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Abstract 

Background:  In this study, we assessed the accuracy of genomic prediction for carcass weight (CWT), marbling 
score (MS), eye muscle area (EMA) and back fat thickness (BFT) in Hanwoo cattle when using genomic best linear 
unbiased prediction (GBLUP), weighted GBLUP (wGBLUP), and a BayesR model. For these models, we investigated 
the potential gain from using pre-selected single nucleotide polymorphisms (SNPs) from a genome-wide association 
study (GWAS) on imputed sequence data and from gene expression information. We used data on 13,717 animals 
with carcass phenotypes and imputed sequence genotypes that were split in an independent GWAS discovery set of 
varying size and a remaining set for validation of prediction. Expression data were used from a Hanwoo gene expres‑
sion experiment based on 45 animals.

Results:  Using a larger number of animals in the reference set increased the accuracy of genomic prediction whereas 
a larger independent GWAS discovery dataset improved identification of predictive SNPs. Using pre-selected SNPs 
from GWAS in GBLUP improved accuracy of prediction by 0.02 for EMA and up to 0.05 for BFT, CWT, and MS, com‑
pared to a 50 k standard SNP array that gave accuracies of 0.50, 0.47, 0.58, and 0.47, respectively. Accuracy of predic‑
tion of BFT and CWT increased when BayesR was applied with the 50 k SNP array (0.02 and 0.03, respectively) and 
was further improved by combining the 50 k array with the top-SNPs (0.06 and 0.04, respectively). By contrast, using 
BayesR resulted in limited improvement for EMA and MS. wGBLUP did not improve accuracy but increased prediction 
bias. Based on the RNA-seq experiment, we identified informative expression quantitative trait loci, which, when used 
in GBLUP, improved the accuracy of prediction slightly, i.e. between 0.01 and 0.02. SNPs that were located in genes, 
the expression of which was associated with differences in trait phenotype, did not contribute to a higher prediction 
accuracy.
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Background
Korean beef production is mainly based on the Hanwoo 
breed and production efficiency has improved signifi-
cantly since the beginning of 1983 when performance and 
progeny testing was introduced in the Hanwoo breeding 
program [1]. In particular, marbling score has improved 
considerably due to combining improved feeding strate-
gies (feeding more concentrates and for extended periods 
in the feedlot) and breeding strategies such as sire selec-
tion and artificial insemination. The high value of Han-
woo meat has motivated further genetic improvement of 
economically important carcass traits such as marbling 
score (MS), eye muscle area (EMA), back fat thickness 
(BFT), and carcass weight (CWT). In recent years, with 
the availability of new genomic and bioinformatics tools, 
approaches that use genotype information for the selec-
tion of Hanwoo cattle are being introduced because it 
can increase rates of genetic gain due to increased selec-
tion accuracy and decreased generation interval for the 
selection of breeding bulls [1]. Merban et  al. [2] inves-
tigated the accuracy of genomic prediction for carcass 
traits in Hanwoo cattle by evaluating different models. 
They found that the accuracy of prediction for CWT 
increased when using BayesC compared with genomic 
best linear unbiased prediction (GBLUP) and Bayes-
ian LASSO, but that there was no difference in accuracy 
between the three methods for BFT, EMA, and MS [2]. 
However, in this study sample size (1183 animals) and 
single nucleotide polymorphisms (SNP) density (34,000 
SNPs) were considered to be limiting factors. The avail-
ability of sequence information and an increased number 
of genotyped animals provide scope for improving accu-
racy of prediction. Imputed full sequence information 
applied in standard GBLUP procedures does not neces-
sarily improve the accuracy of prediction or explain more 
genetic variation of the traits compared with the use of 
50 k or high-density (HD) SNP arrays [3–5]. A more effi-
cient use of sequence information can be achieved by 
selecting SNPs based on their effect on phenotypic dif-
ferences or on knowledge of the biology of the traits, 
i.e. which genes are likely involved, and such informa-
tion could be obtained from association studies or from 
other sources of information such as gene expression 
experiments.

In dairy cattle [4, 6, 7] and sheep [8], pre-selection of 
SNPs from whole-genome sequence data based on either 

candidate genes or genome-wide association studies 
(GWAS) have resulted in small to moderate improve-
ments in accuracy of prediction. GWAS in Hanwoo have 
provided information about the genetic architecture of 
carcass traits [9–14] and sensory traits [15]. In general, 
these studies suggest that carcass traits are polygenic 
since numerous quantitative trait loci (QTL) regions 
were detected, each with a small effect [14, 16]. However, 
only a few QTL overlap between these studies  in  Han-
woo, which is likely due to the relatively small datasets 
used to identify QTL regions and the low to moderate 
marker density. QTL detection and identification of pre-
dictive SNPs can be improved with larger datasets and 
high-density genotype information, e.g. at the sequence 
level.

The use of more biological information (gene expres-
sion, methylation, protein, and metabolite data, among 
others) has been recommended to identify genomic fea-
tures that are enriched for causal variants in complex 
traits. In dairy cattle, the addition of predictive SNPs for 
milk traits increased the accuracy by 16% in the Aus-
tralian Red breed. In particular, prioritization of SNPs 
in coding and regulatory regions in a BayesRC model 
increased the accuracy of prediction for milk traits 
compared to using only high-density genotypes [17]. In 
another study, using information from the best-perform-
ing gene ontology term in a genomic feature BLUP (GFB-
LUP) model increased, on average, accuracy of prediction 
for milk traits (milk, fat, protein, and mastitis) by 0.02 
points [18]. Xiang et al. [19] found that the identification 
of informative SNPs (high-ranking variants) based on a 
functional and evolutionary trait heritability (FAETH) 
score from multiple sources of information resulted in 
higher heritability and increased accuracy of prediction 
than the use of low ranking variants in Holstein and Dan-
ish Red cattle [19].

Information on genes that are involved in marbling 
phenotypes in Hanwoo cattle has been generated from 
a time-series gene expression experiment using quan-
titative PCR (qPCR) [20–23] and whole-transcriptome 
analysis and has led to the identification of eQTL and 
SNPs located in genes that are associated with marbling 
[24]. The aim of our study was to assess the prediction 
accuracy of GBLUP, wGBLUP, and Bayesian models for 
carcass traits (CWT, MS, EMA, and BFT) and the poten-
tial gain from using pre-selected SNPs from a GWAS on 

Conclusions:  Our results show that, in Hanwoo beef cattle, when SNPs are pre-selected from GWAS on imputed 
sequence data, the accuracy of prediction improves only slightly whereas the contribution of SNPs that are selected 
based on gene expression is not significant. The benefit of statistical models to prioritize selected SNPs for estimating 
genomic breeding values is trait-specific and depends on the genetic architecture of each trait.
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imputed sequence data and from gene expression infor-
mation in Hanwoo cattle.

Methods
Animals and phenotypes
All the procedures described in this paper were in accord-
ance with the protocols accepted by the Animal Care and 
Use Committee of the National Institute of Animal Sci-
ence in the Republic of Korea (Approval No. 2018–293). 
The genotypes and phenotypes from 13,717 Hanwoo 
cattle were collected by the Animal Genomics and Bio-
informatics Division of the National Institute of Animal 
Science (RDA) between 2000 and 2016 in commercial 
slaughterhouses in South Korea. Four carcass traits were 
analyzed; cold carcass weight (CWT, kg) was recorded 
for each animal after 24  h of chilling whereas marbling 
score (MS), eye muscle area (EMA, cm2), and subcutane-
ous back fat thickness (BFT, mm) were measured on the 
longissimus dorsi muscle between the 13th rib and the 1st 
lumbar vertebra. Marbling scores were assigned based on 
the Korean Beef Marbling visual standard category sys-
tem (KAPE, 2012), which accounts for the percentage of 
intramuscular fat (IMF) observed from 1 (no IMF) to 9 
(19% or more IMF).

RNA‑seq analysis
The transcriptomic analysis was performed on 45 Han-
woo steers, which were fed high (23 steers) and low (22 
steers) energy diets. Longissimus dorsi muscle was sam-
pled by biopsy between the 10th and 13th cervical ver-
tebra at 7, 8, 12, 18, and 24 months of age, and collected 
after slaughter at 30 months of age. For the biopsies, each 
steer was restrained in a hydraulic squeezed chute, hair 
was removed from the biopsy site, and local anesthetic 
(lidocaine HCl; 20  mg/mL; 8  mL per biopsy site) was 
administered. The biopsy site was cleaned with 70% etha-
nol on sterile surgical gauze and a 1 to 3 cm skin incision 
was made with a sterile scalpel. Tissue (1 to 2 g) was col-
lected from the muscle using a sterile Bergstrom biopsy 
needle (5.3  mm diameter) and was preserved in liquid 
nitrogen and stored at − 80 °C. After closing the incision 
site with veterinary tissue glue, the area was covered with 
a spray-on aluminum bandage. All steers were moni-
tored for swelling 24 and 48 h after biopsy. Samples were 
obtained on alternate sides of the animal depending on 
the location of the previous sampling, and the third and 
fourth biopsies were sampled 5 cm away from the loca-
tion of the previous biopsy.

RNA was extracted from the isolated tissues using 
the TRIzol reagent (Invitrogen, Life Technology, Carls-
bad, USA) following the manufacturer’s recommen-
dations. The quality of the RNA was evaluated on 
a Bioanalyzer 2100 with RNA 6000 Nano Labchips 

(Agilent Technologies Ireland, Dublin). The high-quality 
RNA samples with an average RNA integrity value higher 
than 7 were used to produce indexed shotgun paired-end 
(PE) libraries with on average 500  bp inserts generated 
using a TruSeq Nano DNA Library Prep Kit (Illumina, 
USA) following the standard Illumina sample-prepara-
tion protocol. The resulting libraries were sequenced on 
an Illumina HiSeq  2500 sequencer (2 × 101  bp paired-
end sequences).

The quality of the reads was assessed with the FastQC 
tool [25], low-quality bases (Phred < 33) and adapt-
ers were removed using Trimmomatic v0.32 [26]. We 
mapped the resulting reads to the Bos taurus reference 
genome (version UMD 3.1) using the HISAT2 v2.1.0 [27] 
software and the R function featureCount from the pack-
age Rsubread v1.34.7 to obtain the gene counts [28].

Genotypes and imputation
The 50  k SNP genotypes and sequences were obtained 
from an Illumina platform and SNP locations were 
derived using the Bos taurus reference genome version 
UMD 3.1. Quality control thresholds were set to filter out 
SNPs with a minor allele frequency lower than 0.01, that 
deviated from Hardy–Weinberg disequilibrium (p < 10−6) 
and to exclude individuals with more than 5% missing 
genotypes. A subset of 4566 animals (4452 of those with 
recorded phenotypes for carcass traits) with previously 
imputed whole-sequence genotypes, based on 203 fully 
sequenced Hanwoo animals, were used as a reference for 
imputing genotypes of the remaining 10,215 samples to 
high-density and whole-sequence genotype data. Geno-
types were phased with the software Eagle v2.4.1 [29] 
and we used Minimac3 [30] to impute the 50  k geno-
types (58,991 SNPs) of 10,215 animals to high-density 
(HD; 543,263 SNPs) and finally up to whole-sequence 
(10,723,697SNPs). The final imputed sequence data (that 
included only SNPs with a Minimac3 R2 > 0.4) consisted 
of 10,723,697 SNPs with an average imputation accuracy 
(R2) of 0.99 from Minimac3.

Selection of the discovery datasets for GWAS
In order to select the statistically most significant SNPs to 
improve accuracy of genomic prediction, an association 
study is required. For this purpose, a discovery set needs 
to be extracted from the data that is independent of the 
set used for training and validating accuracy of predic-
tion [17]. A larger discovery set allows a more accurate 
association study but leaves a smaller cross-validation set 
to train and test predictions. We evaluated the impact 
of using different numbers of animals in the discovery 
set on the identification of SNPs associated with carcass 
traits and the accuracy of prediction in Hanwoo cat-
tle. To achieve this, four discovery datasets (1000, 2000, 
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3000, and 4000 animals) were extracted from the com-
plete dataset of 13,717 animals. We selected animals for 
the discovery set such that the genetic diversity in each 
set was high by selecting the set (out of one hundred ran-
dom samples) that had the smallest average co-ancestry 
according to the following criterion: 

where x is an indicator vector of the selected animals (1 
or 0 if selected, or not), and G is the genomic relation-
ship matrix for all the animals. The genomic relationship 
matrix was calculated with 50 k SNP genotypes from all 
the animals using the Plink v1.90b4 software [31].

Selection of cross‑validation datasets
After selecting a discovery set, the remaining animals 
were used for a tenfold cross-validation (CV) to evaluate 
the accuracy and bias of genomic prediction. Depending 
on the number of animals used in the discovery dataset, 
between 9717 and 12,717 animals were available for CV. 
The effect of forming the 10 subsets for CV, randomly or 
by k-means clustering, was assessed by comparing the 
impact of these strategies on accuracy of prediction. Note 
that there were no sire-son relationships in the data, since 
all phenotypes were on commercially slaughter animals. 
However, sib relationships might exist, but no pedigree 
was available. Therefore, samples were grouped based on 
a k-mean strategy using the kmeans R function from the 
stats package, which basically uses as input the principal 
components matrix of the genomic relationships (from 
the 50 k SNP chip) to cluster the samples with a smaller 
within-cluster variation. The number of clusters was set 
to 100, whereas the number of random starting partitions 
was 50. Based on the assigned clusters, the samples were 
then split into 10 groups with a similar number of ani-
mals. It is expected that the k-means clustering results in 
a lower degree of genetic relatedness between the vali-
dation and training sets, leading to a lower accuracy of 
genomic prediction but to a greater benefit from using 
selected SNPs in the prediction model.

To compare the different prediction methods with the 
selected SNPs, we decided to use a k-means strategy for 
selecting the validation and reference sets. This strategy 
decreased the relatedness between training and valida-
tion sets, which likely resulted in a greater benefit from 
using pre-selected SNPs from prediction [8] and there-
fore allowed a better comparison of methods. Moreover, 
in breeding programs, often the animals for which breed-
ing values need to be predicted are relatively less related 
to the nucleus, and such a situation can be simulated with 
the k-means strategy.

n
∑

i =1

x′Gx

2
,

Statistical analysis
All the traits were adjusted for fixed effects based on a 
univariate analysis in ASReml v4.1 [32]. The evaluated 
fixed effects were birth-year (15 levels: 2000 to 2016), 
birth-month (12 levels), age at slaughter (from 17 to 
173  months), slaughter-year (9 levels: 2008 to 2018), 
slaughter-month (12 levels); slaughter-place (53 levels), 
herds of origin (324 levels), and sex (2 levels).

The fixed effects that were significant for all traits 
were herd of origin, birth-year, birth-month, slaughter-
year, slaughter-month, slaughter-place, age, and sex. The 
interaction effect of herd × birth-year was fitted in a final 
model for CWT without fitting the main effects whereas 
a herd × birth-year × birth-month effect was fitted for MS 
and BFT. The adjusted phenotypes were obtained as the 
residuals from the fitted model for each carcass trait.

Pre‑selection of SNPs and GWAS
A genome-wide association analysis (GWAS) was applied 
to each of the carcass traits based on each of the indi-
vidual variants from the imputed sequence data, fitting 
a univariate linear mixed model using the GCTA v1.26.0 
software [33]:

where y is the vector of N adjusted phenotypic values (for 
MS, BFT, EMA, or CWT), 1 is a vector with N ones, µ 
is the intercept, xi is a vector of the genotypes at a sin-
gle SNP i , αi is the regression coefficient for the allele 
substitution effect of SNP i , Z is an incidence matrix 
for animals, a is vector of the random additive genetic 
effects of animals, and e is a vector of random residual 
effects; var(a) = Gσ 2

a  where G is the genomic relation-
ship matrix based on the imputed sequence genotypes 
and var(e) = Iσ 2

e .
For each trait, significant SNPs were selected based 

on seven thresholds for the − log10(p value) (1.5, 2, 2.5, 
3, 3.5, 4, or 5, respectively). For each list of top SNPs, 
the software Plink was used to prune SNPs that were in 
high linkage disequilibrium (LD) with other SNPs in the 
region. SNPs with an r2 value higher or equal to 0.95 with 
the most significant SNP in a window of 5000 SNPs were 
removed, and the process was repeated after each win-
dow shift of 100 SNPs.

The proportion of genetic variance was calculated for 
significant SNPs as:

where pi is the allele frequency of the reference allele of 
SNP i , σ 2

a  is the additive genetic variance of the trait, and 
α is the estimated additive effect of SNP i.

(1)y = 1µ+ xiαi + Za + e,

2pi(1− pi)α
2
i

σ 2
a

× 100,
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Pre‑selection of SNPs and gene expression
Two strategies were followed to preselect SNPs from 
expression studies: (1) SNPs in genes the expression of 
which was associated with the traits, and (2) SNPs from 
expression QTL (eQTL). To evaluate the association of 
each gene expression with each of the traits (MS, CWT, 
EMA, and BFT) a linear regression of gene count on 
phenotype was used by fitting the feeding treatment and 
sires as fixed effect. We selected a significance threshold 
p-value < 0.0032 (− log10 p-value = 2.5) to identify genes 
that were significantly associated (GSA) with a trait. For 
each GSA, relevant SNPs were identified in the imputed 
sequence data from the promoter region (300 bp before 
the transcription start site) to the end of the gene.

For the identification of eQTL, an association analysis 
of each SNP with each gene expression (13,572 genes) 
was performed with the R package MatrixEQTL v2.2 
[34] using all imputed sequences SNPs of 45 animals and 
the gene expression at each of the five ages. The effect of 
the genotype on expression was assumed to be additive 
linear (modelLINEAR), by fitting the feeding treatments 
and sires as fixed effects in the model. The local (cis-) and 
distal (trans-) eQTL were identified using a significance 
threshold of p-value < 0. 0032.

The lists of eQTL were pruned in the same way as the 
GWAS SNPs by using Plink to remove the SNPs in high 
LD (r2 ≥ 0.95) with the most significant SNPs in a window 
of 5000 SNPs and repeating the process after shifting the 
window by 100 SNPs.

Genomic prediction
We used the MTG2 v9.09 software [35] to estimate vari-
ance components with restricted maximum likelihood 
(REML) and to calculate the genomic breeding values 
(GBV) using all the data that were not included in the 
GWAS discovery dataset. The accuracy of prediction was 
assessed for two GBLUP models:

where y is the vector of N adjusted carcass trait phe-
notypes (MS, CWT, EMA, and BFT), 1 is a vector with 
N ones, µ is intercept, Z is the design matrix to assign 
y to g (1 or 2), g1 and g2 are the additive genetic effects 
of individuals with var

(

gi
)

= Giσ
2
a  , and e is the vec-

tor of residual effects. Standard 50  k SNP chip (40,933 
SNPs) genotypes were used to calculate the G1 used for 
g1 (Model 3), while the pre-selected SNPs (top SNPs with 
p < 0.0032 from GWAS or SNPs from GSA and eQTL) 
were used in a second G2 as a covariance matrix for g2 in 
Model 3, and in this case the overlapping top SNPs were 

(2)y = 1µ+ Zg1 + e

(3)y = 1µ+ Zg1 + Zg2 + e

removed from G1 and the resulting matrix is referred to 
as G50adj. The sum of g1 and g2 is the estimated breeding 
value (GBV) in Model 3.

A weighted-GBLUP (wGBLUP) procedure was imple-
mented for the reference-validation dataset of 10,717 ani-
mals. This procedure is described in detail in [36]. Briefly, 
in the wGBLUP method, the G matrix is constructed by 
using the weight of each SNP and this weight is based on 
the estimated effect of the SNP on the trait, as derived 
from back-solving for SNP effects from the estimated 
genomic breeding values [36, 37], and recalculating these 
through five iterations. Following VanRaden [38], SNP 

weights were calculated as di(t+1) = 1.25
|α̂i|
sd(α̂)

−2 , where α 
are estimated SNP effects in a previous iteration round.

A Bayesian mixture model was fitted by applying a 
Markov chain Monte Carlo (MCMC) method with 50,000 
iterations (20,000 iterations were burn-in) to estimate 
parameters using the BayesR method as implemented 
by [39]. The model uses a mixture of four distributions 
for the effects of SNPs with variances in each distribu-
tion being 0, 0.0001, 0.001, and 0.01 of σ 2

g  , respectively, 
σ 2
g  being estimated from the data. The BayesR model for 

prediction was:

where β̂j is the estimated effect of SNP j , wij = (xij−2pj)√
2pj(1−pj)

 

and xij is the number of copies of the reference allele in 
the reference genome (0, 1, 2) at SNP j for individual i 
and pj is the frequency of the reference allele.

Eight strategies were followed to compare the use of 
pre-selected SNPs in the estimation of breeding values 
for the carcass traits: (1) GBLUP-50 k: Model 2 with only 
the standard 50  k array to calculate the genomic rela-
tionship matrix ( G1 ); (2) GBLUP-GWAS: using Model 3 
with the top SNPs derived from GWAS to construct G2 
along with the adjusted 50 k G ( G50adj ) as G1 ; (3) GBLUP-
eQTL: using Model 3 with the selected eQTL to form 
the G2 together with the adjusted 50 k G ( G50adj ) as G1 ; 
(4) GBLUP_GSA: using Model 3 with SNPs identified 
in GSA and differentially expressed (DE) genes to form 
the G2 in combination with the 50 k G ( G50adj ); (5) wGB-
LUP-50  k: fitting a weighted-GBLUP procedure applied 
to Model 2 using the standard 50  k SNP array to form 
G1 ; (6) wGBLUP-GWAS: using the standard 50 k and top 
SNPs in one genomic relationship matrix as G1 in Model 
2 and applying a wGBLUP procedure; (7) BayesR-50  k: 
performing a BayesR analysis with the standard 50 k SNP 
array; and (8) BayesR-GWAS: using a BayesR model with 
genomic information that includes the standard 50 k SNP 
array as well as the top SNPs.

(4)ŷ = µ+
∑

j∈βj>0

wijβ̂J ,
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Accuracy of prediction
The accuracy of prediction was assessed as the Pearson’s 
correlation coefficient (r) between the adjusted pheno-
type of the animals in the validation dataset and their 
GBV divided by the square root of the heritability for 
each trait. The empirical standard error (SE) was calcu-
lated by dividing the standard deviation of the 10 calcu-
lated accuracies from the tenfold CV by the square root 
of 10. The bias of the genomic prediction was calculated 
as the deviation from unity of the regression coefficient 
(b) of the phenotype on the GBV.

Results
The basic statistics and the estimated variance compo-
nents and heritability for EMA, BFT, CWT, and MS are 
in Table 1 for Model 1 and Table 2 for Model 2. The her-
itabilities ranged from 0.24 to 0.27. The sum of the two 
additive genetic components of the variance in Model 2 
tended to be somewhat smaller than the additive genetic 
component in Model 1.

Genomic prediction of carcass traits
Comparison of k‑means or random selection strategies 
for cross‑validation
The accuracy of genomic selection and the added value 
of using top SNPs likely depends on the genetic diversity 
of the population and the degree of relatedness between 
reference set and validation set. Two sampling strategies 
were compared for selecting the validation and reference 
sets: k-means clustering and random sampling. In total, 
13,717 Hanwoo cattle were used for the comparison of 
accuracy of prediction for the carcass traits based on the 
standard 50 k panel in a tenfold CV.

The accuracy of prediction of breeding values for car-
cass traits was, on average, 0.06 higher when using a ran-
dom sampling strategy to perform the cross-validation 
compared to using a k-means clustering strategy (aver-
age accuracy is 0.58 vs 0.52; Fig.  1a). This is likely due 
to predicting animals in the validation set that are less 
related to the training set when selection is based on the 
k-means strategy. The difference between the sampling 
strategies was similar for all traits (ranging from 0.04 to 
0.07). The bias was low (from − 0.02 to 0.005) when the 
random strategy was used for the sampling, while bias 
was higher with the k-means strategy (ranging from 0.05 
to 0.13) (Fig. 1b).

Comparison of the accuracy of genomic predictions based 
on different dataset sizes
The accuracy of prediction for each size of the reference-
validation dataset is in Table 3. For this comparison, we 
used GBLUP with one G matrix ( G1 in Model 2) and the 
50  k SNP array. For all traits, with the larger reference-
validation (RV) dataset (n = 12,717) accuracies were 
higher (by 0.02–0.04) than with the smaller RV dataset 
(n = 9717). These differences were not statistically signifi-
cant but they were consistent across all traits. The reduc-
tion in the accuracy of prediction for the RV dataset with 
10,717 animals was small and allowed us to use an inde-
pendent discovery dataset of 3000 animals. Therefore, 
the RV dataset of 10,717 animals was used to compare 
different methods for the genomic prediction analysis.

Table 1  Descriptive statistics and  variance components 
(standard error in brackets) estimated for the carcass traits 
in Hanwoo cattle (n = 13,717)

h2: estimated heritability; σ 2
a  : additive genetic variance; σ 2

p  : phenotypic variance; 
σ 2
e  : residual variance; SD: standard deviation

Max maximum value, Min minimum value of adjusted phenotypes for BFT back 
fat thickness, EMA eye muscle area, CWT​ carcass weight and MS marbling score

BFT EMA CWT​ MS

h2 0.24 (0.01) 0.24 (0.01) 0.25 (0.01) 0.27 (0.01)

σ 2
a

4.8 (0.33) 27.6 (1.80) 571.4 (36.44) 0.66 (0.04)

σ 2
p

20.1 (0.28) 113.5 (1.56) 2272.5 (31.30) 2.44 (0.03)

σ 2
e

15.3 (0.26) 85.9 (1.47) 1701.1 (29.18) 1.77 (0.03)

Min 1 22 152 1

Max 57 156 692 9

Mean 13.42 92.61 425.50 5.68

SD 5.23 12.56 59.84 1.98

Table 2  Variance components (standard error in brackets) 
for  two G matrices estimated for  the  carcass traits 
in Hanwoo cattle (n = 10,717)

h2: estimated heritability; σ 2
a  : additive genetic variance; σ 2

e  : residual variance; G1 : 
adjusted G matrix with 50 k SNP array (top SNPs removed); G2 : G matrix with the 
top-SNPs from the 3000 discovery dataset

BFT back fat thickness, EMA eye muscle area, CWT​ carcass weight, MS marbling 
score

h2
σ
2
a σ

2
e

BFT

 G1 0.15 (0.02) 2.85 (0.34) 15.15 (0.29)

 G2 0.07 (0.01) 1.30 (0.20)

EMA

 G1 0.16 (0.02) 18.42 (2.00) 88.13 (1.66)

 G2 0.05 (0.01) 5.73 (1.21)

CWT​

 G1 0.12 (0.02) 251.95 (34.72) 173.76 (32.08)

 G2 0.08 (0.01) 177.46 (25.15)

MS

 G1 0.18 (0.02) 0.43 (0.04) 1.83 (0.04)

 G2 0.06 (0.01) 0.14 (0.03)
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Pre‑selection of SNPs based on GWAS
To investigate what is the optimal number of pre-
selected top SNPs for genomic prediction, we evaluated 

the increase in accuracy of prediction when a second G 
matrix (G2) based on the selected SNP set was included 
in a GBLUP model for each trait (Fig. 2). We compared 
seven significant threshold values for SNP selection, with 
the − log10(p-value) equal to 5, 4, 3.5, 3, 2.5, 2 and 1.5, and 
using the independent discovery set of 3000 animals. The 
number of significant SNPs increased rapidly with lower 
threshold values whereas accuracy tended to be highest 
when the largest SNP set was used. There was only a lim-
ited amount of overlap of the SNPs identified between 
the discovery datasets, and it was largest for CWT (see 
Additional file 1: Figure S1).

A threshold of 2.5 (− log10(0.0032)) resulted  in the 
nearly highest improvement in accuracy of prediction for 
carcass traits although a moderate number of top SNPs 
(~ 8688) was used in G2 (Fig.  2). Therefore, this thresh-
old was used to select the top SNPs from GWAS and 
to compare methods. Although an increase in accuracy 

Fig. 1  Accuracy (a) and bias (b) of genomic prediction of breeding value for the carcass traits marbling score (MS), eye muscle area (EMA), carcass 
weight (CWT) and back fat thickness (BFT), using the standard 50 k array for the k-means and random selection cross-validation (CV). Vertical lines 
indicate the empirical standard error for each CV result

Table 3  Accuracies of  prediction of  breeding value 
(empirical CV standard error in  brackets) for  carcass 
traits in  Hanwoo cattle using different sizes of  reference-
validation (RV) datasets

BFT back fat thickness, EMA eye muscle area, CWT​ carcass weight, MS marbling 
score

Trait Dataset size

RV = 12,717 RV = 11,717 RV = 10,717 RV = 9717

MS 0.50 (0.02) 0.47 (0.01) 0.47 (0.02) 0.46 (0.02)

EMA 0.53 (0.02) 0.51 (0.02) 0.50 (0.02) 0.50 (0.02)

CWT​ 0.59 (0.03) 0.56 (0.02) 0.58 (0.03) 0.57 (0.02)

BFT 0.47 (0.02) 0.46 (0.02) 0.47 (0.02) 0.43 (0.03)
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was sometimes observed by including a larger number 
of SNPs (lower significant threshold) in G2 (Fig.  2; red 
dashed line), a more efficient use of the extra informa-
tion might be achieved when a smaller number of pre-
selected SNPs is included in SNP arrays.

Results from the GWAS based on imputed sequences 
revealed many strong signals across the genome for all 
traits with the most significant SNPs being found for 
CWT and BFT (results not shown). In general, the num-
ber of significant SNPs identified for CWT was largest 
(10,892) with ~ 8000 significant SNPs identified for the 
other traits (Fig. 2).

Based on the results from the largest discovery data-
set (4000 animals), a list of the candidate genes that 
are located close to the most significant SNPs with a 
high threshold value of p < 1.0E−05 was identified (see 
Table  4). CWT is the trait with the largest number of 
genes identified, most of which are located on Bos taurus 
chromosome (BTA) 4, 10 and 14.

Pre‑selection of SNPs based on gene expression
A large numbers of SNPs were pre-selected based on the 
results from gene expression (Table  5). A significance 
threshold of the p-value < 0.0032 was set to include as 
many eQTL as possible since the SNPs in high LD were 

removed and because considering a stringent p-value 
could leave out important information. In total, 452,258 
unique eQTL were detected across all ages (Table 5). We 
identified 76,018, 45,779, 38,742, 58,890, 354,530 eQTL 
at 8, 12, 18, 24, and 30 months of age, respectively, with 
on average 24,448 eQTL shared across all ages. After 
combining the lists of the eQTL for all ages and remov-
ing the SNPs in high LD (r2 > 0.95), 130,748 unique SNPs 
remained. The exact number of SNPs per reference-val-
idation dataset is in Table  5. The number of SNPs that 
were pre-selected from the GSA results ranged from 
19,000 to 36,000 SNPs after removing SNPs in high LD 
(r2 > 0.95), depending on the trait (Table 5).

Comparison of prediction methods
We compared different methods for genomic prediction 
using 10,717 animals as RV dataset (Fig. 3). Regardless of 
the method of preselecting SNPs, we observed no large 
differences between the methods evaluated. Comparing 
the achieved accuracies from adding pre-selected SNPs, 
the top SNPs from GWAS were the best source of infor-
mation to improve the accuracy of prediction for carcass 
traits. For all traits, there were small improvements in the 
accuracies of prediction when using pre-selected SNPs 

Fig. 2  Accuracy of genomic prediction of breeding value (bars) for carcass traits marbling score (MS), eye muscle area (EMA), carcass weight (CWT) 
and back fat thickness (BFT) by using a 50 k standard SNP array and top SNPs from GWAS (3000 animals) added with various significance thresholds 
(red dashed line). The green dashed line indicates the accuracy of prediction from using a 50 k SNP array only. Results are based on cross-validation 
with 10,717 animals
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from the eQTL (Fig. 3) but no benefit was observed from 
using SNPs from GSA (not shown).

Results from wGBLUP and GBLUP were compared 
for both Models 2 and 3 (using either 50  k or 50  k and 
top-SNPs from the GWAS discovery set of 3000 animals 
(50  k_GWAS; Table  6). Accuracies of prediction were 
similar regardless of the number of iteration rounds used, 
although accuracy of prediction tended to be higher after 
two or three iteration rounds. When using the 50 k panel, 
wGBLUP showed a small improvement in accuracy over 
the standard GBLUP method of 0.01 for BFT, whereas for 
MS and EMA the accuracy was not improved. The use 
of the 50 k_GWAS SNP panel in wGBLUP improved the 
accuracy of prediction slightly more, i.e. from 0.01 to 0.05 
(Table 6).

For MS, the use of top SNPs increased the accuracy 
of prediction by 0.05 for GBLUP-GWAS, and by 0.02 

for wGBLUP-GWAS and BayesR-GWAS (Fig.  3). Pre-
selected SNPs from eQTL and GWAS improved the pre-
diction for EMA in all models compared with the 50  k 
baseline (Fig.  3). The largest improvement in prediction 
for CWT was achieved with BayesR-GWAS and GBLUP-
GWAS by 0.04 and 0.03, respectively. For BFT, the largest 
improvement was observed when the wGBLUP-GWAS 
and BayesR-GWAS models were implemented with an 
increase of 0.06 (Fig.  3). For MS, BFT, and CWT, the 
addition of SNPs from GWAS increased the accuracy of 
prediction compared to using SNPs from eQTL whereas 
using eQTL SNPs proved to be the same or better than 
the GWAS SNPs for the prediction of EMA.

We found no accuracy increase for CWT and BFT 
when comparing results from using G1 based on the 50 k 
standard array and using a second G2 from SNPs that 

Table 4  Genes located close to  significant SNPs (p < 1.0E−05) associated with  carcass traits from  GWAS on  a  discovery 
dataset of 4000 animals

Chr chromosome, bp base pairs, MAF minor allele frequency; % percentage of variance explained by the genotype

Gene name (symbol) Trait SNP position (Chr:bp) MAF p-value %

ENSBTAG00000039810 MS 23:33569238 0.31 6.13E−06 3

N-ethylmaleimide-sensitive factor attachment protein, gamma (NAPG) EMA 24:42615958 0.32 8.29E−06 3

ENSBTAG00000033237 EMA 29:36927709 0.44 6.32E−06 3

Epidermal growth factor receptor pathway substrate 15 like 1 (EPS15L1) BFT 7:6484738 0.06 9.94E−06 2

SAM pointed domain containing ETS transcription factor (SPDEF) BFT 23:8537156 0.18 7.04E−06 2

HEPACAM family member 2 (HEPACAM2) CWT​ 4:10371904 0.11 1.75E−06 3

G protein subunit gamma transducin 1 (GNGT1) CWT​ 4:11059866 0.10 4.66E−08 4

ENSBTAG00000035660 CWT​ 4:13589367 0.05 9.43E−08 4

Fidgetin like 1 (FIGNL1) CWT​ 4:5373926 0.10 3.15E−07 4

ENSBTAG00000018039 CWT​ 10:95431561 0.47 5.99E−06 3

Coiled-coil-helix-coiled-coil-helix domain containing 7 (CHCHD7) CWT​ 14:25059742 0.34 3.23E−10 6

Ribosomal protein L39 (RPL39) CWT​ 14:26181231 0.17 8.75E−09 5

UBX domain protein 2B (UBXN2B) CWT​ 14:26303702 0.28 3.41E−06 3

Thymocyte selection associated high mobility group box (TOX) CWT​ 14:26941314 0.18 1.08E−06 4

ENSBTAG00000014045 CWT​ 14:29678929 0.24 8.54E−06 3

KDEL endoplasmic reticulum protein retention receptor 2 (KDELR2) CWT​ 25:38887854 0.19 3.07E−06 3

Table 5  Number of SNPs used in the genomic prediction, pre-selected from gene expression analysis and after pruning 
(and the SNPs remaining in the 50 k -G50adj in brackets) in the various RV subsets

GSA gene expression significantly associated, BFT back fat thickness, EMA eye muscle area, CWT​ carcass weight, and MS marbling score

Genes SNPs Reference-validation datasets

12,717 11,717 10,717 9717

eQTL 10,224 452,258 130,750 (40,129) 130,251 (40,135) 130,080 (40,130) 130,582 (40,124)

GSAMS 473 98,099 23,398 (40,774) 23,338 (40,776) 23,280 (40,778) 23,366 (40,769)

GSAEMA 367 76,585 19,852 (40,805) 19,799 (40,803) 19,759 (40,804) 19,817 (40,806)

GSACWT​ 440 104,512 24,361 (40,740) 24,298 (40,743) 24,268 (40,744) 24,327 (40,739)

GSABFT 810 146,958 36,219 (40,661) 36,116 (40,658) 36,056 (40,633) 36,168 (40,658)
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were selected based on eQTL, but accuracies of predic-
tion for EMA improved by 0.02 (Fig. 3).

Genomic predictions for all carcass traits showed some 
bias but the bias observed with wGBLUP was generally 
much higher than that with the other methods (Fig.  4). 

The biases observed for EMA and BFT were lower than 
for MS and CWT (Fig. 4).

Discussion
The aim of this study was to assess the accuracy of pre-
diction for carcass traits in Hanwoo cattle when using 
GBLUP, wGBLUP, and a BayesR model, and the potential 
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Fig. 3  Accuracy of genomic prediction of breeding value for carcass traits marbling score (MS), eye muscle area (EMA), carcass weight (CWT) 
and back fat thickness (BFT) comparing GBLUP, wGBLUP, and BayesR models using three SNP sets: (1) standard 50 k array (blue bars); (2) 50 k and 
eQTL-SNPs (green bars) and (3) 50 k and GWAS top-SNPs (grey bars). All analysis use cross-validation (CV) with 10,717 animals. Vertical lines indicate 
the empirical standard error for each CV result

Table 6  Accuracy of  prediction of  breeding value for  carcass traits (SE) in  consecutive iterations of  wGBLUP with  50  k 
and a combination of 50 k and top-SNPs from GWAS (50 k_GWAS)

BFT back fat thickness, EMA eye muscle area, CWT​ carcass weight, and MS marbling score

Model Iteration MS EMA CWT​ BFT

50 k (GBLUP) 1 0.47 (0.02) 0.51 (0.02) 0.58 (0.03) 0.48 (0.02)

50 k (wGBLUP) 2 0.47 (0.02) 0.51 (0.02) 0.58 (0.03) 0.48 (0.02)

3 0.47 (0.02) 0.50 (0.02) 0.59 (0.03) 0.49 (0.02)

4 0.47 (0.02) 0.49 (0.02) 0.58 (0.03) 0.50 (0.02)

5 0.46 (0.02) 0.48 (0.02) 0.58 (0.03) 0.49 (0.02)

50 k_GWAS (wGBLUP) 2 0.49 (0.02) 0.52 (0.02) 0.60 (0.03) 0.52 (0.02)

3 0.49 (0.02) 0.51 (0.02) 0.60 (0.03) 0.53 (0.02)

4 0.49 (0.02) 0.51 (0.02) 0.60 (0.03) 0.53 (0.02)

5 0.48 (0.02) 0.50 (0.02) 0.59 (0.03) 0.52 (0.02)
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gain from using pre-selected SNPs from a GWAS on 
imputed sequence data as well as from gene expression 
information. We found that pre-selected SNPs from 
GWAS improved the accuracy of prediction slightly, 
whereas gene expression SNPs that are located in genes, 
the expression of which is associated with phenotypic 
differences in carcass traits, were less useful to improve 
prediction accuracy.

During the last decade, GBLUP was applied in many 
breeding programs for plants and animals and resulted 
in increased rates of genetic gain [40, 41]. To date, 
genomic selection is not commonly applied in Hanwoo 
cattle breeding programs to improve carcass traits. In 
this study, first we established a baseline accuracy of pre-
diction for Hanwoo cattle, using the standard 50 k SNP 
array and a ten-fold cross validation, and compared the 
accuracy obtained from k-means cross-validation with 
random selection. Higher accuracies (an increase ranging 
from 0.04 to 0.07, depending on the trait) were observed 
with random CV. Since the k-means CV strategy is based 
on clustering according to the relatedness between sam-
ples, it is less likely that animals in the validation set have 

related animals in the reference training set. Therefore, 
relatedness between training and test animals has a fairly 
large effect on accuracy of prediction, as was previously 
pointed out in the literature [42]. We also observed that, 
with a random CV strategy, the benefit of using top-SNPs 
was smaller (results not shown). The benefit of including 
prioritized SNPs for genomic prediction is larger when 
the genomic relationships between the reference and 
validation sets are lower [17]. Since the predictive SNPs 
were selected based on an association with the pheno-
type in relatively unrelated individuals, their contribution 
to accuracy of prediction should be less affected by relat-
edness. Similarly, we reported an improvement in accu-
racy of prediction when a larger reference population was 
used, as previously reported [43, 44], which also reduces 
the marginal value of using more predictive SNPs. Thus, 
the benefit of using more predictive SNPs is most likely 
greater when the baseline accuracy is lower and when the 
individuals being predicted have a lower relatedness to 
the reference population.

To select the GWAS discovery dataset, the more genet-
ically diverse animals were chosen, resulting in a lower 
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Fig. 4  Bias of genomic prediction of breeding value for carcass traits marbling score (MS), eye muscle area (EMA), carcass weight (CWT) and back 
fat thickness (BFT) comparing GBLUP, wGBLUP, and BayesR models using three SNP sets: (1) standard 50 k array (blue bars); (2) 50 k and eQTL-SNPs 
(green bars) and (3) 50 k and GWAS top-SNPs (grey bars). All analyses use cross-validation (CV) with 10,717 animals. Vertical lines indicate the 
empirical standard error for each CV result
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degree of LD in the discovery set and therefore a higher 
resolution of the QTL regions identified. Previous studies 
have shown that SNPs that are located near QTL detected 
in multibreed datasets tend to be more useful in improv-
ing accuracy of prediction [8, 45], and this is expected to 
be due to the lower LD that exists in multibreed datasets. 
In such a case, detection of QTL would require a higher 
marker density, but fewer markers would be in LD with 
the QTL across a set of more diverse individuals, hence 
allowing more precise mapping of the QTL. While we did 
not use a multi-breed discovery set, a greater diversity in 
the discovery set of a single breed might also prove to be 
more useful.

The use of more individuals for the GWAS is expected 
to improve the identification of associated SNPs. The use 
of imputed sequence genotype data increased the num-
ber of detected QTL and their p-values compared with 
50  k (results not shown) especially for traits that seem 
to behave more highly  polygenic (MS, EMA, and BFT). 
However, a larger number of variants might also lead 
to more false positives. The amount of overlap in QTL 
between the various discovery sets was small in our 
study, which suggests that most of the significant SNPs 
might not be real QTL and could partly explain the 
limited increase in accuracy from using the top SNPs. 
Although the size of the dataset used in this study was 
relatively large, at least for beef cattle, it is clear that even 
larger datasets are needed in GWAS to successfully iden-
tify SNPs that will increase accuracy of prediction.

There is no consensus in the literature about the 
threshold that should be used for selecting top SNPs for 
the purpose of improving prediction. In this study, we 
tried to keep a balance between the number of SNPs used 
and the increase in the accuracy of prediction. In general, 
the use of larger discovery datasets improved the identi-
fication of informative SNPs and these SNPs did increase 
the accuracy of prediction for all the traits. The top-SNPs 
that increased the accuracy of prediction were identified 
using a low significance threshold (p-value < 0.0032), and 
after filtering for LD (r2 > 0.95), less than 30% of the SNPs 
were kept (Table 5).

The use of the larger dataset for GWAS did allow 
to identify QTL regions associated with carcass traits 
located on the NAPG, EPS15L1, SPDEF, HEPACAM2, 
GNGT1, FIGNL1, CHCHD7, RPL39, UBXN2B, TOX, 
and KDELR2 genes among other non-annotated genes 
(Table 4). In a previous study in Hanwoo cattle, BTA4, 6, 
and 14 were significantly associated with CWT and EMA 
[14]. The EPS15L1 gene is an essential component of the 
endocytic pathway [46]. The SPDEF gene is known to be 
associated with BFT in pigs [47]. The HEPACAM2 gene 
was previously identified in a QTL region for mid-test 
metabolic weight (MMWT) in SimAngus on BTA4 [48]. 

The CHCHD7 gene on BTA14 is associated with CWT 
in the Hanwoo breed [11], with knuckle, biceps and 
shank trait in Chinese Simmental cattle [49], with carcass 
weight in Japanese Black steers [50], with back fat thick-
ness and rump fat thickness in the Nellore breed [51], and 
with fat thickness and intramuscular fat in composite cat-
tle [52]. The UBXN2B gene is associated with MMWT in 
SimAngus [48], and with carcass weight, carcass fat, and 
carcass conformation in Simmental [53]. The TOX gene 
is located within the QTL that is associated with CWT 
and EMA in Hanwoo cattle [14], and with residual feed 
intake and MMWT [48]. The expression of KDELR2 is 
upregulated in response to endoplasmic reticulum stress 
to stabilize exocytosis [54] but no studies have reported 
an association of this gene with CWT in cattle.

Although our GWAS results revealed some SNPs that 
are located on well-known genes for each trait, espe-
cially for CWT (Table  4), larger datasets are needed to 
refine the regions that are associated with EMA, MS, 
and BFT. We observed that, after pruning, the SNPs were 
not always located close to the polymorphisms within 
informative functional genes that help to understand 
the biological nature of the traits. Nevertheless, over-
all these markers explain some of the genetic variation 
associated with the traits in this study and had a small to 
modest effect on the accuracy of predicting GBV. Han-
woo cattle have a small effective population size, which 
has an increasing effect on the LD between SNPs and 
causal variants, but this argument holds for SNPs in the 
standard 50  k array as well as for SNPs selected from 
the sequence data. Further evaluation of optimal ways 
of selecting SNPs from a discovery population and SNP 
filtering methods based on LD and allele frequency are 
recommended to optimize the identification of the most 
suitable QTL for improving genomic selection.

Applying an additional G matrix for the top SNPs in 
the GBLUP model effectively gives more weight to the 
top-SNPs, since few SNPs share a relatively large vari-
ance component to calculate the GBV. Our results show 
that this model is more effective to improve the accura-
cies for all carcass traits in Hanwoo cattle (Fig. 4), even 
for polygenic traits such as MS and EMA. The observed 
improvement in accuracy of prediction suggests that 
these pre-selected SNPs indeed contain some additional 
information compared to neutral markers on the stand-
ard 50  k SNP array. Brøndum et  al. [55] reported that 
the use of top-SNPs together with the 50 k SNP chip in 
a GBLUP model increased the accuracy of prediction by 
5% for production traits in dairy cattle. In a study based 
on sheep data, the use of two G matrices (50 k and signifi-
cant variants from the GWAS) to estimate GBV led to an 
increase in accuracy of prediction by on average 6.2 and 
4.1% for purebred and crossbred sheep, respectively [8].
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In previous studies, the advantage of BayesR over 
GBLUP was more pronounced for traits that are influ-
enced by few QTL with moderate to large effects. The 
BayesR method resulted in a higher accuracy (on average 
0.05 across traits) than GBLUP for milk yield and fat yield 
but there was no difference in the accuracy of prediction 
for protein yield [56]. Similarly, our results for CWT and 
BFT, for which more significant QTL regions were found, 
show that the use of BayesR-50 k increased the prediction 
accuracy by 0.03 and 0.02 compared to that of GBLUP-
50 k (Fig. 3), whereas there was no improvement for the 
other traits. In addition, a larger improvement in accu-
racy of prediction was observed for BFT (0.06) and CWT 
(0.04) when BayesR with pre-selected SNPs (BayesR-
GWAS) was used. In sheep, the use of top SNPs in com-
bination with BayesR increased the accuracy by 0.09 in 
Merino and 0.06 in crossbreds [8].

The use of top SNPs in wGBLUP also improved the 
accuracy but only by 0.02 for MS, 0.01 for EMA, 0.02 
for CWT, and 0.06 for BFT (Fig. 3). However, the wGB-
LUP-GWAS method also tended to increase the bias of 
the prediction quite severely, by 0.11 to 0.14, depend-
ing on the trait (Fig.  4). After reaching the fifth itera-
tion, a higher bias was observed. Similarly, Lopez et  al. 
[37] reported a reduction in the regression coefficient 
(increased bias) at each additional iteration. This increase 
was expected since we assigned more weight to SNPs 
with a large effect in the training population but these 
SNP effects tended to be overestimated. An increase in 
bias was also reported by [57] in a single-step wGBLUP 
strategy.

The differences observed in the performance of the 
methods depend strongly on the genetic structure of 
each trait. For polygenic traits such as MS, we observed 
that the performance of GBLUP-GWAS was superior to 
that of Bayes-GWAS. In a simulated dataset, the use of 
BayesR for highly polygenic traits resulted in more vari-
able heritability estimates and slightly lower accuracies of 
prediction compared to GBLUP [39]. A simulation study 
testing the wGBLUP method showed that a trait with a 
larger number of QTL has a smaller increase in accuracy 
(0.05) than a trait with an only small number of QTL 
whereas the accuracy could increase by 0.1 when the 
weighting SNPs effects were considered in the wGBLUP 
model [58].

In our study, we used imputed SNPs at the sequence 
level and these imputations were derived from other 
imputed sequence data. Imputed sequence data could 
potentially include errors and these errors would be 
further propagated when the data are used as a refer-
ence for further imputation of other samples. We used 
whole-genome sequence SNPs that had been imputed by 
a Minimac3 accuracy higher than 0.4, but the accuracy of 

imputation might be inflated if imputed genotypes were 
used as a reference. It has been reported that imputa-
tion errors [59] and especially errors in the imputation to 
whole-genome sequences data could lower the accuracy 
of prediction by 0.01 to 0.03 [3]. Moreover, accuracy of 
imputation tends to be lower for SNPs with a lower MAF 
[60]. The use of larger and more diverse reference popu-
lations as well as a larger sample of individuals in the ref-
erence set with real sequence data should be considered 
for imputation purposes to better capture rare markers 
[61].

For complex traits, the use of more biological infor-
mation (protein, metabolite, etc.) has been suggested to 
identify genomic features that are enriched for causal 
variants, and these were shown to increase the accuracy 
of prediction slightly by using the SNPs located in the 
best-performing gene ontology terms information [18]. 
In our study, no improvement was observed in the accu-
racy of prediction of any trait using the SNPs that were 
selected from GSA, although a significantly larger num-
ber of markers were included in the G2 (from ~ 19,000 to 
36,000 SNPs) compared to using only the 50 k SNP panel. 
It is possible that SNPs located in these genes have a low 
level of heterozygosity and therefore only a small part 
of the variance of the phenotype is explained. It is also 
important to point out that only 45 animals were used 
in the gene expression study and this is a limited num-
ber of samples for identifying the GSA genes. Moreover, 
these gene expression patterns might change with tissue 
and development stage of sampling. The expression pro-
file (GSA) from the longissimus dorsi muscle may have a 
small effect on traits, such as CWT and BFT. In another 
study, the use of SNPs from a high-density panel (800 k) 
that were located in exons did not improve the accuracy 
of prediction over the 50 k or 800 k SNP chips when ana-
lyzing milk traits in a model that included these SNPs 
[56].

Simulation studies have shown that using the actual 
causal variants could significantly increase the accuracy 
of prediction [62], but this increase does depend on the 
size of the QTL detected [42]. Wang et al. [63] reported 
that the use of true QTL in combination with non-QTL-
markers decreased the accuracy of prediction. There-
fore, to what extent are the selected SNPs actual causal 
variants, or at least in very high LD with causal variants 
is important for their usefulness for prediction. GWAS 
studies based on sequence data are often still underpow-
ered, given the large multiple testing challenge, but at 
least larger GWAS datasets might be able to better select 
the SNPs that can explain and predict genetic variation. 
While expression studies can help find functional genes 
relevant to phenotypes of interest, fundamentally they do 
not detect SNPs based on their ability to explain variation 
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in those phenotypes. Moreover, these studies are usually 
much smaller in size and depend largely on the timing 
and type of tissue sampled. Therefore, expression studies 
might be useful to support GWAS to detect more predic-
tive SNPs, but when used alone, they have a lower chance 
of being successful than GWAS studies for that purpose.

Conclusions
For all traits, the accuracy of prediction slightly improved 
by pre-selecting SNPs from GWAS, whereas only a slight 
and non-significant improvement was obtained when 
using eQTL SNPs. The use of SNPs selected from GSA 
did not lead to an improvement in the genomic predic-
tion of carcass traits compared to the standard 50 k SNP 
panel. The performance of each method for estimating 
GBV is trait-specific and likely depends on the genetic 
architecture of each trait. The GBLUP-GWAS method 
reached a higher accuracy of prediction for MS, whereas 
the BayesR method was better for CWT and BFT. In 
future studies, the use of a larger discovery dataset for 
GWAS will help to improve the identification of more 
QTL regions and therefore will potentially increase the 
accuracy of prediction for carcass traits especially for 
traits, such as EMA and MS. In addition, larger and more 
targeted gene expression studies should be used and 
combined with GWAS to show whether these studies 
have potential to provide more predictive SNPs.
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