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Abstract

BACKGROUND—Historically, the Cox proportional hazard regression model has been the
mainstay for survival analyses in oncologic research. The Cox proportional hazard regression
model generally is used based on an assumption of linear association. However, it is likely that, in
reality, there are many clinicopathologic features that exhibit a nonlinear association in
biomedicine.

OBJECTIVE—The purpose of this study was to compare the deep-learning neural network model
and the Cox proportional hazard regression model in the prediction of survival in women with
cervical cancer.
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STUDY DESIGN—This was a retrospective pilot study of consecutive cases of newly diagnosed
stage I-1V cervical cancer from 2000-2014. A total of 40 features that included patient
demographics, vital signs, laboratory test results, tumor characteristics, and treatment types were
assessed for analysis and grouped into 3 feature sets. The deep-learning neural network model was
compared with the Cox proportional hazard regression model and 3 other survival analysis models
for progression-free survival and overall survival. Mean absolute error and concordance index
were used to assess the performance of these 5 models.

RESULTS—There were 768 women included in the analysis. The median age was 49 years, and
the majority were Hispanic (71.7%). The majority of tumors were squamous (75.3%) and stage |
(48.7%). The median follow-up time was 40.2 months; there were 241 events for recurrence and
progression and 170 deaths during the follow-up period. The deep-learning model showed
promising results in the prediction of progression-free survival when compared with the Cox
proportional hazard regression model (mean absolute error, 29.3 vs 316.2). The deep-learning
model also outperformed all the other models, including the Cox proportional hazard regression
model, for overall survival (mean absolute error, Cox proportional hazard regression vs deep-
learning, 43.6 vs 30.7). The performance of the deep-learning model further improved when more
features were included (concordance index for progression-free survival: 0.695 for 20 features,
0.787 for 36 features, and 0.795 for 40 features). There were 10 features for progression-free
survival and 3 features for overall survival that demonstrated significance only in the deep-learning
model, but not in the Cox proportional hazard regression model. There were no features for
progression-free survival and 3 features for overall survival that demonstrated significance only in
the Cox proportional hazard regression model, but not in the deep-learning model.

CONCLUSION—Our study suggests that the deep-learning neural network model may be a
useful analytic tool for survival prediction in women with cervical cancer because it exhibited
superior performance compared with the Cox proportional hazard regression model. This novel
analytic approach may provide clinicians with meaningful survival information that potentially
could be integrated into treatment decision-making and planning. Further validation studies are
necessary to support this pilot study.

Keywords
Cox proportional hazard; cervical cancer; deep learning; survival prediction

Globally, cervical cancer remains the most common gynecologic malignancy.! In 2012,
more than one-half a million women were estimated to have been diagnosed with this
disease. Because nearly one-third of the patients succumb to their disease within the first 5
years from diagnosis,2 improvement in survival remains the ultimate treatment goal in the
clinical setting. To this end, accurate prediction of survival is critical in precision medicine.
Individual survival predictions are also important because they may provide clinicians a way
to gauge treatment outcomes.

Traditionally, proportional hazard models have been used to estimate survival. Although it is
possible to predict survival outcomes of individuals, these models typically have focused on
differences in patient cohorts and not on survival prediction. Moreover, these approaches
make linearity assumptions and thus cannot model the nonlinear relationships that may be
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present in a real-life setting, which reflects the complexity of biomedicine. Therefore, novel
solutions that can include these potentially nonlinear variables are in great demand to predict
individual survival accurately.

Recently, deep-learning frameworks based on multilayer perceptrons to predict individual
survival based on clinicopathologic data have been developed.3 The utility of these
frameworks have been examined in various settings related to translational and clinical
medicine,*~13 but the utility for survival prediction remains relatively understudied. With
regards to survival analysis, deep-learning models, which is a class of machine learning
models, can model automatically survival risks using nonlinear risk functions and to predict
individual survival outcomes from learned representations.

Our previous preliminary study demonstrated that deep-learning models have superior
accuracy for survival prediction in women with recurrent cervical cancer compared with the
conventional analytic approaches.4 These results prompted us to conduct another pilot
study to examine the performance of deep-learning neural network models in survival
analysis for women with newly diagnosed cervical cancer. The objective of this study was to
compare the performance of deep-learning neural network models with that of conventional
Cox proportional hazard regression (CPH) models to predict survival in women with newly
diagnosed cervical cancer.

Materials and Methods

Eligibility criteria

After Institutional Review Board approval was obtained at University of Southern
California, a retrospective study was conducted to examine consecutive cases of newly
diagnosed stage I-1V invasive cervical cancer that was diagnosed and managed at the Los
Angeles County+University of Southern California Medical Center between January 2000
and December 2014. A previously established division database for cervical cancer was used
to identify eligible cases.1® This study excluded cases with preinvasive cervical dysplasia,
sarcoma, and metastatic tumors to the uterine cervix. Patients lacking clinicopathologic
information at cervical cancer diagnosis were also excluded. Among eligible cases, patient
demographics, vital signs, laboratory test results, tumor characteristics, treatment types, and
survival outcomes were collected from medical records.

Clinical information

Patient demographics at cervical cancer diagnosis included age, race/ethnicity, body mass
index (kilograms/square meter), and medical comorbidities (hypertension and beta-blocker
use, diabetes mellitus, and hypercholesterolemia). Vital signs obtained at the initial cancer
diagnosis included systolic and diastolic blood pressure and heart rate. In our practice, intake
vital signs routinely are measured at all clinic visits. Vital signs are taken in an upright
position after >10 minutes at rest. Laboratory test results at cervical cancer diagnosis
included leukocyte count, hemoglobin level, and platelet count and blood urea nitrogen,
creatinine, bicarbonate, and albumin levels.
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Tumor characteristics included histologic subtype (squamous, adenocarcinoma,
adenosquamous, and others) and cancer stage (1, I1, Ill, and IV). Initial treatments after
cervical cancer diagnosis included primary hysterectomy, systemic chemotherapy, and/or
radiotherapy. For survival outcomes, progression-free survival (PFS) and overall survival
(OS) were examined.

Study definition

Cancer stage was based on the 2014 International Federations of Gynecology and Obstetrics
classification.16 PFSwas defined as the time interval between initial cervical cancer
diagnosis and the first disease recurrence/progression or death from cervical cancer. OSwas
defined as the time interval between initial cervical cancer diagnosis and death from any
cause. Patients who were transferred to hospice for terminal cancer condition at the last
follow-up evaluation were also recorded as death from cervical cancer, as previously
described.1’ This allocation was based on the rationale that time to death after hospice
transfer is considerably short (approximately 3 weeks).18 Patients without these survival
events at the last follow-up evaluation were censored.

Statistical consideration

The primary objective of this study was to compare the accuracy of survival prediction
between the deep-learning neural network model and the conventional approach with the
CPH maodel. The secondary objective of this study was to examine the clinicopathologic
prognostic factors across the 2 analytic approaches.

To examine the study objective, the following subtasks were set: for patient 7, given the
medical features vector X, binary event indicator (censor variable) &, predict patient’s
survival (PFS/OS survival time prediction task). Regarding preprocessing, because the size
of the dataset was relatively small, to train, cross-validate, and test the model properly, the
whole dataset was split into 10 folds while preserving the percentage of data for censored
patients and uncensored patients. We trained the models on 8 folds, validated it on another
fold, and tested it on the remaining fold. We then tested the model 10 times to ensure that
every fold had been tested.

To set the analytic approach for the deep-learning model, 3 groups of features set (FS) were
examined (Table 1): FS1 represents patient baseline characteristics (20 features), including
age, race/ethnicity, body mass index, vital signs, comorbidities, and pretreatment laboratory
results; FS2 represents FS1 and tumor characteristics (20+16=36 features), including
histologic type and cancer stage; FS3 represents FS2 and treatment type (36+4=40 features).
The rational of this sequential split-grouping strategy is to examine the association between
the extent of features and survival prediction in various analytic approaches.

Our proposed deep-learning model has a hierarchic structure and uses fully connected feed-
forward neural networks in the lower layers of the model and 2 subnetworks (fully
connected layers) to optimize jointly the concordance index and mean absolute error
evaluation metrics. In other words, our deep-learning model predicts both mean absolute
error and concordance index by jointly optimizing the 2 subnetworks, each of which
optimize these parameters separately. We compared baseline models (CPH,1 CoxLasso,20
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Random Survival Forest,2! and Cox Boost?2) to our proposed deep-learning model (Figure)
on the provided dataset for 2 tasks (PFS/OS predictions) with 3 different sets of features
(FS1-3). The results shown here are an average of 10 test folds (from cross validation) in
terms of concordance index and mean absolute error.

Mean absolute error is the absolute difference between the original survival time (ground
truth) and the model’s predicted survival time measured in months. Lower mean absolute
error means a better performing model. Concordance index can be interpreted as the fraction
of all pairs of subjects whose predicted survival times are ordered correctly among all
subjects that can actually be ordered. In other words, it is the probability of concordance
between the predicted and the observed survival. Higher concordance index means better
performing model.23

Our proposed deep-learning model for survival analysis uses a subnetwork of deep neural
networks with a single output node to estimate the survival risks /(X)) of patients /by the
optimization of the negative log-partial likelihood function, which is measured by the
concordance index score. In addition, our model uses another subnetwork of deep neural
networks to minimize the mean absolute error between the actual survival time and the
predicted survival time for individual patients. Thus, our proposed model jointly optimizes
the concordance index score and mean absolute error simultaneously to accurately predict
survival of individual patients.

CPH is a popular semiparametric model for survival analysis. It estimates the risk function
M X)) of the event occurring (eg, died of cancer) for patient /based on observed covariates/
features X;with the use of a linear function: /(X)) = X8, where Bis the coefficient of X;:19
It measures the impact of the covariates and assumes that the log-hazard of every patient is a
linear combination of the patient’s features.

In addition to standard CPH, other modeling variants such as CoxBoost?4 and CoxLass024
have been proposed in literature. Although these modeling approaches are not used
frequently, we have included them for comparison to see how they perform with respect to
proposed models. CoxBoost is a semiparametric survival model that is designed to handle
high-dimensional datasets by fitting the Cox models with likelihood-based boosting for
competing risks.24 CoxLasso, a semiparametric survival model, is another variant of the Cox
model and is regularized with the Lasso L1 penalty.2>-27 It treats the number of non-zero
coefficients as a tuning parameter and simultaneously selects with the regularization
parameter. Also, it fits a varying coefficient Cox model by kernel smoothing, with the
aforementioned penalties. Random Survival Forest is a popular nonlinear machine learning
model for survival analysis.2! It is used to estimate the risk function of patients. Random
Survival Forest is a tree model that is based on the random forest method, and it can
generate ensemble estimates for the cumulative hazard function.

For survival analysis that uses the multivariable CPH model in a conventional approach,
conditional backward method was used to retain only the significant covariates with a
probability value of <.05 in the final model.28 All the covariates with a probability value of
<.05 in the univariable analysis were entered in the initial model. This is due to relative
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small sample size and event number to avoid overfitting. Covariate selection and grouping
was based on a priori criteria.1415 Magnitude of statistical significance was expressed with
hazard ratios and 95% confidence intervals.

All statistical analyses were based on 2-tailed hypotheses, and a probability value of <.05
was considered statistically significant. For this study, the CPH models were implemented
with the use of the CoxPHFitter function of Pythonpackage lifelines,2° and the deep-
learning models were implemented in Python with the use of the Keras deep learning
package with tensor-flow backend.30 The Statistical Package for Social Science software
(version 24.0; IBM Corporation, Armonk, NY) was also used for conventional analyses
other than deep-learning analysis. The Strengthening the Reporting of Observational Studies

in Epidemiology guidelines were consulted when we outlined this retrospective cohort study.
31

There were 802 patients who had a diagnosis of cervical cancer. Among those, 34 patients
who lacked vital signs at initial diagnosis were excluded, and the remaining 768 women
were examined for the analysis. Patient demographics are shown in Table 1. The median age
was 49 years, and most of the patients were Hispanic (71.7%). Most of the tumors were
squamous histologic condition (75.3%) and stage | disease (48.7%). The median follow-up
time of censored cases was 40.2 months (interquartile range, 16.7-69.9 months). There were
241 women who had recurrence or progression of disease and 170 deaths during the follow-
up time.

The CPH model was compared with the deep-learning neural network model for PFS in FS3
(Table 2). The results were an average of 10-fold evaluation in terms of concordant index
and mean absolute error. The deep-learning model had significantly better predictions
compared with the CPH model, with >10-fold difference between the 2 analytic approaches
(mean absolute error for CPH vs deep-learning: 316.2 vs 29.3). However, performance of the
deep-learning model was similar when compared with other baseline models for PFS in FS3
(mean absolute error: 29.4 for CoxBoost, 28.8 for CoxLasso, 29.7 for Random Survival
Forest, and 29.3 for deep-learning). Similar findings were observed for the results of
concordance index (Table 2). Similar trends were observed in FS1 and 2 for mean absolute
error and concordance index as in FS3 (Supplemental Table 1).

The comparison was then made for OS in FS3 (Table 2). The deep-learning model
outperformed all the other models. That is, the mean absolute error of the deep-learning
model was the lowest among the tested analytic approaches (30.7 for deep-learning, 33.4 for
random survival forest, 37.2 for CoxBoost, 39.2 for CoxLasso, and 43.6 for CPH). The
performance of the CPH model was the lowest among the tested models. Similar findings
were seen for the performance of concordance index (Table 2). Similar trends were observed
in FS1 and 2 for mean absolute error and concordance index as in FS3 (Supplemental Table
1).
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Next, performance of the deep-learning model was examined across the 3 FSs (Table 2 and
Supplemental Table 1). Performance of the deep-learning model improved with more
features in that the concordance index became larger as more features were added in the
model (concordance index for PFS: 0.695 for FS1, 0.787 for FS2, and 0.795 for FS3,
respectively). Similar trends were observed for OS (concordance index: 0.538 for FS1, 0.534
for FS2, and 0.616 for FS3, respectively).

Finally, clinicopathologic features that were associated with survival were compared
between the CPH model and the deep-learning model. Specifically, results of the
multivariable CPH models and the deep-learning model for FS3 were compared (Tables 3
and 4). The results of the deep-learning model validated the CPH model by demonstrating
concordant clinicopathologic features for PFS in that vital signs (heart rate), laboratory test
results (blood urea nitrogen, creatinine, and albumin), tumor characteristics (cancer stage
and histologic type), and treatment type (hysterectomy and radiotherapy) were associated
significantly with PFS in both analytic approaches. On the contrary, certain patient
demographics (age, body mass index, race/ethnicity, and hypertension), laboratory test
results (leukocyte count, platelet count, hemoglobin level, and bicarbonate level), and
treatment factors (chemotherapy and beta-blocker use) were the significant covariates for
PFS that were seen only in the deep-learning model, but not in the CPH models (10 features;
Table 5).

For OS, the deep-learning model was concordant with the CPH model in that vital signs
(heart rate), laboratory test results (blood urea nitrogen), tumor characteristics (cancer
stage), and treatment type (hysterectomy) were associated significantly with OS in both
analytic approaches. Contrary, certain clinicopathologic factors were significant only in the
deep-learning model, but not in the CPH models (patient demographics with race/ethnicity,
laboratory test results with bicarbonate level, and treatment type with radiotherapy).
Moreover, there were 3 clinicopathologic factors that were significant only in the CPH
model, but not in the deep-learning model (laboratory test results with platelet count,
creatinine level, and albumin level; Table 5).

In this second pilot study, our analysis demonstrated that a deep-learning neural network
model is superior to conventional linear regression modeling in survival prediction for
women with newly diagnosed cervical cancer.

In a review of the previous literature, an increasing number of studies are integrating deep-
learning models into analytic approaches in oncologic research. Most of these studies are
related to either diagnostic work-up, such as radiographic image analysis and cytopathologic
interpretation, or genomic/molecular analysis for biomarker discovery; studies that use deep-
learning models for survival prediction in oncology patients remain limited to date.
Specifically in the area of cervical cancer research, the utility of deep-learning has been used
for interpretation of cervical cytologic testing,32-33 human papillomavirus-related risk
algorithm development,34 colposcopy interpretation,3° tumor tissue identification,36-37
cervical cancer screening algorithm evaluation,38 radiographic testing efficacy,3940 genomic
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analysis,*142 and early symptoms,*3 but there have been only a few studies that have
examined oncologic outcome. 1444

In an analysis of surgically treated women with early-stage cervical cancer (n=102), various
deep-learning models were tested for 5-year OS prediction with the use of clinicopathologic
features mainly from surgical-pathologic specimens.#* Their main finding was that certain
neural network algorithms are superior for survival prediction compared with conventional
linear regression models. Because their study population was limited only to surgical cases,
generalizability to other cervical cancer populations was not possible. In the current study, a
larger number of unselected consecutive cases of women with cervical cancer, which
included nonsurgical cases, were included for analysis, which provided more meaningful
results for interpretation.

We previously have examined the performance of deep-learning neural network models in
the prediction of survival of women with recurrent cervical cancer who have a limited life-
expectancy (3 and 6 months).1# An enormous amount of data points (>5000) that included
patient demographics, symptoms, vital signs, laboratory test results, tumor characteristics,
and treatment types were time-sequentially examined after recurrence. The deep-learning
model was compared with a linear regression model for survival prediction. The analysis
found that the deep-learning model is superior to the CPH model to identify women with
limited life-expectancy. Taken together, all 3 studies, which included the current study, have
shown consistently that deep-learning neural network models may be useful analytic tools
for survival prediction in women with cervical cancer, given its superior performance
compared with the linear regression model.

Strengths of the deep-learning neural network model for survival analyses in oncology
research are in the following threefold. First, as described earlier, this model exhibits an
improved fit for variables with a nonlinear relationship, which is applicable when examining
real-life factors. Unlike CPH and its variants, deep-learning approaches can model nonlinear
risk functions that are present in survival data. Of note, in our previous study, we found that
a number of clinical-laboratory factors demonstrated a nonlinear association with survival
and implied that use of a neural network model would be more appropriate than a linear
regression model in clinical medicine.14

Second, deep-learning models are able to not only automatically learn feature
representations from raw clinical data without explicit feature engineering but also can fit
censored survival data with the use of nonlinear risk functions. In other words, deep-learning
models are powerful at learning nonlinear relationships that are present in the data, and they
easily can handle censoring in survival data. Thus, selection bias because of the process of
demographic grouping can be eliminated in the deep-learning model. For instance, there
were several features that were not identified as survival predictors in the conventional
analytic approach but were found to be significant prognosticators in the deep-learning
model (Table 5). The ability to highlight these features without explicit feature engineering
may represent an example of this benefit of deep-learning models.
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Third, our study suggests that the performance of the deep-learning neural network model
will perform better when large feature sets are used. The strength of the deep-learning model
in handling large feature sets, because of its ability to learn feature representation, may be
beneficial particularly in biomedical research because inclusion of many variables in
conventional linear regression models may result in overfitting.

A limitation of deep-learning models is that these models are computationally expensive to
train, and usually their predictions might be hard to interpret. For instance, in our analysis of
OS, there were some features that were identified as significant prognostic factors only in
the CPH maodel, but not in the deep-learning model (Table 5). Albumin level, for example, is
a well-recognized prognostic factor in oncology patients that reflected general nutritional
status, and our previous analysis of recurrent cervical cancer demonstrated that albumin
level was the strongest predictor for limited life expectancy.1* Thus, the fact that this feature
was not significant in the deep-learning model is a concern in terms of reliability of the
modeling in the current study; further validation and model development are necessary to
ensure the reliability of these deep-learning models.

In addition, the challenge and uncertainty in training the CPH models may result in much
higher mean absolute error compared with other models. For example, when the coefficients
of the CPH model for PFS prediction task were estimated, the model did not completely
converge. One potential reason is the Newton-Raphson algorithm that was used in the
estimation of coefficients in the CPH model: this likely caused convergence failure.® Last,
mean absolute errors were similar between the deep-learning models and the other baseline
models. One explanation of this observation is that the deep-learning model might need
more fine-tuning for PFS prediction.

Another weakness of the current study is that the limited amount of data makes it
challenging to train deep-learning models in our experiments. More investigation is needed
to study the performance of deep-learning models in limited data settings. We examined
only 40 features in the analysis, and there may be various confounders that were not
examined. For example, performance status was not examined in the model but is known to
be a prognostic indicator in oncology patients. Moreover, we examined features only at the
initial cancer diagnosis; features after initial diagnosis were not assessed.

Although we likely examined one of the largest sample sizes among studies of this nature,
the total number remains relatively small, which makes the analysis challenging in the deep-
learning model. Follow-up time is also relatively short (<5 years), and there may be the
possibility that late survival events were missed. Most of the study population was Hispanic,
and generalizability to different population is not known.

The deep-learning neural network model is a new analytic tool that has been adopted
recently in clinical decision-making, and its utility will be likely become more widespread in
the near future. Our battery of pilot studies in cervical cancer (new diagnosis and recurrent
disease) endorses the exploration of deep-learning approach, with promising results in
survival analysis. This analytic approach is particularly useful in biomedicine where
complexity and uncertainty exist; therefore, further study is warranted to establish its role in
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rvival analysis. For future direction of study, an investigation of how to obtain feature

importance scores directly from deep-learning models and how to provide clinically
meaningful interpretations from deep-learning models will be of value.

Supplement

ary Material

Refer to Web version on PubMed Central for supplementary material.
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AJOG at a Glance
Why was this study conducted?

Cox proportional hazard regression models have been the mainstay of survival analyses
for oncologic research based on assumptions of linear association; however, there are
many clinicopathologic features that exhibit nonlinear correlations in clinical medicine.

Key findings

Deep-learning neural network models recently have been implemented as useful analytic
approaches in biomedical research in the evaluation of nonlinear correlations. In this pilot
study of women with cervical cancer, the deep-learning neural network model showed
promising results and demonstrated higher performance, exhibiting lower mean absolute
error and higher concordance index compared with the Cox proportional hazard
regression models for survival analysis.

What does this add to what is known?

In the future, this novel analytic approach may have the potential to provide salient
survival information that can assist clinicians via integration into the treatment decision-
making process.
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Survival Analysis Models

Deep Learning

Input Patient Data Survival Outcomes
* Clinical data * Overall Survival
* Tumor characteristics * Progression-free
» Treatment types Survival

Cox Proportional Hazards

CoxBoost

CoxLasso

Random Survival Forests

FIGURE. Study schema for survival analysis
Patient baseline characteristics were entered in various analytic models that included the

deep-learning neural network model to examine survival outcome.
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