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Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them 
promising candidates for stem cell-based therapies in clinical settings. These 
include self-renewal, multilineage differentiation, and immunoregulation. 
However, recent studies have confirmed that aging is a vital factor that limits 
their function and therapeutic properties as standardized clinical products. 
Understanding the features of senescence and exploration of cell rejuvenation 
methods are necessary to develop effective strategies that can overcome the 
shortage and instability of MSCs. This review will summarize the current 
knowledge on characteristics and functional changes of aged MSCs. Additionally, 
it will highlight cell rejuvenation strategies such as molecular regulation, non-
coding RNA modifications, and microenvironment controls that may enhance the 
therapeutic potential of MSCs in clinical settings.
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Core Tip: Mesenchymal stem cell (MSC) administration is a promising therapeutic strategy 
for various human diseases. However, cell aging limits MSC function and therapeutic 
properties via reducing their activities. We review the morphological changes, molecular 
expression alterations, and functional degeneration of aged MSCs, and the effects of aged 
MSCs on immune cells and other target cells. Additionally, we summarize the strategies to 
rejuvenate aged MSCs to enhance their clinical potential.
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INTRODUCTION
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells that can 
retain postnatal capacity for both self-renewal and multilineage differentiation. The 
minimal criteria for MSCs as defined by the International Society for Cellular Therapy 
in 2006 are adherence to plastic under culture conditions; positivity for cell surface 
markers CD44, CD90, CD105, and CD73; negativity for hematopoietic markers CD45, 
CD34, CD14, CD11b, CD79α, CD19, and human leukocyte antigen-DR; and multi-
differentiation potential of osteogenesis, chondrogenesis, and adipogenesis[1]. They are 
a heterogeneous population of cells isolated from a variety of mesodermal tissues. 
These cells are involved in a wide range of physiological and pathological processes, 
such as bone development, adipogenesis, fibrosis, and inflammatory regulation[2]. 
Over the past few decades, the amount of MSC-focused research has grown 
exponentially. These studies include both preclinical and clinical trials of either 
autologous or allogeneic MSCs. Infusion of MSCs has been performed to evaluate their 
safety and therapeutic efficacy in diseases of the immune[3], hematological[4], 
cardiovascular[5,6], nervous[7,8], respiratory[9], digestive[10], skeletal[11], endocrine[12], a n d  
reproductive[13] systems[14]. To date, more than 1000 MSC-based clinical trials have been 
registered in the United States National Institute of Health database[15,16]. It is well 
recognized that MSC administration is a safe and effective strategy in the treatment of 
a variety of diseases.

Emerging evidence has demonstrated that multiple factors, including cell species, 
tissue source, isolation method, culture conditions, and cellular status, may explain the 
inconsistency in the features and characteristics of MSCs in some preclinical and 
clinical trials. A recent study showed that aging is an important factor affecting MSC 
properties and functions[17]. Age-dependent decline in MSC number and function was 
found in old individuals[18]. Additionally, MSCs from young donors may also become 
senescent because of excessive cell passage, oxidative stress, and other injuries[19,20]. The 
senescent cells manifest a sequence of progressive changes in cellular morphology, 
biological function, and molecular expression[21,22], as well as weakened efficacy in cell-
based therapies[23]. Therefore, appropriate quality controls or cellular rejuvenation 
processes are required to obtain clinical-grade MSCs. In this review, we will focus on 
investigations that have assessed the molecular features and functional changes of 
aged MSCs and highlight rejuvenation strategies that will enable more effective 
clinical translation.

CHARACTERISTICS AND FUNCTIONAL CHANGES OF AGED MSCS
Aging MSCs exhibit morphological changes and undergo a progressive decline in 
homeostasis, which contributes to the age-dependent deterioration of MSC function[24]. 
These changes in senescent MSCs include a general decrease in their regenerative 
capacity, a switch in differentiation potency, and weakened regulatory functions (such 
as immunosuppressive effects)[25]. A full understanding of these characteristics is 
fundamental for the development of strategies to delay or even prevent MSC 
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senescence. In view of this, the phenotypes and functional characteristics of senescent 
MSCs will be summarized in this section.

Morphological changes in aged MSCs
The most noticeable changes in aged MSCs are morphological. In vitro imaging 
analysis demonstrated that MSCs from early passages (P1-P3) were remarkably 
uniform in size[24]. At P5, they exhibited a flattened and enlarged morphology 
compared with those at P1. Additionally, gradual telomere shortening is a typical 
characteristic of aging in MSCs[26]. Moreover, these changes in morphology represented 
the heterogeneous response to the cellular microenvironment in vitro and in vivo.

Alterations of activity
In aged MSCs, the balance of homeostasis is disrupted, the proliferative ability 
declines, and mitochondrial dysfunction increases. In addition, both the DNA repair 
and retrogression of anti-oxidative capacity are reduced[18,27]. Senescent MSCs display 
delayed self-cloning as well as restricted differentiation potency[28]. Additionally, they 
exhibit a shift in differentiation potency from osteoblasts to adipocytes[29-33]. Genetic 
stability, another biological index affecting MSCs activity, is involved in biosafety 
issues and therapeutic efficacy of these cells[34]. Mounting evidence suggested that 
long-term cultured MSCs acquired genetic alterations, with the promotion of cell 
senescence and potential increased risks of transformation. However, the relevance of 
increased genomic instability with culture passages is still being debated[35-38]. Roselli 
et al[39] reported that MSCs were genetically stable in long-term cultures at least up to 
passage 10, and abnormal MSC clones showed neither growth advantage nor 
senescence resistance. Some authors suggested that senescent cells are unlikely to 
undergo malignant transformation, even if the presence of few tumorigenic cells can 
not be excluded[40]. The inconsistencies may be caused by tissue sources, culture 
conditions, culture times, and cuture passages[41]. Nevertheless, it is of critical 
importance to evaluate MSC genetic stability before clinical application.

Biomarkers for aged MSCs
Several methods may be used to identify MSC senescence. The most widely used 
measures include increased senescence-associated (SA) beta-galactosidase activity (SA-
beta-gal), cell cycle arrest, and persistent DNA damage response signaling[22]. 
Furthermore, specific markers for senescent MSCs have been discovered. Analysis of 
the MSC compartment revealed that MSC subpopulations differ between 
developmental and aged stages. CD271(-)CD146(+) cells only appeared in fetal bone 
marrow (BM)-containing colony-forming-unit-fibroblasts. The dominant MSC subset 
in pediatric and fetal samples was the CD271(bright)CD146(+) population, whereas 
the main cell type in adult samples was CD271(bright)CD146(-)[42]. The proportion of 
CD11b+, CD3+, Gr-1+, or F4/80+ cells is upregulated in BM from aged mice, while the 
percentage of B220+ cells was significantly decreased compared with those from 
young mice BM[43].

Recently, novel specific biomarkers were found to demonstrate the senescent state 
of MSCs[21]. MSC-derived microvesicles (MVs) are one such biomarker[44], and 
senescent late passage MSCs displayed a smaller MSC-MV size compared with early 
passage MSCs. Additionally, when comparing late and early passage MSC-MVs, there 
was a lower ratio of CD105+ cells and decreased osteogenesis in late passage MSC-
MVs[45]. When the percentage of CD264+ cells was greater than 35%, CD264 expression 
was inversely correlated with the regenerative potential of MSCs. Above the 75% 
threshold, MSCs were enlarged and showed a decreased proliferation and 
differentiation potency.

CyBC9, a senescence-specific fluorescent probe, is a promising tool used to rapidly 
identify both early and late senescent phenotypes in clinically relevant MSCs[46], and it 
can be applied to live cells as a nontoxic probe. The mitochondrial Cox1 gene 
containing the differentially methylated CpG island 4 was upregulated in MSCs from 
human fetal heart tissues. This demonstrated that CpG hypo-methylation in 
mitochondria might serve as a biomarker for senescence of human fetal heart MSCs 
induced by chronic oxidative stress[20].

Portraits of expression profiles
Recent studies have demonstrated significant changes in the expression profiles 
(including transcriptomic, proteomic, epigenetic, and non-coding RNAs) of senescent 
MSCs. Transcriptome drift even preceded replicative exhaustion and other aging 
metrics[47]. Utilizing a microarray assay, transcriptome analyses were performed using 
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various types of aged MSCs (Table 1).

Transcriptomics: Assays for gene expression profiles have been performed on 
multiple types of aging MSCs. These MSCs were obtained from various species and 
tissues, and subjected to different treatments. Benisch et al[48] investigated the 
transcriptional profiles of human BM-MSCs from five elderly patients (79-94 years old) 
who had osteoporosis (hMSC-OP), the age-matched control group (hMSC-old; donor 
age 79-89 years), middle-aged donors (hMSC-C; donor age 42-67 years), and healthy 
middle-aged donors (42-64 years old) until they entered senescence (hMSC-senescent). 
By using hMSC-C as control cells, they found a small overlap of gene expression in the 
hMSC-old, hMSC-senescent, and hMSC-OP groups. By comparing the gene expression 
profiles of hMSC-OP, hMSC-old, and hMSC-senescent with hMSC-C, special 
transcriptomic features in each group were obtained. The differentially expressed 
genes in the three groups are mainly involved in proliferation, differentiation, 
osteoclastogenesis, and DNA repair[48]. Wu et al[49] identified six hub genes and eleven 
transcription factors related to adherens junctions, DNA damage induced by oxidative 
stress, attribution of telomeres, differentiation, and epigenetic modulation by 
comparing the gene alterations between hMSC-C and hMSC-old. Yoo et al[50] revealed 
that 19 genes were downregulated and 43 upregulated in senescent human BM-MSCs 
relative to young MSCs. And these genes were mainly involved in metabolic functions 
and cell adhesion. Additionally, 394, 1073, and 2077 genes were signicantly up-
regulated in BM-MSCs from pesticide exposed, P14 MSCs, and MSCs from aged 
donor, compared with control MSCs (P3), respectively[51]. And 218, 1077, and 1571 
genes were down-regulated in BM-MSCs from pesticide exposed, P14 MSCs, and 
MSCs from aged donor, compared with P3 MSCs, respectively. Insulin-like growth 
factor-1 (Igf-1), prolactin, leptin, and Cox-2 were identified as key genes of the predicted 
protein–protein interactions[51]. In murine BM-MSCs that were freshly sorted by 
fluorescence-activated cell sorting, 927 differentially expressed genes were obtained in 
aged BM-MSCs. These genes contained cytokine receptors, chemokines, markers of 
cell senescence, and other groups, which were seen in the gene expression omnibus[52].

Human umbilical cord (hUC)-derived MSCs, cultured in chemically defined xeno- 
and serum-free medium, displayed comparable growth trajectories up to passage (P) 9 
and variably approached senescence after P10. However, significant changes in the 
transcription profiles occurred earlier. Microarray analysis of 14500 human genes in 
aged hUC-MSCs revealed that a nonlinear evolution of aging MSCs appeared after P5 
and accumulated rapidly after P9[47]. As for hUC vein-MSCs, young (P9) and senescent 
(P18) cells were used for transcriptome analysis assays. This study identified 73 
differentially expressed genes in senescent cells, compared with young MSCs[19]. 
Among these, 18 upregulated genes were screened out as characteristic molecular 
signatures of senescence when comparing senescent and young hMSCs derived from 
donors with normal or constitutional chromosome inversion karyotype. Among them, 
11 novel candidate markers for senescence were identified.

In response to IL-2 priming, human adipose-derived MSCs (ADSCs) showed 
increased expression of genes encoding potent growth factors, cytokines, angiogenic, 
and anti-apoptotic promoting factors, and they were defined as novel transcriptional 
signatures closely associated with senescence[53]. In CD45-CD31-CD34+ ADSCs from 
murine inguinal fat pads, aging has been shown to affect cellular signaling and 
function as well[54]. Single-cell transcriptional profiles of ADSCs isolated from both 
young and aged mice were analyzed by utilizing a microfluidic-based single-cell gene 
expression platform. About 70 gene targets related to stemness, vasculogenesis, and 
tissue remodeling were evaluated and used to define ADSC clusters in each group. 
Ingenuity Pathway Analysis of a subset of this heterogeneous cell collection was 
performed. This analysis suggested that deficiency of a putatively vasculogenic 
subpopulation of ADSCs was a potential risk for age-related impairments in ADSCs 
function (particularly with regard to wound healing)[54].

Proteomics: Proteomics is an efficient and accessible tool used to determine protein 
expression profiles. An SA secretome, also known as SA secretory phenotype (SASP), 
usually contains the expression of growth factors, cytokines, and extracellular 
proteases that modulate the microenvironmental phenotypes caused by senescent 
cells[55]. The SASP is useful for the development of biological markers and rejuvenation 
strategies in aged MSCs[22]. Secretome analyses for secretory protein profiles in 
senescent MSCs are summarized in Table 2. For example, elderly MSCs exhibited 
increased levels of pro�inflammatory factors, including interleukin-6 (IL-6), IL-8 (IL-
8/CXCL8), and monocyte chemoattractant protein-1 (MCP-1/CCL2). Neutralization of 
these factors improved their immunomodulatory function[56]. In the conditioned 
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Table 1 Summary of various transcriptomics analyses studies of senescent mesenchymal stem cells

Ref. Species Tissue 
sources Classification Cells Groups Database Differentially expressed genes 

(DEGs) Identification of targets

Benisch 
et al[48], 
2012

Human Bone marrow of 
femoral heads

Affymetrix Gene 
Chip

Cultured in DMEM/Ham’s F-12 
(1:1) medium supplemented with 
10% fetal calf serum (FCS), 1 
U/mL penicillin, 100 μg/mL 
streptomycin, and 50 μg/mL L-
ascorbic acid 2-phosphate. Used 
after 1 to 2 passages

hMSC-C: Middle-aged donors (42-67 yr 
old); hMSC-old: The age-matched 
control group (79-89 yr old); hMSC-OP: 
Patients (79-94 yr old) who had primary 
osteoporosis; hMSC-senescent: Healthy 
donors of middle-age (42-64 yr old) 
until they entered senescence

GEO accession 
numbers: 
GSE35955; 
GSE35956; 
GSE35957; 
GSE35958; 
GSE35959

One gene was upregulated and seven 
downregulated in all three groups, 
compared with the hMSC-C group; 38 
genes with enhanced and 36 genes 
with reduced expression in hMSC-OP 
and hMSC-old groups, compared 
with hMSC-C; 2477 genes with higher 
and 1222 genes with lower expression 
in hMSC-OP, in comparison with 
hMSC-old

The reliable or promising 
candidates for osteoporosis, 
including susceptibility genes: Lrp5, 
Spp1 (Osteopontin), Col1a1, Sost, 
and Mab21l1

Yoo 
et al[50], 
2013

Human Bone marrow-
derived MSCs

SSH analysis Purchased from Cambrex Bio 
Science

Young human MSCs (Y-hMSCs): 
Approximately 10 population doubling 
levels (PDL); senescent MSCs (S-
hMSCs): Until approximately 30 PDL, 
at least 80% of the cells were positive 
for SA-β-Gal staining

NA Nineteen genes were down-regulated 
and 43 upregulated in S-hMSCs

Gradually downregulated mRNA 
in S-hMSCs: Pdia3, Wdr1, Fstl1, 
Copg1, Lman1, and Pdia6; 
signicantly upregulated genes: 
Hsp90b1, Eid1, Atp2b4, Ddah1, Prnp, 
Rab1a, Psg5, Tm4sf1, and Ssr3

Bustos 
et al[52], 
2014

Mouse Bone marrow Affymetrix Gene 
Chip

Sorted by uorescence-activated 
cell sorting (FACS)

BM-MSCs from young (3-mo-old) and 
aged (24-mo-old) mice; young donor 
BM-MSCs vs aged ones

GEO accession 
number: 
GSE44403

927 genes were differentially 
expressed

Confirmed by qPCR: Cytokine 
receptors (15 genes), chemokines (
Ccr7, Cxc3cr1, Cxcr5), markers of 
cell senescence (CDK, p21, p27, and 
p53), Marcks, Mmp9, and Timp2

Duscher 
et al[54], 
2014

Mouse Inguinal fat 
pads

Microfluidic-
based single-cell 
gene expression 
platform

CD45-/CD31-/CD34+ cells were 
sorted

Adipose-derived mesenchymal stem 
cells (ADSCs) from young (3 mo) and 
aged (21 mo) mice

NA Differences in transcriptional profiles 
of genes related to cell stemness, 
remodeling, and vasculogenesis: 
Adam10, Angpt1, Angpt2, Hif1a, Mef2c, 
and Sod2

Age-related depletion of a 
subpopulation of MSCs 
characterized by a pro-vascular 
transcriptional profile, such as 
Angpt1, Vegfa, and Sod3

Medeiros 
et al[19], 
2017

Human Umbilical cord 
veins

The GeneChip 
Human Genome 
U133 Plus 2.0 
array

The surface markers including 
CD105, CD73, CD90, CD14, CD34, 
and CD45 were analyzed by flow 
cytometry; differentiation 
capacity toward three lineages 
was assessed

hMSCs in the 9th (Y-hMSCs) and 18th 
passages (S-hMSCs) were used for 
assays, hMSCs/n from the donor with 
normal karyotype, and hMSCs/inv 
from the donor with a constitutional 
inversion of chromosome 3; the 
comparisons were as follows: (1) Y-
hMSCs/n & S-hMSC/n; (2) Y-
hMSCs/inv & S-hMSCs/inv; (3) Y-
hMSCs/n & Y-hMSCs/inv; and (4) S-
hMSCs/n & S-hMSCs/inv

GEO accession 
number: 
GSE56530

73 DEGs in S-hMSCs/n compared 
with Y-hMSCs/n and 279 DEGs in S-
hMSCs/inv compared with Y-
hMSCs/inv; 93 DEGs in Y-
hMSCs/inv compared with Y-
hMSCs/n; 425 DEGs in S-hMSCs/inv 
compared with S-hMSCs/n. The 
candidates for senescent markers: 
Dio2, Foxe1, Galnt5, Has3, Krt19, 
Krt34, Krtap1-55, Oc730755, Mrvi1, 
Plcb4, and Scube3

Confirmed by qPCR: Ankrd1 and 
Mmp1 in S-hMSC/n vs Y-hMSC/n; 
Sfrp1, Ankrd1, G0s2, and Ndn in S-
hMSC/inv vs Y-hMSC/inv; 
Adora2b, Sfrp1, Kynu, G0s2, Aldh1a1, 
and Mab21l1 in Y-hMSC/inv vs Y-
hMSC/inv; and Adora2b, Ccl7, 
Sfrp1, Kynu, Ankrd1, Mmp1, Lamc2, 
G0s2, M ab21l1, and Ndn in S-
hMSC/inv vs S-hMSC/n

Cultured in DMEM/Ham’s F-12 
(1:1) medium supplemented with 
10% FCS, 1 U/mL penicillin, 100 
μg/mL streptomycin, and 50 
μg/mL L-ascorbic acid 2-
phosphate. used after 1 to 2 

Six hub genes identified by PPI 
network analysis: Ctnnb1, Ppp2r1a, 
Fyn, Mapk1, Pik3c2a and Ep300. 11 
TFs identified by TFs screening: 
Creb1, Cux1, Egr1, Ep300, Foxc1, 
Hsf2, Mef2a, Plau, Sp1, Stat1 and 

Wu 
et al[49], 
2019

Human Bone marrow of 
femoral heads

Affymetrix Gene 
Chip

Middle-aged group vs elderly group GEO accession 
number: 
GSE35955

156 up-regulated and 343 down-
regulated differentially expressed 
genes (DEGs)
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passages Usf1

Wiese 
et al[47], 
2019

Human The perivascular 
region of 
Wharton’s jelly 
from umbilical 
cords

Affymetrix 
GeneChip U133A 
2.0 arrays

Provided by Tissue Regeneration 
Therapeutics, Inc. Positive for the 
cell surface markers CD73, CD90, 
CD105, CD10, CD140b, CD146 
(40%-60%), CD166, and MHC-I; 
negative for the cell surface 
markers CD45, CD31, CD34, and 
HLA-DR. Exhibit trilineage 
potential in directed 
differentiation assays

Human umbilical cord perivascular 
cells (HUCPVCs) from early passages 
(P2–P5), mid-passages (P6–P9), and 
pre-senescent passages (P10–P12)

GEO accession 
number: 
GSE119987

The transcriptome of HUCPVCs was 
stable through P5. A single 
significantly DE gene was identified 
at P6 and P7 compared with P2, 
whereas 5 DE genes were detected at 
P8 and 27 at P9. The number of 
significantly DE probe sets increased 
from 27 (P9) to 301 (P10), then to 1094 
(P12)

Signicant transcriptome drift 
occurred only after P5

Leveque 
et al[51], 
2019

Human Bone marrow 
aspirates from 
the iliac crest of 
healthy donors 
(21 to 26 years 
old)

RNAseq Analysis The surface markers including 
CD34, CD45, CD73, CD90, and 
CD105 were analyzed by flow 
cytometry; differentiation 
capacity toward three lineages 
was assessed

Four groups: Control MSCs (P3); 21 d 
pesticide mixture exposed MSCs (P4); 
long-term cultivated MSCs (P14); and 
MSCs from aging donor (72 yr old)

The SRA database 
under accession 
number 
PRJNA510912

394, 1073, and 2077 EST were 
significantly increased from pesticide 
exposed, P14 MSCs, and MSC from 
aged donor; 218, 1077, and1571 ESTs 
were down-regulated

Confirmed by QPCR: Igf-1, 
Prolactin, Leptin, and Cox-2

GEO: Gene expression omnibus; DEGs: Differentially expressed genes; hMSC: Human mesenchymal stem cells; MSC: Mesenchymal stem cells; HUCPVCs: Human umbilical cord perivascular cells; FCS: Fetal calf serum; ADSCs: Adipose-
derived mesenchymal stem cells; PDL: Population doubling levels; DMEM: Dulbecco’s Modified Eagle’s medium; FACS: Fluorescence-activated cell sorting; BM: Bone marrow.

medium (CM) from senescent MSCs induced by the HIV protease inhibitor tipranavir, 
the soluble proteins were evaluated to find dysregulated secreted factors using 
antibody arrays and liquid chromatography-mass spectrometry (LC-MS)[57]. Semi-
quantitative antibody arrays and LC-MS analysis identified altered secretion of 86 
proteins related to the extracellular matrix, cell adhesion, angiogenesis, and wound 
healing. Among the identified secreted factors in the proteomic analysis, a series of 
TGF-β targets were significantly upregulated. Further investigation revealed that 
insulin-like growth factor-binding protein 7 (IGFBP7), one of the targets of TGF-β, is 
independent of any additional factors that induce osteogenesis in hMSCs. IGFBP7 is 
also essential for the viability of hMSCs during osteogenesis[57].

In the ADSCs from one-year-old male C57BL/6 mice, the anti-senescent protein, 
telomerase reverse transcriptase (TERT), and the anti-apoptotic transcription factor 
myocardin were overexpressed to restore their functions. The secretomes in CM and 
exosome-enriched fractions from the transgenic cells were analyzed using a proteomic 
approach. This approach involved combining two-dimensional gel electrophoresis 
with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[58]. 
The comparative targeted proteomic analysis revealed that both matrix 
metalloproteinase-2 (MMP-2) and its inhibitor metalloproteinase inhibitor 2 (TIMP2) 
levels are increased by two-fold in the CM compared with those in mock-transduced 
cells.

Epigenetics: Epigenetic profiles of aged human BM-MSCs have been reported, and 
briefly reviewed by Cakouros and Gronthos[59]. Using the human methylation bead 
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Table 2 Summary of secretome alteration analysis studies of senescent mesenchymal stem cells

Ref. Species Tissue sources Classification Cells Groups Differentially expressed proteins Identification of targets

Kizilay 
et al[56], 
2017

Human Subcutaneous and 
pericardial adipose 
tissue

R&D Systems Human Cytokine Array; 
multispot electrochemiluminescence 
immunoassay V-Plex Pro inammatory 
Panel

CD44, CD73, CD105, and CD90 
expression was more than 95%; 
CD45, CD34, CD19, CD14, and 
HLA-DR expression was less than 
5%; differentiation capacity toward 
three lineages was assessed

E-MSCs: MSCs from elderly 
ATH patients (> 65 yr old); A-
MSCs: MSCs from adult ATH 
patients (< 65 yr old)

The expression of IL-6, IL-8/CXCL8, 
MCP-1/CCL2, MIF, IFN-g, IL12p70, IL-
13, IL-2, and IL-4 was elevated in E-
MSCs relative to A-MSCs

Neutralization of IL-6, IL-
8/CXCL8, and MCP-1/CCL2 
signicantly improved the E-
MSCs’ immunomodulatory 
function

Infante 
et al[57], 
2018

Human Bone marrow Semi-quantitative antibody arrays; 
liquid chromatography-mass 
spectrometry (LC-MS): Version 
4.0.4265.42984, Nonlinear Dynamics

Obtained from Lonza commercially; 
passages 3-4

Ctrl-hMSCs: Incubated with 
dimethyl sulfoxide alone; PreA-
hMSCs: Treated with the HIV 
protease inhibitor (tipranavir) 
every other day until passage 11

A dysregulation in the secretion levels 
of 42 proteins was detected by 
antibody arrays; 44 were detected by 
LS-MS in preA-hMSCs; most of them 
were overexpressed in preA-hMSCs, in 
comparison with ctrl-hMSCs

IGFBP7 is essential for hMSCs 
viability during early osteogenic 
diferentiation

Madonna 
et al[58], 
2019

Mouse Peri-epididymal 
visceral adipose 
tissue from 1-yr-old 
male C57BL/6 mice

Two-dimensional gel electrophoresis 
(2DE); matrix-assisted laser 
desorption/ionization time-of-fight 
mass spectrometry

The expression of CD45, CD34, 
CD133, ASMA, Desmin, CD105, 
CD73, CD90, CD79, and CD160 was 
analyzed by flow cytometry

Mock AT-MSCs: Mock-
transduced AT-MSCs; rTMAT-
MSCs: Rejuvenated by TERT 
and the anti-apoptotic 
transcription factor myocardin 
overexpression

113 protein spots were picked up and 
identified from the whole CM and 
exosome-enriched fraction in rTMAT-
MSCs

Two novel candidates 
supporting angiogenesis in the 
whole CM of rTMAT-MSCs: 
MMP2 and its inhibitor TIMP2

hMSC: Human mesenchymal stem cells; MSC: Mesenchymal stem cells; TERT: Telomerase reverse transcriptase; MMP2: Matrix metalloproteinase-2; CM: Conditioned medium; LC-MS: Liquid chromatography-mass spectrometry.

ChIP array, researchers identified a series of hypomethylated, hypermethylated, and 
hydroxymethylated CpG sites in MSCs from aged subjects[60-62]. However, differentially 
methylated CpG sites are a robust age-related DNA methylation signature, illustrating 
similar DNA changes independently of disease state, sex, tissue, and cell type[59,63]. 
Additionally, aged human BM-MSCs from long-term culture exhibited consistent 
epigenetic changes in vitro when the methylation profile of human BM-MSCs at early 
and late passages was assessed[64]. Following the application of enhanced reduced 
representation bisulfite sequencing, the global DNA methylation profiling 
demonstrated a greater breadth than previously reported. The genome-wide analyses 
using whole-genome bisulfite sequencing provided a better understanding of how the 
epigenetic modifications alter gene expression and regulate the biological 
characteristics[65].

Non-coding RNAs: It has been previously reported that some non-coding RNAs are 
associated with cellular senescence in different cell types[66-70]. MicroRNAs (miRNAs) 
are small non-coding RNAs that have highly conserved sequences and regulate target 
genes in cellular functions of metabolism, proliferation, apoptosis, and senescence[71,72]. 
In senescent MSCs, 43 miRNAs were identified and characterized using a miScript 
miRNA assay[73]. Among them, the expression of 24 miRNAs was closed related to 
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cellular senescence as referred to previous studies. As for the rest, fourteen miRNAs 
(miR-10, miR-27b, miR-30b, miR-30d, miR-103a, miR-103a-2, miR-136, miR-140-5p, 
miR-323-3p, miR-330-5p, miR-361-5p, miR-409-3p, miR-424, and miR-455-3p) were 
upregulated, and five miRNAs (miR-16-2, miR-29b, miR-199b-5p, miR-454, and miR-
618) were downregulated in response to cellular aging. Additionally, miR-29b and 
miR-199b-5p modulated cellular senescence via LAMC networks[73].

In MSCs cultured under hypoxic conditions, miRNA expression profiles of MSCs 
from young (≤ 30 years old) and aged (≥ 60 years old) donors were analyzed using an 
Agilent Technologies Bioanalyzer high sensitivity DNA chip[74]. Principal component 
analysis demonstrated differentially expressed miRNAs in normal and hypoxic 
groups. There was > 2-fold upregulation of nine miRNAs in young MSCs and two 
miRNAs in aged MSCs after culturing under hypoxic conditions. Also, the hypoxia 
induced downregulation of four miRNAs in young MSCs and thirty-one miRNAs in 
aged MSCs, respectively. MiR-543 and miR-590-3p were identified as regulators of 
cellular aging in hMSCs through direct binding to the aminoacyl tRNA synthetase-
interacting multifunctional protein-3/p18 transcripts and decreasing the protein 
expression levels[75].

Long non-coding RNAs (lncRNAs) are non-coding transcripts, longer than 200 
nucleotides, that play critical roles in the regulation of MSCs senescence. They are not 
only involved in age-related lineage fate switching but also in the reprogramming of 
old cells[76,77]. LncRNA microarray analysis of young and aged Sca-1+CD29+CD45-
CD11b- murine BM-MSCs has demonstrated that 92 lncRNAs showed altered 
expression[76]. Among them, 83 lncRNAs were downregulated, and 9 were upregulated 
in cells isolated from aged mice. Further investigation demonstrated that the candidate 
BM stem cell-related lncRNA (BMNCR) was highly expressed in the BM-MSCs of 
young mice, and significantly decreased during aging. Moreover, the BMNCR levels in 
human BM-MSCs were negatively correlated with age. The effects of BMNCR were 
evidenced by Bmncr-KO and Bmncr-Tg mice simultaneously[76].

Functional degeneration of aged MSCs
The senescent MSCs exhibit significant impairments in paracrine functions[78], 
resistance to oxidative stress, hypoxia, or serum deprivation-induced apoptosis[79-81]. 
The age-dependent decrease in cytokines, chemokines, and growth factors released by 
MSCs will impact cellular functions such as apoptosis, migration, osteogenesis, 
angiogenesis, cell adhesion, and immunomodulation[52,54,82]. Finally, the aged MSCs 
delay wound healing and exacerbate tissue injuries [54]. In summary, the functional 
regression of senescent MSCs limits their application in tissue engineering and 
regenerative medicine.

Age-related effects of MSCs on target cells
Bidirectional signaling exists between MSCs and their target cells[83,84]. The interaction 
between MSCs and target cells has been shown to occasionally follow a time-
dependent model of regulation and feedback[85]. MSC senescence decreases the 
functions of a large variety of immune cells, hematopoietic stem and progenitor cells 
(HSPCs), oligodendrocytes, senescent chondrocytes, and other target cells through 
either direct or indirect cross-talk (Figure 1)[78,84,86].

Immune cells: Previous studies have demonstrated that MSC senescence retards 
immunosuppression in various types of immune cells. Replicative senescence of MSCs 
derived from BM or adipose tissue showed decreased ability to suppress T-cell, but 
not natural killer and B-cell proliferation[87,88]. Long-term expansion of MSCs reduced 
the capacity to inhibit CD4+ and CD8+ T cell proliferation. This phenomenon was 
observed by co-culturing MSCs with alphaCD3CD28-activated peripheral blood 
mononuclear cells. The inhibitory effect on T-cell proliferation significantly decreased 
along with increased passage number of hBM-MSCs, and the effect in hUC-MSCs was 
even more substantial[88]. ADSCs derived from elderly subjects also displayed a 
diminished capacity to suppress the proliferation of activated T cells. Similar results 
were observed in MSCs isolated in parallel from Lewis and Brown Norway rats of 
young (less than 4 wk old) and aged (older than 15 mo) groups[89]. Aside from 
proliferation, the senescent MSCs impair the suppressive effects of the activation-
antigen expression and cytokine production in phytohemagglutinin-stimulated T 
cells[79]. Soluble factors and direct cell-cell contact partially mediate the decreased 
suppressive effect of aged MSCs on T cells[56].

In addition to lymphocytes, MSC senescence affects the phenotypes and functions of 
macrophages and dendritic cells[29,90]. When co-cultured with BM-MSCs from young 
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Figure 1  Effects of senescent mesenchymal stem cells on target cells. A: Effects of aged mesenchymal stem cells (MSCs) on immune cells; B: Effects 
of aged MSCs on other target cells, including hematopoietic stem and progenitor cells, neural stem cells, and multiple myeloma cells. DCs: Dendritic cells; HSPCs: 
Hematopoietic stem and progenitor cells; NSCs: Neural stem cells; OPCs: Oligodendrocyte progenitor cells; MM cells: Multiple myeloma cells; MSCs: Mesenchymal 
stem cells; PHA: Phytohemagglutinin; GM-CFUs: Granulocyte macrophage-clone formation units; MBP: Myelin basic protein; CNP: 2',3'-cyclic-nucleotide 3'-
phosphodiesterase.

mice, a macrophage cell line (RAW264.7 cells) exhibited higher migration rates, 
although they displayed similar phagocytic ability and induction of macrophage M2 
polarization[29]. In dendritic cells, cellular maturation was inhibited when cultured with 
expanded marrow stromal cells relative to the parental MSCs[91].

Other target cells: Apart from immune cells, senescent MSCs show impaired activity 
against multiple target cells. Senescent MSCs enhanced the expression of pro-
inflammatory SASP factors in HSPCs and inhibited their clonogenic potentials[92]. 
These cells also have a reduced capacity to maintain CD34+CD38- HSPCs quiescence, 
as a result of increased IL-6 secretion[93]. In a study on telomere dysfunction in MSCs, 
using Terc-/- mice, Ju et al[94] found that aged Terc-/- BM-MSCs depressed the 
functions of HSPCs and early hematopoietic progenitors. Aging MSCs had a reduced 
ability to induce oligodendrogenic differentiation in neural stem cells. Additionally, 
the production of 2’ ,3’-cyclic-nucleotide 3’-phosphodiesterase-positive 
oligodendrocytes in oligodendrocyte progenitor cells was reduced. The impaired 
differentiation suppressed the generation of myelin-like sheaths during central 
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nervous system remyelination[95]. Also, in the peri-infarct cortex of rats subjected to 
transient middle cerebral artery occlusion, aged MSC administration resulted in more 
microglia and reduced pericyte infiltration compared with that for young MSCs. The 
changes in cellular components probably correlated with reduced expression of brain-
derived neurotrophic factor and MCP-1[96]. In a myocardial infarction (MI) model, the 
infusion of old MSCs resulted in a switch of the cellular profile in the infarct region. 
This was characterized by fewer endothelial cells, vascular smooth muscle cells, and 
macrophages, and more fibroblasts compared with young MSCs[97]. Similarly, 
senescent MSCs facilitated the growth of multiple myeloma (MM) cells, which 
aggravated disease progression[98]. In turn, MM cells (such as NCI-H929, OPM-2, KMS-
12-BM, and primary CD138+ tumors cells) induced senescence in MSCs derived from 
healthy controls with decreased expression of Dicer1, miR-93, and miR-20a.

CELLULAR REJUVENATION STRATEGIES
Simple isolation, standardized culture methods, and potential autologous application 
make MSCs a superior cell source for the treatment of various diseases and injuries[13]. 
Therefore, optimizing the viability and function of MSCs for infusion is of great 
significance. With an increased understanding of the characteristics of MSC 
senescence, further investigations are ongoing to resolve challenges linked to the 
clinical application of cellular therapies. To date, the rejuvenation strategies have 
demonstrated therapeutic potential including molecular regulation, non-coding RNA 
modification, and control of the microenvironment.

Molecular regulation
Multiple molecules have been confirmed to restore the proliferative ability and 
biological function of MSCs via gene modification, or the administration of 
recombinant proteins, agonists, or inhibitors.

Sirtuins: The sirtuins (SIRTs), which include seven sirtuin homologs, are wellknown 
for their ability to delay cellular senescence and extend the lifespan of organisms 
ranging from yeast to humans[99]. SIRT1 overexpression in aged MSCs ameliorated the 
senescence phenotype, recapitulated angiogenesis, and protected cells from oxidative 
stress. Infusion of SIRT1-modified aged MSCs promoted the expression of pro-
angiogenic factors, such as angiopoietin 1, and basic fibroblast growth factor (bFGF). 
Additionally, SIRT1-modified aged MSCs increased Bcl-2/Bax ratio at the protein 
level, promoted cellular survival, inhibited fibrosis, upregulated vascular density, and 
improved heart function in an MI model, compared with vector-aged MSCs[100]. SIRT1 
pathway activators, including nicotinamide mononucleotide[101], nicotinamide 
phosphoribosyl transferase[102], cell-deposited decellularized extracellular matrix[103], 
and SRT1720[104] have been applied in aged human MSCs. They improve cell viability 
and osteogenesis while inhibiting apoptosis and adipogenesis in aged MSCs. 
Pretreatment of aged MSCs with SRT1720 enhanced therapeutic efficacy by promoting 
angiogenesis and repressing fibrosis following rat MI[104].

Likewise, the overexpression of SIRT3 improves the antioxidant capacity and 
promotes the survival of old human MSCs through activating forkhead box O3a in the 
nucleus, manganese-superoxide dismutase, and catalase. In an MI model, the 
application of old human MSCs overexpressing SIRT3 enhanced cardiac function and 
decreased infarct size[105]. SIRT6 maintains hMSC homeostasis by co-activating the 
antioxidant nuclear factor erythroid 2-related factor 2 pathway, RNA polymerase II, 
and heme oxygenase 1[106].

Growth factors: Growth factors are a superfamily of proteins that promote cell 
survival, expansion, migration, and differentiation, as well as prevent disruption of 
homeostasis in vitro and in vivo[107]. Through stimulation of the FGFR1/2 pathway, 
LY294002 (a PI3K inhibitor) rescued MSCs from senescence[108]. Acadesine activates 
adenosine 5‘-monophosphate-activated protein kinase (AMPK), a downstream signal 
of FGF21, and abrogates the depletion of FGF21-induced senescence by inhibiting 
mitochondrial fusion[109]. Silencing mitofusin-2 has been found to inhibit MSC 
senescence induced by the abrogation of FGF21 as well. Knockdown of insulin-like 
growth factor binding protein 4 restored the osteogenic potency of aged MSCs via the 
activation of Erk and Smad signals[110]. Pretreatment of aged MSCs with macrophage 
migration inhibitory factor (MIF) enhanced the secretion of vascular endothelial 
growth factor (VEGF), bFGF, hepatocyte growth factor, and insulin-like growth factor, 
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which promoted their growth, paracrine function, and survival[80]. MIF-rejuvenated 
MSCs release growth factors through interactions with CD74 and subsequent 
activation of AMPK-FOXO3a signaling, which protects cells from doxorubicin-induced 
senescence by modulating the PI3K-Akt signaling pathway[111].

Additional potential regulators: The AKT pathway plays an important role in the 
rejuvenation of features and functions of aged MSCs. This pathway can act via 
ERBB4/PI3K/AKT[112], lactoferrin/AKT[113], Vc/AKT/mTOR[114], and fucoidan/FAK-
Akt-TWIST axes[115]. Administration of rapamycin, an inhibitor of the mTOR signaling 
pathway, raised the expression level of NANOG, postponed replicative arrest, and 
enhanced the lifespan increment of BM-MSCs[116]. NANOG, an embryonic transcription 
factor, is a pluripotency marker that facilitates myogenic differentiation and restores 
the contractile function of senescent MSCs[117]. Additionally, a high number of potential 
regulators involved in senescent MSC rejuvenation have been screened and 
investigated in vitro. For example, both L-carnitine[118] and curcumin[119] affect the 
methylation status of the TERT promoter, increase the telomerase activity, and 
consequently alleviate the aging-related features of ADSCs. In human BM-MSCs, the 
addition of L-carnitine during expansion also elevates cell production[120].

Many in vivo experiments using various disease models have been conducted to 
confirm the efficacy of the rescue strategies to rejuvenate aged MSCs. It is reported 
that melatonin can protect MSCs from senescence via prion protein (PrPc)-dependent 
enhancement of mitochondrial function[121]. Implantation of genetically-modified old 
human MSCs with tissue inhibitor of matrix metalloproteinase-3 or VEGF promotes 
angiogenesis, prevents adverse remodeling, and preserves cardiac function to a similar 
extent compared with young hMSCs[122]. Stem cell antigen 1 (Sca-1)+ MSCs resident in 
the heart increase angiogenesis, and activate cell proliferation in the infarcted heart, 
which improves cardiac function after MI[123,124]. Overexpression of neuron-derived 
neurotrophic factor rejuvenates human ADSCs and BM-MSCs from the elderly, 
reduces the ischemic area, and repairs cardiac function after MI by improving 
angiogenesis and decreasing apoptosis[125,126]. Ethyl pyruvate, a HMGB1 inhibitor, 
restores the senescent phenotype of BM-MSCs, alleviates clinical signs of lupus 
nephritis, and prolongs survival of MRL/Mp-lpr/lpr mice via TLR4-NF-kappaB 
signaling[127]. These candidates (both in vitro and in vivo) may be valuable for the 
identification of suitable targets with utility in the production of clinical-grade MSCs.

Non-coding RNA modification
Non-coding RNAs are novel genetic regulators involved in regenerative medicine. 
With respect to aging, transfection of the miR-195 inhibitor restores the expression of 
anti-aging factors, including TERT and SIRT1, as well as phosphorylation of AKT and 
FOXO1. The miR-195 inhibitor reduced the expression of SA-beta-gal, which 
significantly induced telomere relengthening and restored the proliferative abilities of 
old MSCs. Administration of aged MSCs with miR-195 knockout alleviated infarction 
size and improved left ventricular function[128]. Additionally, miR-10a, miR-29c-3p, and 
miR-130b have been reported to rejuvenate MSC senescence by targeting different 
downstream pathways[128-131]. The overexpression of miR-10a in aged hBM-MSCs 
stimulates angiogenesis by inducing the expression of angiogenic factors via activated 
Akt. These cells then enhance implanted stem cell survival and improve cardiac 
function after MI[129]. The miR-29b-3p derived from BM-MSCs regulates aging-
associated insulin resistance[132]. In multiple myeloma-MSCs, Dicer1 overexpression 
and upregulation of miR-93/miR-20a could reverse the effects on differentiation and 
reduce cellular senescence[98]. The lncRNA Bmncr regulates the age-related lineage 
switch between osteogenic and adipogenic differentiation in BM-MSCs. 
Overexpression of Bmncr (Bmncr-Tg) reduced bone loss and fat accumulation by 
maintaining extracellular matrix protein fibromodulin and activating the bone 
morphogenetic protein 2 pathway[76].

Microenvironment modulation
A conducive microenvironment is essential for maintaining MSC activity[133]. When 
BM-MSCs were treated with BM supernatant from systemic lupus erythernatosus 
(SLE) patients, they demonstrated characteristics of senescence. An inflammatory 
microenvironment is considered to play a primary role in the senescence of SLE BM-
MSCs[127]. In unbalanced microenvironments caused by aging, the survival, 
proliferation, colony formation, migration, and appropriate differentiation of grafted 
BM-MSCs were significantly suppressed[43,84]. In addition, the BM pCO2 and HCO3 
levels displayed a close correlation with MSC differentiation and proliferation[134]. 
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Therefore, microenvironment regulation is a promising strategy to reverse the decline 
of aged MSCs and promote the clinical efficacy[135,136].

Rejuvenating the senescent MSCs is more effective in hypoxic conditions compared 
with that in normal conditions. The neuroprotective effects of CM from aged human 
BM-MSCs against cerebral ischemia were enhanced by hypoxia conditioning in vitro
[137,138]. Stem cell-deposited decellularized extracellular matrix can rescue hUC-MSCs 
from oxidative stress-induced premature senescence and facilitate their clinical 
application in regenerative medicine[103]. The co-culture system is a convenient means 
of modulating the cellular microenvironment. BM-MSCs co-cultured with young (P3) 
human umbilical vein endothelial cells demonstrated a higher proliferative ability and 
decreased pro-inflammatory (cytokines and miRNA) phenotype, compared with the 
old cells (P13)[139]. In conclusion, the enhancement of the microenvironment has a 
significant effect on the prevention of MSC senescence.

Other factors influencing rejuvenation
Besides restoring the activities of aged autologous MSCs, some researchers have 
attempted to find an accessible source for the replenishment of autologous MSCs. In 
the past few decades, the differentiation of pluripotent stem cells into MSC-like cells 
has been explored to address the problems of viability and scarcity of autologous 
MSCs derived from old individuals[140-142]. Induced pluripotent stem cells (iPSCs) and 
embryonic stem cells (ESCs), which acquire a rejuvenation gene signature, are the 
alternative sources of MSCs[141,143]. However, the production protocols used to derive 
MSCs from iPSCs and ESCs require optimization. The introduction of new 
technologies, such as 3D culture and gene engineering, might make them more 
valuable for further clinical application[142].

Biomaterials and various cellular components are potential carriers used for the 
modification of aged MSCs. MVs carrying mRNAs, miRNAs, non-coding RNAs, 
proteins, and DNA are a novel and promising tool used to reverse aging in cells by 
mediating intercellular communication[44,108]. For instance, exosomes containing miR-17 
and miR-34a from young MSCs rejuvenate aged murine hematopoietic stem cells via 
AKT/autophagy-related mRNAs[144]. Extracellular vesicles from human iPSCs can 
reduce cellular reactive oxygen species levels and alleviate aged phenotypes of 
senescent MSCs by partially delivering intracellular peroxiredoxin antioxidant 
enzymes[145]. Media supplied with human platelet lysate from younger donors were 
able to facilitate MSC expansion and osteogenic differentiation[146]. Additionally, many 
bioactive hydrogels[147], biomimetic scaffolds[148], and other biomaterials[149,150] have been 
tested to assess whether they can modify aged MSCs. Removal of senescent cells in a 
high-throughput manner is another strategy that can be used to address the challenge 
of senescence[151]; this strategy, which has been explored in clinical trials, involves the 
isolation and enumeration of senescent MSCs from undiluted human whole blood.

Some chemical compounds and foods rejuvenate senescent MSCs. Zinc sulfate 
significantly reduced the doubling time and increased TERT gene expression of rat 
ADSCs under extremely low-frequency-electromagnetic field[152]. It also enhanced 
telomere length extension in human ADSCs by regulating telomerase and methylation 
of the TERT gene promoter CpG island[153]. Besides zinc sulfate, resveratrol mimics the 
effects of dietary restriction, improves osteogenic function, and promotes 
mitochondrial activities of senescent MSCs through the regulation of mitofilin[154]. NT-
020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine, 
rescued the reduced proliferation of MSCs in serum from aged rats[155]. Additionally, 
Undaria pinnatifida and its ethanol extracts improve replication ability and ameliorate 
functional decline in senescent hBM-MSCs (P17)[156].

The rejuvenation methods mentioned above have potentials to optimize the 
functional status of aged MSCs. However, most of them were in vitro or rodent model 
studies. Further research is needed to evaluate their long-term safety and efficacy 
before it can be clinically useful.

CURRENT CHALLENGES AND FUTURE PERSPECTIVES
Senescence is an inevitable biological process for MSCs obtained from old individuals 
or long-term cultures. Although recent studies have revealed the characteristics and 
mechanisms of MSC senescence and attempted to rejuvenate aged MSCs, many issues 
remain unresolved. First, in studies of age-correlated phenotypic alterations, the 
expression of CD90 and CD73 in intervertebral disc cells was reduced in older 
individuals, while CD146 expression was increased[157]. However, the expression of 
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these factors (MSC markers) is rarely compared between young and aged MSCs. The 
comparison of these two types of cells provides a better understanding of senescent 
MSCs. Second, the effects of cellular rejuvenation for aged MSCs need to be 
determined in vivo, especially in the context of the multidirectional functions of 
regulators[158]. For example, hypoxia not only promotes the expansion of MSCs[159,160], 
but also influences the activity of MSCs during osteogenic differentiation[161]. Future 
work in vivo can provide more information about clinical efficacy. Additionally, MSCs 
isolated from specific tissues usually maintain lineage differentiation towards a 
specific cell type, and this plays a crucial role in regenerative therapy[161]. Therefore, the 
directional differentiation capacities in aged MSCs must be clarified following the 
increase in available tissue sources. Finally, many newly developing technologies, 
such as MVs, three-dimensional spheroid culture, and nanobiotechnology, will aid in 
improving aged MSC function in clinical therapies. Additionally, the functional 
discrepancies in various rejuvenation factors reported in different studies should be 
evaluated. For example, although a decline of osteogenesis capacitiy in aged MSCs 
was reported, other studies suggested that bone formation capacity was not affected in 
aged MSCs[162]. The function of pigment epithelium-derived factor (PEDF) responding 
to the senescence is unanticipated to demonstrate the different results in different 
research teams[97,163]. Liang et al[97] showed that increased PEDF secretion resulted in the 
impaired therapeutic ability of aged MSCs. However, Cao et al[163] showed that PEDF 
delayed cellular senescence and allowed a greater expansion of MSCs by suppressing 
oxidative stress and preserving differentiation potentials, compared with that in the 
control group. The different PEDF functions are possibly attributable to MSC 
heterogeneity, varying research objectives, and the specific experimental models used.

CONCLUSION
The rejuvenation of aged MSCs holds great promise for the accelerated translation of 
cell-based approaches (especially autologous cell administration) into clinically 
relevant therapies.
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