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Abstract
In recent years, several studies have reported positive outcomes of cell-based 
therapies despite insufficient engraftment of transplanted cells. These findings 
have created a huge interest in the regenerative potential of paracrine factors 
released from transplanted stem or progenitor cells. Interestingly, this notion has 
also led scientists to question the role of proteins in the secretome produced by 
cells, tissues or organisms under certain conditions or at a particular time of 
regenerative therapy. Further studies have revealed that the secretomes derived 
from different cell types contain paracrine factors that could help to prevent 
apoptosis and induce proliferation of cells residing within the tissues of affected 
organs. This could also facilitate the migration of immune, progenitor and stem 
cells within the body to the site of inflammation. Of these different paracrine 
factors present within the secretome, researchers have given proper consideration 
to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific 
migration of the cells needed for regeneration. Recently researchers recognized 
that SDF1 could facilitate site-specific migration of cells by regulating SDF1-
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CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue 
regeneration. Hence in this study, we have attempted to describe the role of 
different types of cells within the body in facilitating regeneration while 
emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration 
of cells to the site where regeneration is needed.

Key Words: C-X-C motif chemokine 12; Mesenchymal stem cells; Monocytes; 
Neutrophils; Peripheral blood mononuclear cells; Receptor for advanced glycation end 
products
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Core tip: In the last few decades, cell-based regenerative therapy has received considerable 
attention for the treatment of degenerative diseases or the regeneration of injured organs. 
However, poor cell retention is considered a major drawback associated with the short-
term regenerative benefits. Furthermore, the short-term regenerative benefits are linked to 
paracrine factors secreted by the transplanted stem cells. To improve regenerative 
outcomes, researchers have identified the role of stromal cell-derived factor-1 (SDF1) as a 
key chemotactic factor that can facilitate site-specific migration and retention of 
transplanted cells, and stem or progenitor cells within the body by activating the SDF1-
CXCR4 or HMGB1-SFD1-CXCR4 pathways.
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INTRODUCTION
Over the past decades, non-communicable diseases, especially degenerative diseases 
are becoming more prevalent worldwide, which also contributes to major morbidity. 
During the past two decades, stem cell-based regenerative therapy has been 
considered hopeful in addressing the unmet needs of treating degenerative diseases[1].

Among the different tools of regenerative medicine “stem cells” are considered the 
most promising due to their self-renewal capability and multi-differentiation potential. 
However, recent studies have shown that the positive outcomes of different types of 
stem cell-based regenerative therapies are not directly correlated to the engraftment of 
transplanted cells[2,3]. These findings have created a huge interest in the regenerative 
potential of paracrine factors and have led scientists to reveal the regenerative 
potential of proteins in the secretomes. Further studies have revealed the mitogenic, 
angiogenic, anti-apoptotic, anti-scarring and chemoattractant features of secretomes or 
cell culture supernatants that make them a potential tool for regenerative therapy[1,4]. 
Furthermore, the regenerative potential of the secretome from adult stem cells[5], 
freshly isolated healthy peripheral blood mononuclear cells (PBMC)[6] and apoptosis-
induced PBMC[7,8] has been acknowledged by several researchers. Secretomes from 
stem and progenitor cells have been found to be favorable for regenerating tissues or 
treating several disorders including neuronal disorders[9], vascular diseases[10] and 
cutaneous wounds[11]. The growing evidence on the role of paracrine factors (cytokines, 
chemokines and growth factors) in the regeneration of affected organs has led to the 
introduction of cell culture supernatants or secretomes as a new therapeutic tool of 
regenerative medicine.

Regeneration is a complex process and several types of cells namely lymphocytes, 
monocytes, neutrophils, endothelial progenitor cells (EPCs), hematopoietic stem cells 
(HSCs), mesenchymal stem cells (MSCs), and tissue resident stem cells are involved in 
the process of regeneration. Recent studies reported that stromal cell-derived factor-1α 
(SDF1α) present in the secretome increases proliferation, viability, migration and 
homing of stem and progenitor cells; helps lymphoid tissue development and 
differentiation; and inhibits apoptosis of cells[4,12]. All these features are highly 
important for regeneration of damaged organs[13]. Furthermore, SDF1 and C-X-C-X-C 
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chemokine receptor type 4 (CXCR-4) play a vital role in the high mobility group box 1 
(HMGB1)-mediated inflammatory cell recruitment to the site of damaged tissue which 
is also vital for tissue repair and regeneration[14]. Hence, in this review we have 
attempted to describe the role of different types of cells in regeneration while 
emphasizing activation of the HMGB1-SDF1-CXCR4 pathway which is considered a 
key pathway that regulates the directional migration of all cells and facilitates the 
process of regeneration.

PBMC IN REGENERATION
PBMC are widely used in preclinical research and applications in vaccine trials, source 
of biomarkers in various infectious and chronic diseases, and are a useful tool in 
studying various aspects of pathology and biology in vitro[15]. In addition, PBMC are an 
easily accessible source of different types of adult stem and progenitor cells, such as 
HSCs, MSCs, osteoclast precursor cells, and EPCs[16]. Due to the content of different 
types of adult stem cells, in a favorable microenvironment the potential to differentiate 
into several tissue specific cells including mature blood cells, endothelial cells, 
hepatocytes, cardiomyocytes, smooth muscle cells, epithelial cells, neural cells, 
osteoblasts, osteoclasts, and myofibroblasts has been shown[16-18]. Furthermore, 
compared to bone marrow (BM) or other multipotent cells sources, the isolation of 
PBMC is less invasive. However, a series of standard procedures for PBMC collection, 
isolation, cryopreservation and preparation are crucial for their use in cell-based 
regenerative therapy[15]. PBMC contain terminally differentiated immune cells, namely 
monocytes and lymphocytes that also a play vital role in tissue remodeling and 
regeneration[19-21].

Monocytes
Monocytes that contribute approximately 4%-10% of leukocytes in our bloodstream 
are highly plastic in nature[22]. Monocytes and macrophages are the largest types of 
white blood cells and are involved in inflammation and elimination of harmful foreign 
substances[23,24]. As part of the innate immunity they are involved in tissue homeostasis 
and facilitate wound healing by removing apoptotic and necrotic cells[24].

In regenerative tissues, macrophages are highly plastic and play a decisive role in 
tissue repair and regeneration[25]. In response to injury and subsequent healing, 
macrophages are capable of polarization towards a spectrum of phenotypes. Based on 
the environmental cues and molecular mediators, these cells will differentiate into 
either pro-inflammatory type I macrophage (M1) or anti-inflammatory type II 
macrophage (M2) phenotypes[25-27].

Studies have reported that M1 macrophages infiltrate tissues at the earlier stages of 
acute injury to promote the clearance of necrotic cells or tissue debris. Moreover, 
following activation M1 macrophages secrete a wide range of pro-inflammatory 
cytokines such as interleukin (IL)-1, IL-6, IL-8, IL-12, IL-18, IL-23, tumor necrosis factor 
(TNF)-α, monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory 
protein (MIP)-1[28]. Whereas, M2 macrophages appear within the injured tissue at later 
stages and release high amounts of anti-inflammatory paracrine factors such as IL-10 
and transforming growth factor-β (TGF-β)[25,29]. They are also capable of secreting 
extracellular matrix (ECM) remodeling components such as fibronectin, osteopontin, 
fibrin cross-linker transglutaminase and promote tissue healing[30,31]. Although there 
are controversies regarding the sequential presence of the two different macrophages 
within tissues, this is because of the dynamic shift in macrophage polarization or the 
recruitment of new monocytes which do not invalidate the role of macrophages in 
tissue regeneration.

Lymphocytes
Among the different types of lymphocytes, the regulatory T-cells (Treg) are involved 
in the repair and regeneration of affected tissues and organ systems. Following injury, 
Treg are recruited to the site to regulate inflammation and modulate the process of 
regeneration[32]. Following the initiation of inflammation, Treg inhibit recruitment of 
neutrophils by secreting IL-10 which in turn helps to minimize the secretion of 
inflammatory cytokines namely IL-1β, IL-6, interferon (IFN)-γ, and TNF-α. Moreover, 
Treg induce apoptosis of neutrophils and clear debris by activation of M1 
macrophages. In addition, they play a vital role in macrophage polarization towards 
the M2 phenotype by secreting anti-inflammatory cytokines such as IL-4, IL-10, and 
IL-13 which eventually support tissue repair and regeneration[32,33]. However, the 
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regenerative function of Treg follows a tissue specific manner. For instance, in skeletal 
muscle, Treg infiltrate the tissues in response to IL-33 following activation of the M1 
population and removal of necrotic tissues by these cells. Following infiltration, Treg 
inhibit M1-mediated inflammation and shift the polarization of macrophages towards 
the M2 population[32]. Whereas, in heart tissues, recruitment of the higher number of 
Treg induces polarization of macrophages towards the M2 phenotype that help to 
inhibit inflammation, excessive matrix degradation, and adverse remodeling which 
eventually reduce ventricular ruptures and increases the rate of survival[34].

P E R I P H E R A L  B L O O D  P O L Y M O R P H O N U C L E A R  C E L L S  I N  
REGENERATION
Neutrophils are the most abundantly found white blood cells in the human peripheral 
circulation and contribute approximately 50%-70% to all circulatory white blood cells. 
They are the first leukocyte population recruited to the site of injury and regulate the 
process of tissue regeneration positively or negatively[32]. However, the role of 
neutrophils in the process of regeneration is microenvironment-dependent and 
context-specific.

For example, in the case of skeletal muscle injury, neutrophils impair the restoration 
and function of muscles by releasing hypochlorous acid, nicotinamide adenine 
dinucleotide phosphate oxidase, and other cytokines[32,35,36]. Downregulation of lung 
regeneration following ischemia-reperfusion by neutrophils has also been reported[37]. 
It is noteworthy that neutrophils have also shown positive effects on the repair of lung 
epithelium and nerve cells[38,39].

MESENCHYMAL AND OTHER TISSUE-SPECIFIC STEM CELLS IN 
REGENERATION
Apart from HSCs, other adult stem cells or tissue-specific progenitor cells such as 
MSCs, EPCs, mammary stem cells, intestinal stem cells, and neural stem cells are 
found in adult tissues[40]. Tissue-specific stem cells maintain tissue homeostasis, while 
MSCs can differentiate into a variety of cell types. MSCs, in particular, have promising 
cell sources, as they can be harvested from various sources, such as BM, umbilical cord 
(UC), adipose tissue, and dental tissues[41-43]. Unlike embryonic stem cells (ES cells or 
ESCs), which are pluripotent, MSCs are multipotent cells which possess limited 
differentiation potential. Nevertheless, their potential to differentiate into osteoblasts 
and osteocytes is very well known. There is also accumulating evidence regarding 
their robust potential in tissue healing and regenerative medicine, in both preclinical 
and clinical studies[44-46]. According to a recent PubMed search conducted on 
November 2019, there were 110 MSC-based human clinical trials exploring the safety 
and efficacy of stem cells for tissue healing and the treatment of degenerative diseases. 
However, most of these trials were phase I and phase II, or a mixture of phase I/II 
studies. Whereas, phase III or phase II/III trials which investigate the long-term safety 
of MSC-based therapies prior to full establishment of MSCs in clinical practice are 
poorly documented. Thus, BM-derived MSCs (BMSCs) have been the most studied 
stem cells in cell therapy and tissue repair for the last 5 years, due to their multi-
lineage differentiation potential[47].

However, it is worthwhile noting that different MSC populations exhibit tissue-
specific characteristics such as the expression of specific cell surface markers and 
transcription factors. In response to injury signals, these MSCs can potentially migrate 
from their niche to reach target tissues through vessel walls in the peripheral 
circulation[48]. Many studies have been conducted to investigate both the chemical and 
mechanical factors that influence the homing mechanism and engraftment of MSCs 
into local areas of damaged sites. The chemical factors that affect the trafficking 
process are the presence of a variety of chemokines, growth factors and cytokines, 
whereas the mechanical factors involved in the process include ECM stiffness, vascular 
cyclic stretching and hemodynamic forces or shear stress on the vessel walls[49]. These 
factors make up the vital characteristics of MSCs and result in their promising effect in 
tissue healing and differentiation.

The first characteristic of MSCs is their multi-lineage differentiation potential. MSCs 
are capable of differentiating into several mesoderm lineages, including adipogenic, 
osteogenic, chondrogenic and myogenic lineages, depending on the multitude of 
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stimuli and inhibitors present in the tissue microenvironment[50]. The micro-
environment plays an important role in the activation or downregulation of 
transcription factors that regulate the expression of genes responsible for the induction 
and progression of tissue-specific differentiation[51]. MSCs can also generate neural 
cells in the ectodermal layer, and hepatic cells and pancreatic cells in the endodermal 
layer[52]. The study by Chen et al[53] was among the first to explore the ability of MSCs to 
differentiate into functional islet-like cells that might play an important role in the 
future treatment of diabetes. MSCs cultured in stiff scaffolds can easily differentiate 
into osteoblasts, and showed the potential for myogenic, adipogenic and neurogenic 
differentiation, respectively, but with a decrease in elasticity. Recently, Jung et al[54] 
demonstrated that ECM proteins in 3D composites were able to trigger differentiation 
of BMSCs into mesodermal lineages with enhanced adipogenic differentiation and IL-6 
expression compared to that in 2D ECM proteins.

Secondly, MSCs are capable of dynamic interactions with their microenvironment 
and secrete a wide variety of paracrine factors that are required for tissue recovery or 
wound healing. Several studies refuted the hypothesis that direct trans-differentiation 
or cell fusion of MSCs was the principal mechanism underlying their therapeutic 
action in tissue regeneration[55]. Indeed, MSCs transplantation regulated released 
factors in experimental models of tissue injury, which was largely associated with 
suppression of immune and inflammatory reactions, inhibition of apoptosis, and 
enhancement of cell proliferation and angiogenesis, thereby promoting regeneration of 
the tissue[56]. Apart of MSCs-mediated secretion of these paracrine and autocrine 
factors, extracellular vesicles such as exosomes and microvesicles may also regulate 
these functional roles[57,58]. The MSC-mediated factors released at high levels include 
the following: (1) Growth factors and their receptors [i.e., granulocyte-macrophage 
colony-stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF), vascular 
endothelial growth factor (VEGF), insulin-like growth factor-binding proteins 
(IGFBP3, IGFBP4, IGFBP7) and bone morphogenetic protein 2 (BMP-2)]; (2) 
Extracellular matrix remodelers/mediators [i.e., periostin, fibronectin, collagen, TIMP 
metallopeptidase inhibitor 2 (TIMP-2), metalloproteinase inhibitors, and decorin]; and 
(3) Immune system signaling regulatory proteins (i.e., TGF-β, MCP-1, IL-6, and IL-
8)[49,59]. Various studies have demonstrated that the released pro-inflammatory 
cytokines up-regulate the efficacy of MSC-mediated immunomodulation and 
functional improvement in microvascular injury[60], inflammatory liver disease[61], 
osteoarthritis[62], spinal cord injury[63], brain cancer[64], ischemic limb regeneration[65], 
and asthmatic[66] models. Taken together, it is well accepted that the combination of 
MSCs with these trophic factors can modulate their behavior during inflammation and 
tissue injury. Research should now focus on the strategies to manipulate and modulate 
the secretion of these molecules in the infused or implanted MSCs microenvironment 
to enhance their functional role[1].

Finally, MSCs exhibit immunomodulatory properties[67-69]. The immunomodulatory 
properties of MSCs proved effective in treating various immune disorders in both in 
vivo and human studies. MSCs modulate the functions of almost all cells of both the 
innate and adaptive immune systems and induce an anti-inflammatory phenotype[59]. 
MSCs interact with a variety of immune cells and have the capacity to inhibit the 
excessive response of B cells, T cells, macrophages, dendritic cells, and natural killer 
cells[68]. Nevertheless, the underlying molecular and cellular mechanisms behind MSC-
mediated immunomodulation have not been fully elucidated. MSCs have been shown 
to modulate the immune response by secreting soluble factors [e.g., IL-6, M-CSF, IL-10, 
TGF-β, HGF, and prostaglandin E2 (PGE2)] in the presence of adhesion molecules [i.e., 
vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, 
and lymphocyte function-associated antigen (LFA)-3][70-72]. Through a synergy of cell 
contact-dependent mechanisms and these soluble factors, MSCs are able to initiate the 
T-cell interactions that play a prominent role in their immunomodulatory 
potential[71,73]. Furthermore, anti-inflammatory monocytes/macrophages and Tregs are 
also important in MSC-mediated immunosuppression[69,74]. Studies also linked the low 
immunogenic properties of MSCs to the lower level of expression of major 
histocompatibility complex (MHC) class I antigens, and lack of MHC class II and co-
stimulatory molecules such as CD80, CD86, and CD40[75,76]. Although the 
immunomodulatory effect of MSCs is hypothesized to be via MSC-secreted cytokines 
in many studies, most studies documented that MSCs act differently depending on the 
local microenvironment and the presence of inflammatory cytokines during the pre-
treatment of MSCs. An understanding of the immune suppressive role of MSCs would 
enhance prospective clinical applications of these cells.

Thus, the fate of MSCs is vastly influenced by their environment which includes 
mechanical or physical stimulation, growth factors, cell density, and cell-cell 
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attachment or interactions. However, this multipotency of MSCs could also be due to 
another reason which has been widely discussed. In fact, a debate is currently ongoing 
regarding the ‘stem cell’ status of MSCs[77]. It is postulated that MSCs are purely 
specific adult stem cells, which contradicts findings that MSCs are a diverse mixture of 
many specific lineage progenitor cells. However, these shortcomings provide a good 
reason for the continuous research on MSCs in stem-cell based therapy.

CELL MIGRATION IS ESSENTIAL FOR TISSUE REGENERATION
Progenitors and MSCs migrate and initiate the homing mechanism in response to 
inflammatory signaling molecules and corresponding receptors around the injured 
tissue. MSCs are therapeutically capable of reaching and homing to sites of 
inflammation by various routes such as intravenous (IV), intra-arterial (IA), 
intraparenchymal, intracoronary (IC) local administration and into the subarachnoid 
and epidural spaces[48]. From the systemic circulation, MSCs migrate specifically to 
damaged tissue sites and exert their functional effects locally under a variety of 
pathologic conditions. Luger et al[78] demonstrated that intravenously administered 
fluorescent and radiolabeled MSCs homed to regions of myocardial injury to suppress 
the progressive deterioration in left ventricular function and adverse remodeling in 
mice, and it is thought to be a feasible and effective therapeutic strategy for the 
treatment of patients with large infarcts and ischemic cardiomyopathy. MSCs homing 
involves various chemokines and their receptors (i.e., SDF1, CCL5, CXCR4, CXCR5, 
CXCR6, CCR2, CCR3, and CCR4), matrix metalloproteinases (MMPs) [MMP-2 and 
membrane type 1 MMP (MT1-MMP)], receptor tyrosine kinase dependent growth 
factors [e.g., hepatocyte growth factor-Mesenchymal Epithelial Transition Factor (c-
Met) proto-oncogene/receptor tyrosine kinase (HGF/c-Met) axes, platelet-derived 
growth factor (PDGF) and insulin-like growth factor 1 (IGF-1)] and some other 
adhesion molecules (i.e., integrin β1, integrin α4, and VCAM)[79-82]. These homing 
signals are released by injured cells and/or respondent immune cells. Besides these 
homing signals, other molecules are implicated in different steps of the homing 
process such as PGE2 and hematopoietic cell E-/L-selectin ligand (HCELL) that are 
functionally involved in cell migration to the injured tissue[83]. These factors could be a 
feasible strategy to facilitate therapeutic delivery of MSCs to targeted injured tissue.

Of the different chemokines and chemokine-mediated pathways, the SDF1-CXCR4 
and HMGB1-SDF1-CXCR4 axis have received considerable attention due to their 
potential in-site specific directional migration of stem and progenitor cells. The role of 
HMGB1-SDF1-CXCR4 in regeneration of injured tissues or organs is discussed further 
below.

HMGB1-SDF1-CXCR4 AXIS IN FACILITATING TISSUE-SPECIFIC 
MIGRATION
HMGB1 in orchestrating the process of migration and regeneration
HMGB1 protein is a highly conserved non-histone nuclear protein that binds to DNA 
and regulates the expression of genes and the chromosomal architecture[84]. 
Extracellular HMGB1 is actively secreted from activated or stressed immune cells, 
while passively secreted from necrotic tissues[85,86]. Following secretion into the 
extracellular space, HMGB1 exerts chemotactic activity or acts as a damage-associated 
molecular pattern molecule[87]. Indeed, the overall signaling mechanism by HMGB1 
interacting with target cells needs to be elucidated for future therapeutic 
intervention[88].

Wound healing is a complex process that involves the ECM, cytokines, growth 
factors and several types of cells. The steps involved in the process of wound healing 
include hemostasis, inflammation, cell migration and proliferation, wound 
contraction, and remodeling[89,90]. During the inflammatory phase, vasodilation 
followed by early vasoconstriction which is mediated by histamine, leukotrienes, and 
prostaglandins, increases capillary permeability and cell migration into the wound 
site[91]. Neutrophils are the first among the infiltrated cells to the site of injury followed 
by monocytes and lymphocytes. Initiation of leukocyte migration is mediated by 
several autocrine and paracrine factors. In addition, proteases are involved in the 
elimination of denatured ECM components. Following infiltration into the site of 
injury, monocytes transform into macrophages and clear debris from the area, release 
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cytokines and growth factors, such as FGF, TGF-β, PDGF, and EGF that help to initiate 
the formation of granulation tissue[92]. HMGB1 also acts as an important chemotactic 
factor that regulates the directional migration of monocytes and neutrophils[93]. 
Following injury or inflammation, HMGB1 is released into the extracellular space and 
triggers the secretion of TNF, IL-1α, IL-6, and IL-8 from monocytes, macrophages and 
neutrophils[94-96].

Upon interaction of HMGB1 with the advanced glycation products (RAGE), toll-like 
receptor (TLR) 2, TLR4, and TLR9, activate pro-inflammatory responses thereby 
facilitating cell migration and the release of pro-inflammatory cytokines 
(Figure 1)[97-99]. In 2018, Xue et al[100] showed that the HMGB1/RAGE axis mediated 
migration of neural stem cells (NSCs) by the formation of filopodia which was further 
linked to the activation of RAGE/Rac and CDC42 or the RAGE/MAPK signaling 
cascade.

SDF1 in upregulation of the HMGB1-SDF1-CXCR4 axis
SDF1α, known as C-X-C motif chemokine 12 (CXCL12), is a chemotactic factor 
encoded by the CXCL12 gene on chromosome 10[101]. Studies have reported the 
therapeutic potential of the SDF1-CXCR4 axis in tissue regeneration. SDF1 is capable 
of activation, mobilization, homing and retention of HSCs, MSCs and several 
progenitor cells[80,102-104]. SDF1 is able to bind to CXCR4 and CXCR7. However, the 
SDF1-CXCR4 axis induces the homing process by regulating the cellular secretion and 
cell adhesion molecules, while SDF1-CXCR7 is involved in angiogenesis and tumor 
development[105].

Principally, the binding of chemokine SDF1 to the chemokine receptor CXCR4 plays 
an important role in homeostatic regulation of leukocyte trafficking, hematopoiesis, 
organogenesis, cell differentiation and tissue regeneration in response to other 
molecules that are involved in triggering inflammation[14,106]. The mechanism of MSCs 
mobilization mediated by HMGB1 is analogous to the recruitment of inflammatory 
cells to injured tissues for leukocyte trafficking and homing (Figure 1). As mentioned 
above, HMGB1 acts as a damage-associated molecular pattern which is released either 
from necrotic cells or by secretion from activated immune cells, hepatocytes, 
enterocytes, and possibly several other types of cells under distress[107]. Stress 
conditions that promote HMGB1 secretion include hypoxia[108], lethal irradiation[109], 
treatment with specific antitumor drugs[110] or through regulation of autophagy[111]. 
HMGB1-induced cell migration requires both IκB kinase (IKK)-β and IKKα-dependent 
nuclear factor-κB (NF-κB) activation. IKKβ-mediated activation of NF-κB maintains 
expression of RAGE, while continuous production of SDF1 is ensured by IKKα-
dependent NF-κB activation[112,113]. Moreover, HMGB1 induces both physical and 
functional interactions between molecules that prevent the degradation of SDF1[114].

In 2012, Kew et al[115] proposed that the SDF1-CXCR4 axis works as a co-receptor 
signal for RAGE receptor-dependent HMGB1 migration responses. Furthermore, SDF1 
binding to CXCR4 can also induce CXCR4-TCR heterodimerization, which in turn can 
enhance gene transcription, cytokine production, increased calcium ion concentrations, 
and could facilitate cell migration. However, it is possible that the SDF1-CXCR4 axis 
might have other indirect effects on the regulation of cell migration such as enhancing 
HMGB1 binding to RAGE, which require further investigation.

TLR and RAGE dependent or independent activation of the HMGB1-SDF1-CXCR4 
axis
There is ample evidence of the capability of stem cells to regulate numerous growth 
factors, cytokines and chemokines. Chemokines, specifically, regulate cell locomotion 
and integrin function by binding to seven transmembrane domain receptors coupled 
to G-protein-coupled receptors (GPCR)s, which are heterotrimeric GTP-binding 
proteins, that are differentially expressed in various cell types[48,107]. In addition, there is 
always a need to assess the consequences of the combined activity of these chemokines 
and other inflammatory molecules to control appropriate tissue distribution of distinct 
leukocyte subsets under normal and pathological conditions. One of the interesting 
insights in stem cell research is the effect of such paracrine factors in the HMGB1-
SDF1-CXCR4 signaling pathway during tissue regeneration.

Extracellular HMGB1 can interact with different molecules to dictate their biologic 
effects. The role of HMGB1 as a chemokine or cytokine is determined by its oxidative 
state (Figure 1). The role of extracellular HMGB1 to promote cell migration was first 
reported in smooth muscle cells in 2010[116]. Similar involvement was also reported in 
different cell types in the same year by Rauvala and Rouhiainen[117]. Studies showed 
that HMGB1-induced cell migration requires the formation of a heterocomplex with 
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Figure 1  Schematic diagram of the dynamic HMGB1–CXCL12–SDF1 axis for accelerated tissue regeneration. Disulfide (oxidized) HMGB1 
usually binds to RAGE and TLR and regulates the expression of genes with pro- or anti-inflammatory properties and partial chemotactic properties. Whereas, fully 
reduced HMGB1 released from necrotic or stressed cells forms a heterocomplex with SDF1 secreted from activated immune cells or from cells within the injured 
tissues. Later, this heterocomplex binds to the CXCR4 receptors on the cells and facilitates site-specific migration[123-125]. MSC: Mesenchymal stem cells.

SDF1 and further binding with CXCR4, and not with RAGE, TLR2, or TLR4. 
Furthermore, it was also reported that HMGB1 does not affect migration by other 
chemokines such as CXCL8, CCL2, CCL7, CCL19, and CCL21[14].

The bonding chemistry between SDF1 and HMGB1 was analyzed by NMR chemical 
shift mapping and revealed that most of the amino acids present in SDF1 have the 
ability to bind HMGB1 or its individual HMG boxes[14]. Each HMGB1 molecule has 
two HMG boxes and thereby can attach two SDF1 molecules at a time. Interestingly, 
the first few N-terminal residues of the SDF1 molecule do not attach to the HMGB1 
molecule and remain free. These free residues can access deep inside the CXCR4 
transmembrane domain to initiate signaling cascades[118]. As the HMGB1-SDF1 
heterocomplex can present two SDF1 ligand molecules to dimers of the CXCR4 
receptor, this heterocomplex would be more efficient than SDF1 alone in inducing 
cellular migration[119]. Alternatively, the HMGB1-SDF1 heterocomplex may help to 
unlock the CXCR4 binding site to promote SDF1 binding, or help lock in SDF1 into the 
CXCR4 transmembrane domain by providing direct HMGB1-CXCR4 contacts.

HMGB1 induces changes in SDF1 residues that are responsible for the activation of 
CXCR4, the SDF1 receptor. An analysis using fluorescence resonance energy transfer 
(FRET) demonstrated that there are different conformational rearrangements of 
CXCR4 homodimers triggered by SDF1 alone or in complex with HMGB1[14]. It has also 
been hypothesized that the formation of a heterocomplex between HMGB1 and SDF1 
acts through CXCR4 which promotes the recruitment of monocytes to the injury 
site[14]. The interaction of locally produced SDF1 and its receptor CXCR4 expressed on 
the surface of MSCs plays an important role in the homing of transplanted cells. The 
binding of SDF1 to both CXCR4 and CXCR7 is also responsible for the production of 
paracrine mediators, including VEGF, IGF-1, β-FGF and HGF that exert mitogenic, 
pro-angiogenic, anti-apoptotic, and anti-inflammatory effects[120]. Hypoxia has been 
shown to enhance the expression of both SDF1 receptors, CXCR4 and CXCR7, in 
MSCs. Liu et al[121] demonstrated that SDF1α is upregulated in ischemic kidneys during 
reduced oxygen tension. Hypoxia induces expression of CXCR4 and CXCR7 while 
promoting the role of both SDF1 receptors for enhanced migration, adhesion and 
survival of hypoxia preconditioned (HP)-MSCs and thus improves homing of 
systemically delivered MSCs to the ischemic kidney. In addition, in normal culture-
expanded MSCs, CXCR4 expression will alleviate progressively and thus could affect 
its ability to migrate toward the SDF1 gradient in the ischemic tissue.
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The intracellular signaling cascades have not yet been clearly demonstrated. In the 
case of SDF1-CXCR4 bonding, activation and coordination of focal adhesion kinase 
(FAK) and phosphoinositide 3-kinase (PI3K) were reported in the migration of human 
dental pulp stem cells[122]. Subsequently, increased β-catenin expression by 
phosphorylation of protein kinase B (Akt) at ser473 that inhibits the activation of 
glycogen synthase kinase 3 beta (GSK3β) was also reported. All these results indicate 
that the SDF1-CXCR4 axis activates the FAK/PI3K/Akt and GSK3β/β-catenin 
pathways that could facilitate the migration of human dental pulp stem cells. Whereas 
in the HMGB1-SDF1-CXCR4 axis, elevated extracellular signal-regulated kinase (ERK) 
phosphorylation and Ca2+ release from stores were reported[14]. Elevated ERK 
phosphorylation was observed in the presence of the SDF1-HMGB1 heterocomplex 
but not observed in the presence of SDF1 and HMGB1 alone. In the presence of 
HMGB1 a suboptimal SDF1 concentration was reported with a rapid increase in 
intracellular Ca2+.

CONCLUSION
Until now, the migration and retention of transplanted cells have been considered a 
major drawback of cell-based regenerative therapy. SDF1 and its receptor CXCR4 play 
an important role in maintaining homeostasis by facilitating the homing of progenitor 
or other adult multipotent stem cells in the BM and regulating their mobilization into 
peripheral tissues during injury or stress. Studies have shown the potential of the 
SDF1-CXCR4 axis and/or HMGB1-SDF1-CXCR4 signaling pathways in regulating the 
process of directional migration followed by retention which are vital for the 
regeneration of injured tissues or organs. In addition, these pathways could play a 
major role in regulating the inflammatory conditions at the site of injury. Further 
studies concentrating on these pathways could make cell-based regenerative therapy 
more efficient and fruitful.
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