL-C was 

calculated using the Friedewald equation (LDL-C = TC - HDL-C - TG/5) for those with TG 

less than 400 mg/dl.26

Statistical Analysis

Characteristics of study participants were presented as means and standard deviations or 

median and interquartile range for continuous variables and as percentages for categorical 

variables. Differences between white and African-American participants were examined 

using t tests for continuous variables and χ2 tests for categorical variables.

Association of single metabolites with lipid phenotypes—Prior to association 

analyses, TG values were log-transformed to normalize their distribution. Multiple linear 

regression models were used to analyze the associations between each metabolite and lipid 

phenotype after adjustment for age, gender, cigarette smoking (current smoker, ever-smoker, 

or never-smoker), drinking (current, ever, or never drinker), education (≥12 years or <12 

years of education received), BMI, and lipid lowering medication. All analyses were 

performed according to race. A stringent Bonferroni correction for testing 1 202 metabolites 

was employed, using an α-threshold of 1.04×10−5 (0.05/1 202/4) to determine statistical 

significance. An identified association was considered novel if the metabolite had not been 

reported previously for association with lipid phenotypes and was not in a sub-pathway that 

had been reported previously for association with lipid phenotypes. Robustly identified 

metabolites were those that achieved significance after Bonferroni correction in the mutually 

exclusive race groups. Sensitivity analyses were performed by excluding the participants 

who took lipid lowering medication. To assess the potential clinical relevance of our 

findings, identified metabolites were tested for association with carotid intima-media 

thickness (CIMT), a lipid related subclinical measure of atherosclerosis, among the BHS 

participants. These statistical analyses were performed with PROC GLM procedure in SAS 

(version 9.4; SAS Institute, Cary, NC). Data visualization techniques utilized the plotrix 

package in R (version 3.4.1).

Associations of metabolite modules with lipid phenotypes—To identify clusters 

of highly correlated serum metabolites among BHS participants, weighted correlation 

network analysis (WGCNA) was utilized.27 Unlike principal component analysis, this 

unsupervised data dimension reduction technique allows for dependency between 

components, which may more accurately represent the related biological pathways of 
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identified metabolites.27,28 A description of WGCNA and its application to metabolomics 

studies has been reported previously.27,29 Briefly, the metabolite network was constructed as 

an adjacency matrix based on the weighted pairwise-correlations of all metabolites.30 

Modules, defined as densely interconnected metabolites, were then identified from the 

network using an unsupervised hierarchical clustering approach.31 For each module, an 

eigenmetabolite was generated. This measure represents the module’s first principle 

component and can be interpreted as its weighted average metabolite value. Because 

preliminary analyses revealed similar metabolite clustering across race groups, metabolite 

modules were constructed using metabolite data for the 1 202 metabolites passing quality 

control among all study participants. To determine which biological pathways were best 

represented by each module, the metabolites most strongly correlated with each module’s 

eigenmetabolite (r>0.70) were identified, and the sub-pathways representing those 

metabolites were used to label each module.

Adjusted lipid phenotype measures were created using the residual values generated by 

regressing each lipid phenotype on age, gender, cigarette smoking, drinking, education, 

BMI, and lipid lowering medication. The correlations between each module 

(eigenmetabolite) and the adjusted lipid phenotypes were then estimated, separately, 

according to race. To correct for testing 9 serum metabolite modules (eigenmetabolites), a 

Bonferroni corrected α-threshold of 1.39×10−3 (0.05/9/4) was employed. Similar to the 

single metabolite analyses, robustly identified metabolite modules were those that achieved 

significance after Bonferroni correction in the mutually exclusive race groups. These 

analyses were performed using the WGCNA package in R (version 3.4.1).

RESULTS

Characteristics of the BHS metabolomics study participants are shown in Table 1. On 

average, whites were older and had lower BMI compared to African-Americans. They were 

also more likely to drink and have a high-school diploma and less likely to smoke compared 

to African-Americans. African-American BHS participants tended to have better lipid 

profiles, with lower TC, LDL-C, and TG and higher HDL-C as compared to white BHS 

participants.

Association of single metabolites with lipid levels

After multivariable adjustment, a total of 347 metabolites (335 in whites and 226 in African-

Americans, respectively) were associated with the lipid phenotypes after correcting for 

multiple tests (p < 1.04×10−5). These included 193, 126, 103, and 234 metabolites in whites, 

and 134, 77, 46, and 150 metabolites in African-Americans that were associated with TC, 

LDL-C, HDL-C, and TG, respectively (p < 1.04×10−5; Figure 1A-H and Supplementary 

Table 2). Two-hundred eleven of these metabolites (128, 75, 34, and 143 for TC, LDL-C, 

HDL-C, and TG, respectively) achieved Bonferroni corrected significance in both race 

groups (Supplementary Table 2). As expected, the majority of the 211 robustly identified 

metabolites (81%) were from the lipid super-pathway (Table 3). In addition, we identified 15 

from the amino acid super-pathway, 4 from the carbohydrate super-pathway, 5 from the 

cofactors and vitamins super-pathway, 1 from the nucleotide super-pathway, 4 from the 
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peptide super-pathway, and 12 from unknown super-pathways. There was considerable 

overlap of associations across lipid phenotypes (Supplementary Figure 2), with 5 

metabolites shared by all lipid phenotypes (TC, LDL-C, HDL-C, and TG), 37 shared by 3 

lipid phenotypes (8 by TC, LDL-C, and HDL-C; 1 by TC, HDL-C, and TG; 28 by TC, LDL-

C, and TG), 80 shared by 2 lipid phenotypes (31 by TC and LDL-C, 6 by TC and HDL-C, 

36 by TC and TG, 2 by LDL-C and TG, 5 by HDL-C and TG), and 13, 1, 9, and 66 

specifically associated with TC, LDL-C, HDL-C, and TG, respectively. Exact beta estimates, 

standard errors, and p-values, along with AIC values, for each metabolite tested according to 

race and lipid phenotype are presented in Supplementary Table 3. Sensitivity analysis 

excluding those individuals who took lipid lowering medication showed similar results 

(Supplementary Figure 3).

Among the 211 robustly identified metabolites, 25 showed novel association. These 

metabolites included 13 with known structural identities (Table 2) and 12 unnamed 

metabolites (Supplementary Table 2). Of the 13 named metabolites, 12 were identified from 

four lipid sub-pathways, including: 7 involved in fatty acid metabolism 

(arachidonoylcholine, dihomo-linolenoyl-choline, docosahexaenoylcholine, 

linoleoylcholine, oleoylcholine, palmitoylcholine, and stearoylcholine); 3 monohydroxy 

fatty acids (2-hydroxybehenate, 2-hydroxypalmitate, and 2-hydroxystearate); and 2 

lysoplasmalogens [1-(1-enyl-oleoyl)-GPE (P-18:1) and 1-(1-enyl-stearoyl)-GPE (P-18:0)]. 

In addition, gamma-glutamylglutamine, one peptide from the gamma-glutamyl amino acid 

sub-pathway was also identified. Six of the novel metabolites were significantly associated 

with more than one lipid trait. For example, TC, LDL-C, and HDL-C demonstrated 

respective increase of 9.59, 5.95, and 3.13 mg/dl among whites (p = 2.84×10−12, 1.28×10−6, 

and 1.94×10−10, respectively) and 13.95, 9.15, and 3.69 mg/dl among African-Americans (p 
= 6.19×10−12, 8.39×10−7, and 1.19×10−6, respectively) for each standard deviation increase 

of 2-hydroxypalmitate. Sensitivity analysis with log transformed data for novel named 

metabolites achieving significance in both White and African-American Bogalusa Heart 

study participants showed similar results (Supplementary Table 4).

Associations of metabolite modules with lipid levels

The 9 metabolite modules identified among BHS study participants are depicted in Figure 2. 

Detailed information on the metabolites most strongly correlated with each module’s 

eigenmetabolite are displayed in Supplementary Table 5. A heatmap showing the pairwise 

correlations of metabolites across modules is displayed in Supplementary Figure 4. Four and 

6 of the modules significantly associated with lipid phenotypes after correction for multiple 

tests (p < 1.39×10−3) in whites and African-Americans, respectively (Figure 2). Four 

modules consistently associated with at least one lipid phenotypes across race groups, 

including 3, 2, 2, and 2 for TC, LDL-C, HDL-C, and TG, respectively. Among them, module 

2, comprising metabolites from fatty acid metabolism (acyl choline) and lysophospholipid 

sub-pathways, was significantly and positively associated with all four lipid phenotypes (p = 

7×10−39 and p = 2×10−15 for TC, p = 2×10−16 and p = 2×10−5 for LDL-C, p = 2×10−7 and p 
= 8×10−6 for HDL-C, and p = 3×10−16 and p = 2×10−15 for TG in whites and African-

Americans, respectively). Module 1 [representing metabolites from lysophospholipid, 

phosphatidylethanolamine (PE), phosphatidylcholine (PC), monoacylglycerol, and 
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diacylglycerol sub-pathways], module 3 [representing metabolites from long chain fatty 

acid, polyunsaturated fatty acid (n3 and n6), monohydroxy fatty acid, branched fatty acid, 

medium chain fatty acid, and endocannabinoid sub-pathways], and module 4 [representing 

metabolites from sphingolipid metabolism sub-pathway] were significantly and positively 

correlated with TC (p = 2×10−41 and p = 2×10−13 for module 1, p = 3×10−6 and p = 0.002 

for module 3, and p = 4×10−83 and p = 7×10−38 for module 4 in whites and African-

Americans, respectively). Modules 1, 3, and 4 also had significant, positive correlations with 

one additional lipid phenotype across race groups, with module 1 correlated with TG (p = 

1×10−154 and p = 2×10−92 in whites and African-Americans, respectively), module 3 

correlated with HDL-C (p = 3×10−4 and p = 3×10−4 in whites and African-Americans, 

respectively), and module 4 correlated with LDL-C (p = 2×10−90 and p = 7×10−41 in whites 

and African-Americans, respectively).

DISCUSSION

In the first untargeted metabolomics study of lipid phenotypes, we identified 211 metabolites 

which robustly associated with TC, LDL-C, HDL-C, or TG in both white and African-

American participants. Our findings included 25 metabolites showing novel association, 13 

with known and 12 with unknown biochemical identities, and 186 metabolites (or 

corresponding sub-pathways) identified by previous animal or epidemiologic studies. As 

expected, the majority of associated metabolites (81%) were from lipid-related sub-

pathways. Among the 13 metabolites with known biochemical identities showing novel 

association, 12 were from lipid sub-pathways that included fatty acid metabolism, 

monohydroxy fatty acids, and lysoplasmalogens. The gamma-glutamylglutamine 

metabolites, one peptide from the gamma-glutamyl amino acid sub-pathway, were also 

identified. In addition, there were four metabolite modules significantly associated with at 

least one lipid phenotype in both whites and African-Americans. These four modules were 

largely comprised of metabolites from lipid sub-pathways, and included one module 

comprised of metabolites which were not identified in the single metabolite analyses. An 

additional 124 and 15 metabolites were associated with lipid phenotypes exclusively in 

whites and African-Americans, respectively. These findings will require replication in 

independent study populations. In aggregate, findings from the current study provided 

promising evidence for a role of human metabolome in dyslipidemia.

Among the 13 metabolites with known biochemical identities showing novel association, 10 

were from fatty acid related lipid sub-pathways. Such findings might be unsurprising given 

the known relevance of dietary fatty acids on lipid profiles.32–35 The 10 fatty acid related 

metabolites included 7 involved in fatty acid metabolism (arachidonoylcholine, dihomo-

linolenoyl-choline, docosahexaenoylcholine, linoleoylcholine, oleoylcholine, 

palmitoloelycholine, palmitoylcholine, and stearoylcholine) and three monohydroxy fatty 

acid metabolites (2-hydroxybehenate, 2-hydroxypalmitate, and 2-hydroxystearate). 

Although this study is the first to report associations of these metabolites with lipids, unique 

biological insights can be derived from previous studies exploring their biological functions. 

For example, arachidonoylcholine was indicated to have cholinomimetic activity similar to 

that of nicotine, a biochemical with known effects on lipid profile.36,37 In addition, 

oleoylcholine, palmitoloelycholine, and palmitoylcholine levels in liver tissue of male mice 
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were previously shown to be influenced by dietary intake of green tea38. Since green tea has 

also been shown to associate with lipid traits, our data support a potential mediating effect of 

these metabolites on the green tea-lipid relation39–41. The multivariable adjusted results 

showed that the associations of 2-hydroxybehenate and 2-hydroxystearate with CIMT were 

significant after correction for multiple tests (0.05/13=0.038) (Supplementary Table 6). 

CIMT showed an increase of 0.03 mm and decrease of 0.03 mm for each standard deviation 

increase of 2-hydroxybehenate and 2-hydroxystearate, respectively (p = 0.002 and 0.003, 

respectively). The effect direction of 2-hydroxybehenate was consistent with that identified 

in analyses of lipid metabolites. Because the remaining metabolites have not been described 

previously, future research is needed to better elucidate their potential function in lipid 

metabolism.

In addition to fatty acid related metabolites, two novel lipid metabolites from the 

lysoplasmalogen sub-pathway [1-(1-enyl-oleoyl)-GPE (P-18:1) and 1-(1-enyl-stearoyl)-GPE 

(P-18:0)] and one novel peptide metabolite from the gamma-glutamyl amino acid sub-

pathway (gamma-glutamylglutamine) were associated with the lipid phenotypes. The 1-(1-

enyl-oleoyl)-GPE (P-18:1) and 1-(1-enyl-stearoyl)-GPE (P-18:0) metabolites remain 

relatively unstudied. In contrast, gamma-glutamylglutamine was previously associated with 

cardiometabolic phenotypes, including type 2 diabetes and chronic kidney disease 

progression.42,43 Given the correlation of these traits with lipid phenotypes, we conducted 

post-hoc analyses to determine if the observed association between gamma-

glutamylglutamine and TG remained after further adjustment for change in estimated 

glomerular filtration rate over time and fasting plasma glucose. Post-hoc analyses revealed 

similar effect sizes and p-values to the original analyses (data not shown), suggesting that 

the observed associations are independent of kidney function and dysglycemia. Given the 

relatively robust associations of these 3 metabolites with lipid phenotypes in both whites and 

African-Americans, further functional studies are needed to follow-up on these unique 

biological insights.

WGCNA analysis revealed four metabolite modules consistently associated with lipid 

phenotypes in whites and African-Americans. These modules were comprised of metabolites 

from lipid sub-pathways, and aside from module 3, the findings were driven by metabolites 

already identified in the single metabolite analyses. The unique metabolites identified in 

module 3 were from lipid sub-pathways that included endocannabinoids along with long 

chain, polyunsaturated, monohydroxy, branched, and medium chain fatty acids. Except for 

monohydroxy fatty acid, these sub-pathways have all been reported previously to influence 

dyslipidemia. For example, the endocannabinoid system is a physiologic signaling system 

that plays an important role in regulating lipid metabolism.44 Previous clinical trials 

demonstrated improvement of lipid profiles upon administration of cannabinoid receptor 

blockers.45,46 Omega-3 polyunsaturated fatty acids, containing predominantly 

eicosapentanoic acid and docosahexanoic acid, may have complementary biological effects 

such as down-regulation of hepatic lipogenesis and enhancement of very-low-density 

lipoprotein lipolysis.47 Similarly, metabolites from long chain, medium chain, and branched 

fatty acids sub-pathways were previously reported to play a role in the regulation of lipid 

profiles.15,48,49 Medium chain fatty acid was reported to down-regulate key lipid-sensing 

genes such as liver X receptor-alpha in human liver cells with steatosis, and have positive 
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effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggested 

that medium chain fatty acid might reduce lipid accumulation by regulating key lipid-

sensing genes.49 In summary, findings from WGCNA analyses highlight the relevance of 

network-based methods for revealing novel insights into the biological pathways underlying 

lipid phenotypes which may be missed by more traditional single-metabolite analyses.

The current study has several important strengths. To our knowledge, this study of lipid 

phenotypes with untargeted metabolomics provided unbiased interrogation of the human 

metabolite repertoire in relation to this complex trait beyond previous findings about 

metabolites associated with lipid phenotypes. In addition, measurement of metabolites was 

conducted using a stringent study protocol and rigorous quality control procedures. 

Furthermore, this study leveraged the rich resources of the BHS, taking advantage of 

carefully collected measures of serum lipids and all other study covariables. Finally, the 

consistency of our findings, replicating 192 metabolites or sub-pathways implicated by 

previous studies, provides empirical evidence of the robustness of our results. Despite these 

advantages, several limitations of this study should also be addressed. Given the cross-

sectional nature of the study, it is difficult to make causal inferences about the relationship 

between the identified metabolites and lipid traits. Prospective studies are needed to 

determine whether the identified metabolites are etiologically relevant in the development of 

dyslipidemia. Furthermore, an external replication sample was not available for this study. 

However, by employing stringent Bonferroni correction for multiple testing and requiring 

consistent, robust associations across mutually exclusive groups of African-American and 

white BHS participants, type 1 error should be minimized.

In the first untargeted metabolomics study of serum lipids, we provide compelling evidence 

for 25 metabolites and 4 metabolite modules showing novel association with these complex 

phenotypes. Metabolites with known biochemical structures showing novel association were 

primarily from fatty acid related lipid sub-pathways, and also included two metabolites from 

the lysoplasmologen lipid sub-pathway and one gamma-glutamyl amino acid peptides. 

Further studies to assess the temporal relevance of these metabolites to lipid levels is 

warranted. Among the four metabolite modules identified, one was comprised of unique 

metabolites not identified in the single marker analyses, which were from lipid sub-

pathways that included endocannabinoids along with long chain, polyunsaturated, 

monohydroxy, branched, and medium chain fatty acids.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We used untargeted metabolomics profiling to find novel metabolites 

associated with lipids.

• We found 25 novel metabolites and 4 metabolite modules associated with 

lipids.

• Novel metabolites were primarily from fatty acid related lipid sub-pathways.

• The other three novel metabolites were from the lysoplasmologen and 

gamma-glutamyl amino acid peptides sub-pathway.

• Highlighted the potential power of WGCNA to identify novel metabolites and 

biological pathways.
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Figure 1. 
Volcano plots of effect sizes versus –log10 p values for all 1202 metabolite associations with 

total cholesterol (A), low-density lipoprotein cholesterol (C), high-density lipoprotein 

cholesterol (E), and triglyceride (G) among whites and total cholesterol (B), low-density 

lipoprotein cholesterol (D), high-density lipoprotein cholesterol (F), and triglyceride (H) 

among African-Americans.
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Figure 2. 
Correlations of metabolite modules with lipid phenotypes among whites (A) and African-

Americans (B). HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 

lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride. Color should be used for 
figures in print.
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Table 3

Number of metabolites associated with total and lipoprotein cholesterol in each sub-pathway among Bogalusa 

Heart Study participants

Super-pathway Sub-pathway Number of metabolites

TC LDL-C HDL-C TG Any

Lipid Ceramides 12 12 1 4 13

Diacylglycerol 10 3 3 11 11

Endocannabinoid 1 1 1 1

Fatty Acid Metabolism (Acyl Choline) 7 3 7

Fatty Acid Metabolism(Acyl Carnitine) 7 4 5 7

Fatty Acid, Dihydroxy 1 1 1

Fatty Acid, Keto 1 1 1

Fatty Acid, Monohydroxy 3 2 2 1 3

Lysophospholipid 13 5 3 22 24

Lysoplasmalogen 2 2

Monoacylglycerol 8 11 11

Phosphatidylcholine (PC) 12 7 3 16 18

Phosphatidylethanolamine (PE) 11 11

Phosphatidylinositol (PI) 4 1 7 7

Phospholipid Metabolism 1 1 1

Plasmalogen 1 9 4 9

Polyunsaturated Fatty Acid (n3 and n6) 4 3 6

Sphingolipid Metabolism 33 34 4 9 36

Sterol 1 1 1 1

Amino Acid Glutamate Metabolism 1 1

Glutathione Metabolism 1 1

Glycine, Serine and Threonine Metabolism 2 2

Leucine, Isoleucine and Valine Metabolism 8 8

Methionine, Cysteine, SAM and Taurine Metabolism 1 1

Phenylalanine Metabolism 1 1

Tyrosine Metabolism 1 1

Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 3 3

Pentose Metabolism 1 1

Cofactors and Vitamins Tocopherol Metabolism 1 1 1 1

Vitamin A Metabolism 2 2 1 4

Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing 1 1

Peptide Dipeptide 1 1 1

Fibrinogen Cleavage Peptide 2 1 2

Gamma-glutamyl Amino Acid 1 1

Unknown Unknown 3 3 1 11 12
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