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Abstract

Context By linking species of conservation concern

to their abiotic and biotic requirements, habitat

suitability models (HSM) can assist targeted conser-

vation measures. Yet, conservation measures may fail

if HSM are unable to predict crucial resources. HSM

are typically developed using remotely sensed land-

cover classification data but not information on

resources per se.

Objectives While a certain land-cover class may

correlate with crucial resources in the area of calibra-

tion, political boundaries can abruptly alter these

associations. We investigate this potential discrepancy

in a well-known study system highly relevant for

farmland bird conservation.

Methods We compared land cover, land-use inten-

sity and resource availability between plots of highest

habitat suitability for little owls (Athene noctua)

among two neighbouring, but politically separated

areas (i.e. south-western Germany vs. northern

Switzerland).

Results Land cover and land-use richness did not

differ between German and Swiss plots. Yet there

were marked differences in terms of land-use intensity

and the availability of resources. Land-use intensity

was significantly higher and resource availability

lower in Swiss compared to German plots.

Conclusions While accounting well for remotely

sensed data such as land cover, HSM may fail to

predict land-use intensity and resources across bor-

ders. The relationship between geodata used as proxies

and ecologically relevant resources may differ accord-

ing to history, policies and socio-cultural context,

constraining the viability of HSM across political

borders. This study emphasises the need for fine-scale

resource assessments complementing landscape-scale
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suitability models. Conservation measures need to

consider the availability of crucial resources and their

socio-economic moderators to be effective.

Keywords Agri-environment schemes � Birds �
Ground-truthing � Habitat suitability models � Land
use � Landscape simplification

Introduction

Habitat suitability models (HSM) are important tools

for designing evidence-based conservation measures

(Hirzel and Le Lay 2008). Based on environmental

data and species occurrence records, HSM allow

predicting the potential distribution of species over

large spatial scales (Boyce and McDonald 1999). The

resulting habitat suitability maps assist species-speci-

fic conservation measures to be prioritized spatially

(and temporally) to where they are most likely to be

successful. Yet, despite laborious conservation

actions, suitable areas often remain unoccupied (e.g.

Marcer et al. 2013; Fattebert et al. 2018). As an

example, the provisioning of 230 little owl nest boxes

in areas of high predicted habitat suitability in central

Switzerland has not resulted in a population recovery

so far (Fattebert et al. 2018; Grüebler and Tschumi

2019). There are three major explanations for this:

(A) There are limiting demographic factors (e.g.

lacking source population; Schaub et al. 2006),

(B) there are unfavourable landscape aspects (e.g.

low functional connectivity; Hauenstein et al. 2019),

or (C) the habitat does not contain the required

resources to sustain the individual requirements,

although the predicted suitability is sufficient (Bram-

billa et al. 2009).

HSM are often generated based on large-scale land-

cover classification maps and topographic data

derived from administrative databases or remote

sensing (Boyce and McDonald 1999; Rushton et al.

2004). By linking this information to species occur-

rence records, HSM derive proxies for resources that

are crucial for its occurrence (Boyce and McDonald

1999; Rushton et al. 2004). The underlying assump-

tion is, that the disproportional use of certain habitat

features is related to the availability of crucial

resources and consequently to the species’ fitness

(Morris 2003; Hirzel and Le Lay 2008). HSM thus

statistically compare selected to available habitat

features and subsequently predict the probability of

species occurrence to the landscape (Hirzel and Le

Lay 2008). Because the resources themselves are often

fine scaled, they are difficult to be captured by

administrative databases or remote sensing and HSM

thus rarely account for the availability of critical

resources per se (Rushton et al. 2004; Brambilla et al.

2009). HSM thus inevitably assume that proxies based

on geodata are consistent in their correlation to

resources across the full spatial extent of concern.

However, resource availability can change within

small distances across political boundaries (Schmid

and Pasinelli 2002; Arrondo et al. 2018). Differences

in history, policies and socio-cultural context may

result in different land-use intensity and structural

configuration within the same land cover class and

thus in different resource availability (Batáry et al.

2017). Although boundaries leading to discrete

changes can also occur within political entities,

political borders are likely to modify multiple aspects

simultaneously (Batáry et al. 2017). In farmland,

historical changes in mechanisation, anthropogenic

inputs and structural transformations were fundamen-

tal drivers of species declines (Robinson and Suther-

land 2002). Although overall developments were

similar across Europe, there are substantial regional

differences in intensification outcomes (e.g. Wreten-

berg et al. 2006; Batáry et al. 2017). To mitigate

negative effects of agricultural intensification, agro-

environmental policy has defined laws and regula-

tions, as well cross-compliance mechanisms for

farmers to receive subsidies conditional to compliance

with environmental standards (Herzog et al. 2017). In

central Europe, many ecological management guide-

lines and amenities are defined in comprehensive agri-

environment schemes (AES; Batáry et al. 2015).

While most AES offer support for semi-natural

habitats, crop diversification or reduced-input farm-

ing, specific measures differ among countries, partic-

ularly in respect to fine-scale structures and

management regulations within land-cover types

(Herzog et al. 2017; Pe’er et al. 2017). Consequently,

differences in historical development and agri-envi-

ronmental measures resulted in regional differences of

resource availability within identical land-cover types.

Yet crucially, it is the availability of resources and not

land cover type that drives species occurrence
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(Cunningham and Johnson 2006; Fuller 2012; Habel

et al. 2015).

Due to their complex resource requirements and

association with other taxonomic groups, farmland

birds are commonly used as indicators of land-use

intensity and farmland biodiversity (Gregory et al.

2005; Morelli et al. 2014). Although many birds

forage in crops, most farmland birds rely on resources

for breeding and roosting that are complementary to

those offered in arable fields (Vickery and Arlettaz

2012). Large trees, for example, offer above-ground

breeding sites, shelter and complementary food and

have thus been highlighted as a crucial resource for

many farmland birds (Manning et al. 2006; Bock et al.

2013). Likewise, extensively managed meadows offer

ground-nesting sites, high food abundance and acces-

sibility (Schaub et al. 2010; Ekroos et al. 2019). By

altering meadow management intensity or replacing

old trees, local management can modify the suitability

of identical land-cover types for birds and conse-

quently compromise the validity of proxies used by

HSM. This may ultimately result in observed discrep-

ancies between predicted suitability by HSM and

occurrences of the species of concern. While the

challenges of predicting habitat suitability across

regions have been highlighted before (Brambilla

et al. 2009; Wan et al. 2019), to the best of our

knowledge, the performance of HSM to predict

resources across borders has never been tested on the

ground. Crucially, this issue is of general relevance for

HSM based on large-scale remote sensing data but

may be particularly pronounced when political bor-

ders are involved.

Here, we investigate the associations between

predicted habitat suitability and resource availability

across political boundaries by means of a character-

istic species for extensively cultivated farmland—the

little owl (Athene noctua). In areas of identical (i.e.

highest) suitability according to a multi-level habitat

suitability model (Fattebert et al. 2018) in two adjacent

countries (Germany vs. Switzerland), we identify the

differences in land cover, land-use intensity and

resource availability. We predict land cover and

land-use richness to be similar between the selected

study areas, as they were underlying the development

of the HSM. In contrast, we suspect differences in

land-use intensity and resource availability between

the two countries, due to existing differences in

history, policy and socio-cultural context that are not

accounted for in the modelling process. With this

study we aim at assessing the performance of HSM

based on geodata to predict resources across political

borders to raise awareness of an important limitation

of HSM, as well as assessing drivers of resource

availability.

Material and methods

Study species and study area

The study was performed in Baden-Württemberg,

south-western Germany (48.78� N, 9.18� E; Online

Source Fig. S1) and the northern lowland areas of

Switzerland (46.95� N, 7.44� E; Online Source

Fig. S1). The study areas are characterized by a

mosaic of intensively cultivated agricultural fields,

sown leys, permanent meadows, vineyards and

orchards (Grüebler et al. 2014; Apolloni et al. 2018).

Whereas Germany and Switzerland were broadly

inhabited by little owls in the middle of the last

century, populations recently declined as they did

across many parts of Europe with only a few breeding

pairs left in Switzerland (Schaub et al. 2006; Thorup

et al. 2010; Habel et al. 2015). In contrast, a vital little

owl population remains in Baden-Württemberg (Bock

et al. 2013; Grüebler et al. 2018). The little owl prefers

widely open agricultural landscapes and is often

associated with extensively cultivated standard fruit

tree orchards and permanent meadows in Central

Europe (Van Nieuwenhuyse et al. 2008; Šálek et al.

2016; Fattebert et al. 2018). Vertebrate (birds, small

mammals, amphibians) and invertebrate (arthropods,

earthworms) prey is mainly caught on bare ground or

grassland with low vegetation (Grüebler et al. 2018).

Little owls are cavity breeders that prefer cavities with

openings of at least 6 cm diameter and 20 cm depth

and multiple openings for breeding (Tomé et al. 2004;

Bock et al. 2013). In addition to tree cavities, cavities

in stone piles, stacks of wood, buildings or even in the

ground are used (Tomé et al. 2004; Van Nieuwen-

huyse et al. 2008). Likewise, roosting sites also

include stacks of wood, buildings and tree crowns in

addition to tree cavities (Bock et al. 2013).
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Sampling design

Using species occurrence and radio-tracking data from

south-western Germany and Switzerland, Fattebert

et al. (2018) developed a multi-level habitat suitability

model (McGarigal et al. 2016) for the little owl. They

first modelled habitat suitability at the first-, second-

and third-order of selection (Meyer and Thuiller 2006)

using use-available design resource selection func-

tions (Manley et al. 2002). At each order, models were

reduced from a full model containing the variables

elevation, slope, NDVI, percent land cover class

(cropland, forest, orchard, meadow, built-up), and

distance to forest edge, using a manual backward step-

wise variable selection. Habitat suitability was then

mapped by projecting the RSF’s to the whole study

area. External validation showed that all three models

had a high predictive ability of out-of-sample valida-

tion data at their training extent, with a positive

correlation between the number of validation occur-

rence and the value of the habitat class (Spearman rho

rs range = 0.886–1.000, p\ 0.005; Boyce 2006).

Finally, to account for conditional dependencies

across scales, Fattebert et al. (2018) integrated the

three order-specific models into a single map by

multiplying the three layers. Importantly, the resulting

all-in-one, multi-level habitat layer had a high predic-

tive ability of out-of-sample little owl occurrence data

in Germany and Switzerland (rs = 0.952, p\ 0.005).

We now selected 99 random points in south-western

Germany and Switzerland respectively, in the highest

suitability class identified by the multi-level habitat

model (Online Source Fig. S1). Points were centred to

the next available fruit tree (moved by mean ± 1 SE:

279.6 ± 84.8 m), because fruit trees are known as the

main breeding site of little owls in both regions.

Around each point, a square of 1 ha (100 m 9 100 m)

delineated the area for sampling.

In each square (hereafter ‘‘plot’’) we recorded

habitat parameters related to important resources for

the survival and reproduction of little owls (Table 1)

between late April and early August 2013. Land cover

was characterized by (1) the area covered by perma-

nent meadows and (2) land-use richness calculated on

the basis of the different arable land-cover types

(Online Source Table S1). Land-use intensity was

measured by (1) determining the management inten-

sity of permanent meadows with the help of indicator

plant species (Jenny et al. 2011), (2) registering the

occurrence of grazing, (3) assessing if there were

different meadow cutting regimes present in the same

plot (i.e. a diversity of cutting dates) and (4) summing

the occurrences of different small structural elements

(see Table 1 for details). Finally, we assessed the

availability of three crucial resources: (1) tree cavities,

(2) roosting sites and (3) small rodents. Tree cavities

([ 6 cm diameter and[ 20 cm depth; Bock et al.

2013) were summed for the entire plot. Roosting sites

were defined as open spaces in structures such as

buildings, palette stacks or similar structures (but

excluding nestboxes, tree crowns and tree cavities)

large enough for a little owl to hide or find shelter

(Bock et al. 2013). The availability of small rodents,

one of the little owls’ main food source (Apolloni et al.

2018), was approximated by calculating a small rodent

index based on traces counted on standardized tran-

sects (Table 1; Delattre et al. 1996; Apolloni et al.

2018). Finally the number of trees (i.e. all trees

standing freely, in groups or orchards but not in

hedges) was counted in each plot and used as covariate

in some models (see Table 2 and statistical analyses

section). In addition the diameter at breast height was

recorded for every tree to investigate the tree-specific

occurrence of cavities.

Statistical analyses

Differences in habitat features between plots in south-

western Germany (hereafter ‘German plots’) and

Switzerland (hereafter ‘Swiss plots’) were evaluated

by fitting individual models for the recorded habitat

parameters (Table 2). Linear models (LMs) and

generalized linear models (GLMs) were used to model

habitat parameters with country (two levels: ‘‘Ger-

many’’, ‘‘Switzerland’’) as main predictor, whereas the

best-fitting model type and error distribution was

identified based on the data collection process and

investigating residuals based on model validation

plots. Permanent meadow area was arcsine square

root- and small rodent index square root-transformed

to fulfil the normality criteria for LMs (Table 2).

GLMs with negative binomial error distribution were

fitted with the R package ‘‘rstanarm’’ (Stan Develop-

ment Team 2016) in case of overdispersion for GLMs

with poisson error distribution. For evaluating cutting

regimes and small rodent traces, we additionally

included sampling date as covariate, as mowing and

small rodent availability likely fluctuate in time.
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Table 1 Habitat parameters recorded for each sampling plot

Parameter

name

Description Class Levels/

range

Species needs

Land cover

Permanent

meadow

area

Area (ha) covered by permanent meadows Numeric 0.02–1.00 Food availability & accessibility

(Šálek and Lövy 2012; Šálek et al.

2016)

Land-use

richness

Number of different land-cover types (see Online

Source Table S1)

Numeric 1–5 Food availability & accessibility (Van

Nieuwenhuyse et al. 2008)

Land-use
intensity

Low-

intensity

meadows

Occurrence of permanent meadows of low

management intensity according to Jenny et al.

(2011)

Binary 0; 1 Food availability (McCracken and

Tallowin 2004)

Grazing Occurrence of grazed areas Binary 0; 1 Food availability & accessibility

(Šálek and Lövy 2012; Apolloni

et al. 2018)

Different

cutting

regimes

Occurrence of different cutting regimes Binary 0; 1 Food accessibility (Šálek and Lövy

2012; Vickery and Arlettaz 2012)

Small

structural

elements

Sum of occurrences of dry stone walls, stone piles,

stacks of wood, brush piles, hedges, summer

houses, unmaintained buildings and equipment

shelter buildings

Numeric 1–8 Food availability, food accessibility,

shelter (Van Nieuwenhuyse et al.

2008; Šálek et al. 2016)

Resource
availability

Tree cavity

number

Total number of tree cavities[ 6 cm diameter

and[ 20 cm depth

Numeric 0–100 Nesting places, shelter (Tomé et al.

2004; Bock et al. 2013; Habel et al.

2015)

Roosting site Occurrence of potential little owl roosting

site(s) (e.g. in buildings, palette stacks etc.

excluding nestboxes, tree crowns and tree

cavities)

Binary 0; 1 Shelter (Bock et al. 2013)

Small rodent

index

Total predicted small rodent traces per ha: Number

of runways, vole piles and holes counted on three

5 m 9 1 m transects (Apolloni et al. 2018) with

one each randomly placed on meadows, field

margins and orchards divided by transect area and

multiplied times the cover of the respective land

use (meadow, field margin, orchard)

Numeric 0–11 260 Food availability (Apolloni et al.

2018; Grüebler et al. 2018)

Covariates

Number of

trees

Total number of trees—i.e. all trees standing freely,

in groups or orchards. Trees in hedges were

omitted

Numeric 1–242 –

Sampling

date

The date of sampling Date 2013/04/

22–2013/

08/07

–

Individual
tree traits

Cavity

occurrence

Occurrence of a cavity[ 6 cm diameter

and[ 20 cm depth (Bock et al. 2013) in

individual trees

Binary 0; 1 –
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To investigate the determinants of cavity availabil-

ity in more detail, we additionally grouped individual

trees into dbh-classes (Online Source Table S2) and

plotted the dbh class means against total cavity

numbers and total number of trees per dbh-class.

Furthermore, to model tree cavity occurrence

Table 1 continued

Parameter

name

Description Class Levels/

range

Species needs

Tree dbh Individual tree diameter at breast height in cm Numeric 1–118 –

All parameters were recorded for the plot area of 1 ha

Table 2 Model summary of habitat differences between German and Swiss plots (country) including sampling date as a covariate

where assumed to be important

Model typea Estimate 95% CrI

Land cover

Permanent meadow areab Lm

Country - 0.055 - 0.115 to 0.006

Land-use richness Poisson glm

Country 0.100 - 0.098 to 0.297

Land-use intensity

Low-intensity meadows Binomial glm

Country 2 2.358 2 3.050 to 2 1.646

Grazing Binomial glm

Country 1.979 1.232 to 2.709

Different cutting regimes Binomial glm

Country 2 2.480 2 3.284 to 2 1.695

Sampling date 0.026 0.014 to 0.038

Small structural elements Poisson glm

Country 2 1.150 2 1.381 to 2 0.920

Resource availability

Tree cavity number Negbinom glm

Country 2 1.760 2 2.089 to 2 1.424

Roosting site Binomial glm

Country 2 1.289 2 1.909 to 2 0.681

Small rodent indexc Lm

Country 2 7.668 2 13.980 to 2 1.695

Sampling date 2 0.121 2 0.216 to 2 0.028

Shown are the model type, parameter estimates and 95% CrI. Effects with CrI not overlapping zero are printed in bold
aLm = linear model with Gaussian error distribution and identity-link function; Binomial glm = generalized linear model with

binomial error distribution and logit-link function; Poisson glm = generalized linear model with poisson error distribution and log-

link function; Negbinom glm = Bayesian generalized linear model with negative binomial error distribution and log-link function
bArcsine-square root-transformed
cSquare root-transformed
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probability, we fitted a generalized linear mixed-

effects model (GLMM) with binary error distribution

(logit-link function) for individual trees with country,

standardized dbh and its second-order polynomial, as

well as the two-way interactions of country with

standardized dbh and its polynomial as fixed effects

and plot id as random effect. One tree with a dbh of

186 cm (out of 8892 sampled trees) was excluded as it

represented an obvious outlier biasing cavity-occur-

rence patterns (Table 1).

Bayesian posterior distributions were simulated

(5000 simulations) for model estimates with the R

package ‘‘arm’’ (Gelman and Su 2016) for LMs and

GLMs and with ‘‘rstanarm’’ (Stan Development Team

2016) for negative binomial GLMs and used to

calculate 95% credibility intervals (95% CrI) and

model predictions. Effects with 95% CrI not overlap-

ping zero were termed statistically ‘‘significant’’. All

statistical analyses and figures were done in R v. 3.5.2

(R Core Team 2018).

Results

There was no difference in land cover (area covered by

permanent meadows and land-use richness) between

plots of high habitat suitability in Germany and

Switzerland (Table 2; Fig. 1). However, land-use

intensity differed strongly between German and Swiss

plots. Low-intensity meadows and different cutting

regimes occurred more often, meadows were grazed

less often, and small structural elements were more

abundant in German than Swiss plots (Table 2; Fig. 2).

The availability of resources such as tree cavities,

roosting sites and rodents (i.e. small rodent index) was

higher in German than in Swiss plots (Table 2; Fig. 3).

Tree cavity number was positively correlated with tree

number (Online Source Fig. S2) but the number of

cavities was also higher in German than in Swiss plots

when accounting for the number of trees in the model

(model estimate country = - 0.757; 95% CrI = -

1.141 to - 0.372; model estimate number of trees =

0.015; 95% CrI = 0.011 to 0.020), revealing a higher

number of cavities per tree in German compared to

Swiss plots. As expected, the occurrence of different

meadow cutting regimes and the number of expected

small rodent traces varied with sampling date

(Table 2).

The different number of cavities per tree might be

due to differences in the size distribution of the trees.

Most cavities were found in trees of a dbh between 20

and 60 cm with generally more cavities found in

German than Swiss plots (Fig. 4a). Most trees had a

dbh smaller than 60 cm with consistently more trees

counted in German than Swiss plots up to a dbh of

60 cm (Fig. 4b). Yet, indeed the probability of a tree

having a cavity followed a quadratic curve that

differed between countries (Online Source Table S3;

Fig. 4c). In German plots the probability for a tree

having a cavity peaked at p = 0.36 for trees with a dbh

of 53.9 cm, whereas in Swiss plots it peaked at

p = 0.28 for trees with a dbh of 63.9 cm (Fig. 4c).

While trees with a low bhd (between 20 and 60 cm)

had a higher probability to contain a cavity in German

compared to Swiss plots, trees with a large bhd

Fig. 1 Differences in land cover between plots in high

suitability areas in Germany and Switzerland.Model predictions

and 95% CrI of a permanent meadow area and b land-use

richness in plots in south-western Germany (light grey bars) and

Switzerland (dark grey bars). Data are shown per 1 ha sampling

plot. Points represent raw data
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([ 80 cm) had a higher probability for a cavity in

Swiss plots (Fig. 4c).

Discussion

We found large differences in land-use intensity and

the availability of resources between plots of high

predicted habitat suitability in south-western Germany

and Switzerland. Land-use intensity was lower and

resource availability higher in German compared to

Swiss plots. These results illustrate the limitations of

HSM based on land cover proxies to predict for land-

use intensity and resources across borders and empha-

size the necessity of specifically assessing key

resources for designing effective conservation

measures.

Large differences in land-use intensity and resource

availability, but not land cover, corroborate our

hypotheses that HSM account well for land cover

but insufficiently predict differences in suitability

arising due to differences in resources. While a strong

correlation between land cover classification and

resource availability may allow accurate predictions

for suitability in proximity of its calibration, the

Swiss-German border alters this association. Remark-

ably, the multi-level HSM for little owls was cali-

brated with species occurrence data from Switzerland

and Germany at the population level, whereas data for

calibration at the individual level (home range place-

ment and within-home range selection) were only

Fig. 2 Differences in land-use intensity between plots in high

suitability areas in Germany and Switzerland.Model predictions

and 95% CrI of a occurrence of low-intensity meadows,

b occurrence of grazed areas, c occurrence of different cutting

regimes, and d small structural elements in plots in south-

western Germany (light grey bars) and Switzerland (dark grey

bars). Data are shown per 1 ha sampling plot. Points represent

raw data
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available from radio-tracking data collected in Ger-

many (Fattebert et al. 2018). At the small scale, the

habitat suitability model is therefore mainly influ-

enced by the association between little owl occurrence

and land cover classification in Baden-Württemberg.

Crucially, our findings do not compromise HSM as an

invaluable tool to detect areas with a

Fig. 3 Differences in resource availability between plots in

high suitability areas in Germany and Switzerland. Model

predictions and 95% CrI of a total number of tree cavities,

b occurrence of roosting site and c small rodent index in plots in

south-western Germany (light grey bars) and Switzerland (dark

grey bars). Data are shown per 1 ha sampling plot. Points

represent raw data

Fig. 4 Factors underlying tree cavity availability in German

plots (Germany) and Swiss plots (Switzerland). Mean ± 1 SE

number of a observed tree cavities per 1 ha plot and b number of

trees per 1 ha plot in different tree size classes in south-western

Germany (filled circles) and Switzerland (open diamonds), and

cmodel predictions and 95%CrI (shaded areas) of probability of

cavity occurrence per individual tree in response to tree

diameter at breast height (dbh) in plots in south-western

Germany (light grey line and light grey shaded area) and

Switzerland (dark grey line and dark grey shaded area)
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suitable ecological infrastructure based on land-cover

classification data. In contrast, measures to improve

resource availability are best focused on areas of high

predicted suitability. Yet, the discrepancy between

HSM predictions and resource availability at a fine

scale may explain the absence of little owls from areas

with high suitability scores in Switzerland.

The following mechanisms can explain how dif-

ferences in land-use intensity and resources affect the

absence of little owls in the Swiss compared to the

German study areas. High intensity of meadow

management is known to reduce food abundance and

accessibility to birds (McCracken and Tallowin 2004),

which is reinforced by low spatio-temporal hetero-

geneity of management as induced by the lack of

different cutting regimes (Vickery and Arlettaz 2012).

In addition, the reduced occurrence of small structural

elements in Swiss plots decreases structural diversity

which is known to benefit birds in various ways (Van

Nieuwenhuyse et al. 2008; Šálek et al. 2016). Farm-

steads, for example, represent bird diversity hotspots

due to their provisioning of foraging grounds, roosting

and nesting sites (Grüebler et al. 2010; Hiron et al.

2013). Furthermore, intermediate grazing intensities,

with a high plant diversity and heterogeneity in sward

structure that encourage rich food sources and facil-

itate accessibility, is known to support more farmland

birds than low or high grazing intensity (McCracken

and Tallowin 2004; Apolloni et al. 2018). Our

observations suggest that grazing intensity in our

Swiss plots was high, offering low plant diversity and

reduced accessibility due to dense and monotonous

swards.

In addition, the three directly measured resources

known to be crucial for little owls were less abundant

in Swiss compared to German plots: First, the supply

of suitable tree cavities that is known to limit

populations of many secondary cavity breeders

(Cockle et al. 2010; Habel et al. 2015). The lower

density of tree cavities in Swiss compared to German

plots was a combined result of lower tree density and

of a lower likelihood of individual trees containing

cavities. As expected, the occurrence probability of

tree cavities increased with tree size (Schwarze et al.

2000; Cockle et al. 2010; Grüebler et al. 2013).

However, the likelihood for cavities decreased after

reaching a maximum at 53.9 cm (German plots) and

63.9 cm (Swiss plots) dbh, suggesting a selective

removal of large damaged trees. Second, lower

availability of roosting sites in Swiss plots may limit

little owls due to their key importance as a shelter from

predators, disturbance and adverse weather through-

out the year (Bock et al. 2013; Grüebler et al. 2014).

Finally, the lower small rodent index in Swiss

compared to German plots likely represents a direct

estimate of reduced food supply for little owls in Swiss

compared to German plots (Grüebler et al. 2018).

A multitude of drivers can explain the differences

in land-use intensity and resources between German

and Swiss areas of highest habitat suitability. Histor-

ically, governments have for example supported the

transformation of traditional fruit plantations (i.e.

‘‘Streuobst’’; Herzog 1998) into dwarf tree orchard

systems by subsidising the clearing of standard fruit

trees in view of creating a more market-oriented fruit

production. This development was more severe in

Switzerland (minus 70% traditional orchards) com-

pared to south-western Germany (minus 37% in

Baden-Württemberg; Herzog 1998), where large

‘‘Streuobst’’ landscapes remain.

In addition, there are differences in policy and

markets between south-western Germany and

Switzerland that result in major structural differences.

For example, farmland in south-western Germany is

dominated by arable crops (57.9% of agricultural

production area in 2016; permanent grass-

land = 38.5%; Statistisches Landesamt Baden-Würt-

temberg 2019) but by grassland in Switzerland (70.3%

in 2016; 26.0% arable crops; Bundesamt für Statistik

2019), and animal numbers per area are lower in

south-western Germany (total 45 cows, sheep and

goats per km2 in 2016; Statistisches Landesamt

Baden-Württemberg 2019) than Switzerland (total

65 cows, sheep and goats per km2 in 2016; Bundesamt

für Statistik 2019). These differences likely result in a

higher intensification pressure in Switzerland—and

particularly more intensified grassland management.

In addition, differences in property rights may result in

orchards or allotments being more often owned by

non-farmers in south-western Germany compared to

Switzerland (Bundesversammlung der Schweiz-

erischen Eidgenossenschaft 2014; Statistisches Lan-

desamt Baden-Württemberg 2017), which again

results in lower constraints for cost-effective manage-

ment in south-western Germany. The fact that tree

cavity occurrence was lower in Swiss than in German

plots indeed suggests that selective removal of dam-

aged trees was more pronounced in Switzerland than
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in Germany or trees maintained more thoroughly—

particularly for intermediate-sized trees that are used

for fruit production.

To mitigate the adverse effects of agricultural

intensification on biodiversity, both countries have

implemented AES. Although AES on both sides of the

border are highly developed and support specific

measures such as extensive grassland management

and traditional orchards (Baden-Württemberg:

Science for Environment Policy 2017; Pe’er et al.

2017; Switzerland: Herzog et al. 2017), the Swiss

scheme is more targeted to support ecological quality

and measures for individual trees and structures such

as flower strips, improved field margins or stone heaps

(Herzog et al. 2017). However, the fact that low-

intensity meadows occurred more often in German

than in Swiss plots, and all investigated structures and

resources were more abundant, suggests that Swiss

AES measures are ineffective (see also Home et al.

2014).

We thus suppose that there are major socio-cultural

drivers that contribute to the observed structural

differences between Germany and Switzerland. In

particular, differences in attitude, social norms and

expectations may affect management intensity and

resource availability. Indeed, farmer’s attitudes and

subjective norms have been identified as a major factor

limiting the success of Swiss AES (Home et al. 2014).

Swiss farmers’ willingness to invest in conservation is

often impaired by their concerns to be considered

unproductive and tolerance towards non-productive

land uses is usually low (Home et al. 2014).

Conclusions

Our study raises concern that HSM based on land

cover data may often fail to extrapolate suitability

across political borders. This is because political

borders can impact the associations between land

cover classifications and resource availability. While

HSM are valuable for detecting areas of potential

suitability at the landscape scale, this does not

automatically imply optimal fine-scale characteristics.

To fully cover a species’ conservation needs and turn

areas of high-potential into ‘real habitat’ therefore

requires that small-scaled studies assessing key

resources complement land-cover classification based

HSM (cf. Brambilla et al. 2009; Rhodes et al. 2015).

Conservation measures consequently may have to

put more effort into improving quality in terms of

reducing agricultural land-use intensity and providing

crucial resources instead of solely focusing on the

availability of important land cover types. Due to

strong similarities in habitat requirements with many

farmland birds, measures to restore habitat for little

owls will likely benefit multiple species (Fuller 2012;

Zellweger-Fischer et al. 2018). Because of this general

value, resource-rich structures may be promoted by

governments using horizontal agri-environment

schemes (AES). Specifically, AES could add or

reinforce payments for extensive meadow manage-

ment and traditional orchards, assure a diversity in

cutting regimes and moderate grazing intensities,

promote single trees (with special focus on large

trees) and small structural elements. However, the

mismatch between measures supported by AES and

the availability of resources between Germany and

Switzerland suggests that the current Swiss AES are

ineffective. Increased payments for ecological quality

or more result-based payments may offer one solution

to improve their success (Meichtry-Stier et al. 2014;

Herzon et al. 2018). Yet, as financial payments alone

are often insufficient in positively affecting farmland

biodiversity (Home et al. 2014), we believe that a

paradigm-shift in social norms and attitudes is needed,

from conceiving semi-natural structures as obstacles

to productivity, towards acknowledging their func-

tions and services—or at least towards more tolerance

for landscape heterogeneity and apparent

disorderliness.
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Apolloni N, Grüebler MU, Arlettaz R, Gottschalk TK, Naef-

Daenzer B (2018) Habitat selection and range use of little

owls in relation to habitat patterns at three spatial scales.

Anim Conserv 21:65–75

Arrondo E, Moleón M, Cortés-Avizanda A, Jiménez J, Beja P,
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Forstwirtschaft. https://www.statistik-bw.de/

Landwirtschaft. Accessed 1 Mar 2019

Thorup K, Sunde P, Jacobsen LB, Rahbek C (2010) Breeding

season food limitation drives population decline of the

Little Owl Athene noctua in Denmark. Ibis 152:803–814
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