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Abstract

Ovarian clear cell carcinoma (OCCC) is distinctive from other histological types of epithelial
ovarian cancer, with genetic/epigenetic alterations, a specific immune-related molecular profile,
and epidemiologic associations with ethnicity and endometriosis. These findings allow for the
exploration of unique and specific treatments for OCCC. Two major mutated genes in OCCC are
PIK3CA and ARIDI1A, which are frequently coexistent with each other. Other genes' alterations
also contribute to activation of the PI3K (e.g. PIK3R1 and PTEN) and dysregulation of the
chromatin remodeling complex (e.g. ARID1B, and SMARKA4). Although the number of focal
copy number variations is small in OCCC, amplification is recurrently detected at chromosome
20913.2 (including ZNF217), 8q, and 17q. Both expression and methylation profiling highlight the
significance of adjustments to oxidative stress and inflammation. In particular, up-regulation of
HNF-1p resulting from hypomethylation contributes to the switch from anaerobic to aerobic
glucose metabolism. Additionally, up-regulation of HNF-1p activates STAT3 and NF-xB
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signaling, and leads to immune suppression via production of IL-6 and IL-8. Immune suppression

may also be induced by the increased expression of PD-1, Tim-3 and LAG3. Mismatch repair

deficient (microsatellite instable) tumors as found in Lynch syndrome also induce immune
suppression in some OCCC. In a recent phase |1 clinical trial in heavily-treated platinum-resistant
ovarian cancer, two out of twenty cases with a complete response to the anti-PD-1 antibody,

nivolumab, were OCCC subtypes. Thus, the immune-suppressive state resulting from both genetic

alterations and the unique tumor microenvironment may be associated with sensitivity to immune

checkpoint inhibitors in OCCC. In this review, we highlight recent update and progress in OCCC

from both the genomic and immunologic points of view, addressing the future candidate
therapeutic options.
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Background

Ovarian clear cell carcinoma (OCCC) is a relatively rare histological type of epithelial
ovarian carcinoma (EOC) with a unique distribution pattern across ethnicity [1]. While
OCCC accounts for <10% of EOC in North America and Europe, in Japan, it may be up to
25% [2,3]. The increased incidence of endometriosis in Japan may be associated with an
increased incidence of OCCC, as the histologic subtypes of ovarian cancers associated with
endometriosis are predominantly OCCC and endometrioid ovarian carcinoma (EMOC) [4].

Recently, it has been proposed that EOC be classified as either type | or type Il [5]. OCCC,
EMOC, mucinous ovarian carcinoma, and low-grade serous ovarian carcinoma are
categorized as type I, while type Il tumors are represented by high-grade serous ovarian
carcinoma (HGSOC). The type Il tumors are considered to arise from the distal fallopian
tube, and show distinct genetic profiling as compared to OCCC [5,6]. For example, 7P53
mutations are found in <10% of OCCC, while they occur in over 96% of HGSOC [7,8]. In
addition, BRCA mutations (both germline and somatic) are mainly observed in type Il
tumors [9,10].

Even among type | tumors, OCCC showed a significantly distinct molecular profiling
pattern from other histologic types. Therefore, highlighting genetic, genomic and
immunologic profiling of OCCC will assist in the development of precise therapeutics for
these tumors. In this review, we focus on molecular subtypes of OCCC highlighting recent
findings from both genomic and immunologic profiling.

2. Oncogenesis of OCCC

Although various histology-specific characterizations of OCCC have been unveiled, its
oncogenic process is not fully understood. Although both OCCC and EMOC are well-
known to be endometriosis-associated, it is still unclear how these tumors differentiate into
this distinct morphology (and biology) [5,11]. The cellular origin of OCCC is also
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controversial. Proposed sources include (i) endometrium, (ii) endometrial cysts
(endometriosis-derived epithelial cells), (iii) ovarian surface epithelia, and (iv) fallopian
tube-derived cells [3,5,11-14]. Of note, most of these same characteristics in OCCC have
been observed in endometriotic cysts without malignancy.

Oxidative stress has been implicated in the pathophysiology of endometriosis, which causes
a particular inflammatory microenvironment (Fig. 1). Dysregulation of immune cells have
also been reported in endometriotic lesions [15]. Epigenetic modifications induced by
oxidative stress have also been suggested to exist in endometriosis [16]. Moreover, common
mutations in OCCC, including ARID1A, PIK3CA, KRAS, and PPP2R1A, have been
frequently identified in endometriosis without cancer (Fig. 1) [17].

Loss of BAF250a (AR/D1A gene) is also frequent in atypical endometriosis, suggesting its
early contribution to the carcinogenesis [18]. Therefore, the majority of genomic/
immunologic alterations may already exist before the transformation to OCCC.
Overexpression of PD-L1 has not been reported yet in endometriosis, and copy number
variations (CNVs) were rarely observed in endometriotic lesions [17], suggesting that
acquisition of these biological characteristics may contribute to the transformation from non-
invasive precursor lesion to OCCC (Fig. 1).

3. Genomic profiling of OCCC
3.1 Mutation profile of OCCC

Key molecules, pathways and molecular-targeted drugs are schematically summarized in
Fig. 2. Two major mutated genes in OCCC are PIK3CA and ARID1A[19-21]. Oncogenic
PIK3CA mutations activate the phosphatidylinositol 3-kinase (P13K), whereas loss of
function mutations in AR/D1A, a component of the switch/sucrose non-fermentable (SWI/
SNF) complex, results in dysregulation of chromatin remodeling [22,23]. The frequency of
these mutations in OCCC is 40-62% for AR/D1A and 33-51% for PIK3CA [24-26]. OCCC
and EMOC showed a high frequency of mutations in PI3K, including PIK3CA and PTEN.
PTEN mutations are less frequently observed in OCCC (~5%) than in EMOC (20%),
whereas PIK3CA mutations are more commonly observed in OCCC than in EMOC (20%)
[19,25,27]. Taken together with the high mutation frequency of AR/D1A in EMOC (30%)
[21], alterations in the PI3K pathway and the SWI/SNF complex are commonly shared in
endometriosis-associated ovarian carcinomas.

Mutational analysis by whole-exome sequencing in OCCC revealed other genetic mutations
in the PI3K pathway and the SWI/SNF complex, such as AR/D1B (10%), PIK3R1 (7-8%),
and SMARKA4 (encoding ATP-dependent chromatic modeler BRG1) (5%) [24,25]. The
other genes mutated in OCCC, which were also confirmed by whole-exome sequencing or
targeted multiple gene panel testing, included PPP2R1A (encoding serine/threonine protein
phosphatase 2 scaffold subunit alpha) (10-20%), KRAS (9-17%), TP53 (5-15%), and
CTNNBI (encoding betacatenin) (5-10%) [24-26,28,29].
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3.2. Copy number variations of OCCC

Profiles of chromosomal CNVs in OCCC are also distinct from other histological subtypes
[30,31]. Copy number analysis by single nucleotide polymorphism arrays revealed that the
frequency of CNVs was significantly fewer in OCCC compared with that in HGSOC [32].

In contrast, the ratio of whole-arm CNVs among all CNVs (47%) in OCCC was
significantly higher than that in HGSOC (21.6%). Thus, focal CNVs at the loci of specific
genes were less frequent in OCCC than in HGSOC [32]. As whole-arm CNVs are associated
with mitotic instability, each CNV might be less associated with the aberrant expression of
cancer related genes in OCCC.

However, recurrent CNV's were identified at various loci [6,30,31]. At chromosome 20q13.2,
including the ZNF217 (Zinc finger protein 217) locus, they were frequently amplified in
OCCC (~36%). Amplification of chromosome 8 (8p11.21-q11.23 and 8g22.1-q24.13) was
detected in 52% of OCCC [32]. Increased copy numbers of MET (chr7g31) (31%) and
AKTZ2(chr19g13.2) (24%) were also reported in OCCC (Fig. 2). Copy number loss (loss of
heterozygosity or homozygous deletion) was detected at the loci of COKNZ2A/2B (Cyclin-
Dependent Kinase Inhibitor 2A/2B) (9p21.3) (17%) [33,34]. CNVs, evaluated by whole-
exome sequencing, identified amplification at chr17q (46%) and deletion at chr13q (28%),
99 (21%) and 18q (21%) [25]. Although amplification of MET and AKT2 are potential
candidate molecular targets, fewer CNVs at specific loci suggest that CNV-based targeted
therapies may be limited in OCCC.

3.3. Expression signatures of OCCC

The gene expression profile of OCCC is also distinct from other histologic subtypes,
especially as compared to HGSOC [32,35]. Expression arrays of OCCC and non-OCCC cell
lines revealed that hepatocyte nuclear factor-1beta (HNF-18) was the most abundantly up-
regulated transcription factor in OCCC (Fig. 2) [35]. Overexpression of HNF-1p was also
observed in 40% of endometriotic cysts without a malignancy [36]. Additional significantly
up-regulated genes were identified in multiple microarray datasets, included versican
(VCAN) and other genes related to oxidative stress [35]. Both oxidative stress-related and
coagulation-related gene sets were up-regulated in OCCC, which is consistent with the
increased frequency of endometriosis and venous thromboembolism in OCCC patients
[37,38].

A set of 66 up-regulated genes was identified as a pathway network in OCCC. These genes
included HNF-1B8, HIF-1a, IL-6, p21, and Signal transducer and activator of transcription 3
(STAT3), highlighting the significance of the IL-6-STAT3-HIF pathway (Fig. 2) [35].
Glycogenrelated pathways were also enriched in this pathway network [35]. In
endometriotic cysts, exposure to high concentrations of free iron induces persistent oxidative
stress and may promote carcinogenesis [39]. The response to this persistent oxidative stress
and inflammation may be reflected in the altered gene expression profile of OCCC.

Clear cell carcinoma is also a major histologic subtype in renal cell carcinoma (RCC).
Hierarchical clustering by microarray data sets with various cancer types (merged data for
the OCCC cell lines and NCI60 cell lines) discriminate a specific cluster enriched within
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both OCCC and RCC related to activation of HNF-1p and its downstream target genes [40].
Indeed, up-regulation of HIF-1a (by VAL mutations in RCC), amplification of VCAN, and
a hypoxia-like MRNA expression signature are commonly observed in both OCCC and RCC
[41-43]. Therefore, certain molecular targeted therapies against RCC that have not been
tested in ovarian cancers or that have not demonstrated therapeutic benefit in unselected
ovarian cancers may have efficacy if tested specifically for OCCC.

3.4. Epigenetic profiling of OCCC

Epigenetic alterations of OCCC are specific to histologic type. Hypo-methylation of
HNF-1p is significantly detected in OCCC, suggesting that epigenetic silencing is one of the
mechanisms of its overexpression [35,44]. Several other genes (14-3-3 sigma, TMS1/ASC,
WT1, RASSF1A, CDH13 CACNAIA, HIN-1, and sFRP5) have also been reported as
aberrantly methylated in OCCC [45-47]. Consensus clustering of DNA methylation profiles
in ovarian cancer cell lines identified an OCCC-specific cluster, distinct from other
histologic types [48]. In clinical samples, HGSOC was classified as a distinct cluster from
non-HGSOC (type I). Sub-clustering of type I identified a specific methylation profile of
OCCQC, distinct from that of mucinous ovarian carcinoma and EMOC [48]. In OCCC,
HNF-1 pathway genes (HNF-1A, HNF-1B, PAXS8, and SGK2) were significantly
hypomethylated, and the ER-a network genes were hypermethylated [48].

Unmethylated genes in OCCC (n7= 22) were enriched for stress response-related gene
ontology terms, while hyper-methylated genes in OCCC (n= 276) included “response to
oxidative stress” gene ontology terms [48]. These data suggest that the expression profile of
OCCC is closely associated with epigenetic regulation, possibly due to persistent oxidative
stress. This unique epigenetic signature may lead to novel therapeutic strategies in OCCC.

3.5. Metabolic characteristics of OCCC

The Warburg effect is a phenomenon whereby tumor tissues tend to metabolize glucose to
lactate, to a much greater degree than is seen in non-tumor cells (metabolization of glucose
by glycolysis rather than oxidative phosphorylation) [49,50]. This is seen even under aerobic
conditions. Although the mechanism of the Warburg effect in various cancer cells has not
been fully clarified, there is growing evidence that high expression of HNF-1p plays an
essential role in glucose metabolism [51]. Knocking down HNF-1p in OCCC cells
significantly reduces the production of lactic acid (produced by anaerobic glycolysis) and
increases that of citric acid (the first metabolite of the TCA cycle) indicating a switch from
anaerobic to aerobic glucose metabolism [52].

Under hypoxic conditions, parental OCCC cells (with high HNF-1p) showed significant
survival advantage, compared with HNF-1p-knockdown OCCC cells [52]. Overexpression
of HNF-1p is also shown to reduce reactive oxygen species and contribute to protection of
the cancer cells from the internal oxidative stress caused by the drastic changes in their
cellular metabolism [50]. Thus, HNF-1p may be pivotal for cancer cell survival due to anti-
stress effects, rather than increased proliferative potential. It is proposed that sustained high
expression of HNF-1 cells may be associated with chemo-resistance in OCCC (Fig. 2)
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[50]. This can potentially be overcome, if aerobic glucose metabolism can be induced, or if
HNF-1p-mediated anti-oxidative stress can be counteracted in these cancer cells.

3.6. Candidate molecular targets in OCCC

4.
4.1.

Based on the genetic and epigenetic alterations in OCCC, candidate molecular targets and
possible molecular-targeted drugs are listed in Table 1. The PI3K pathway inhibitors may be
considered for PIK3CA mutated (or PTEN mutated or PIK3R1 mutated) tumors, although
clinical application of PI3K inhibitors has thus far been limited [53]. Copanlisib is a highly
selective, pan-class | PI13K inhibitor, which preferentially inhibits p110a and p1108
isoforms, rather than the p110p and p110vy isoforms [54]. In 2017, copanlisib was approved
for relapsed follicular lymphoma, in patients who have received at least two prior systemic
therapies as a second FDA-approved PI3K Inhibitor [55]. As p110a is encoded by PIK3CA
itself, this inhibitor may be a candidate drug for //IK3CA mutant OCCCs. Indeed, one
endometrial cancer patient with coexistent mutations of P/IK3CA and PTEN showed
complete response to copanlisib [56].

We previously reported that a PI3K/mTOR dual inhibitor, DS-7423, showed anti-tumor
activity in OCCC cell lines [57]. Therefore, the PI3K pathway remains a promising
therapeutic target in OCCC. Inhibiting enhancer of zeste homolog 2 (EZH2)
methyltransferase activity was reported to induce epigenetically synthetic lethality in
ARID1A-mutated cancers by targeting of EZH2 methyltransferase activity in ARID1A-
mutated cancers [58]. PIK3IP1 was found to be up-regulated by EZH?2 inhibition as a direct
target of ARID1A and EZH2, and it contributed to lethality through inhibition of PI3K
signaling [58]. As several clinical trials with EZH2 inhibitors are ongoing for B-cell
Lymphomas, as well as solid tumors [59], OCCC may be a good candidate of EZH2
inhibitors (Fig. 2).

MDM2 is a ubiquitin ligase, which degrades wild-type TP53 via proteasome-mediated
ubiquitination [57]. We previously reported that the expression level of MDM2 in OCCC is
significantly higher than that in HGSOC by expression arrays [60]. In addition, a MDM2
inhibitor, RG7112, showed anti-tumor effect and induced apoptosis of OCCC cells via TP53
activation [60]. MDM2 is known to be phosphorylated and activated by AKT (PI3K)
signaling, and we showed that the PI3K pathway inhibition by DS-7423 dephosphorylated
MDM2 and induced TP53-mediated apoptosis in OCCC cells [57]. Taken together, TP53
activation via suppression of MDM2 may be a possible therapeutic strategy against OCCC
(Fig. 2), as clinical trials of MDMZ2 inhibitors are currently ongoing for solid tumors [61].
Immune checkpoint inhibitors are also promising in OCCC and are discussed in the
following section.

Immunological aspects of OCCC

Immunobiology of OCCC

Several reports demonstrate that activation of oncogenes (MYC, RAS, PI3K) or inactivation
of tumor suppressor genes (053, PTEN, STAT3) induces an immune-suppressive state in the
tumor microenvironment [62-66]. HNF-1p is preferentially activated in OCCC and has been
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reported to contribute to various malignant features including metastases, altered glucose
metabolism and immune suppression via production of IL-6 and IL-8 through activated
STAT-3 signaling as well as via NF-xB dependent pathways (Fig. 3) 67,68]. High levels of
IL-6, IL-8, and overexpression of NF-xB related signaling in both serum and cancer ascites
have been associated with a poor clinical outcome in ovarian cancer [67]. In all ovarian
cancer including OCCC [69], NF-xB signal can also induce programmed death ligand 1
(PD-L1 and B7-H1), an inhibitory costimulating B7 family molecule (see Section 4.5 for the
detail) (Fig. 3). These findings show that OCCC has a unique immune microenvironment,
and thus, immunotherapy may be an attractive strategy for its treatment.

Immune-related expression gene profile of OCCC

The gene expression profile signature of OCCC in a previous report identified up-regulation
of IL-6, STATS3 related genes, as well as other inflammatory cytokines and immune-related
genes which is suggestive of an immune-suppressive microenvironment [35]. Another report
of the OCCC gene expression profile demonstrated that effector memory CD8+ T cell
phenotype were overexpressed in tumors in stage I-11 OCCC, as were cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), PD-1, T cell immunoglobulin and mucin-
domain containing-3 (Tim-3), and lymphocyte-activation gene-3 (LAG3) genes [70]. At the
same time, expression of human leukocyte antigens (HLA) -A, -B, and -C were decreased.
These changes result in an immune-suppressive microenvironment which may serve as a
promising therapeutic target in OCCC.

4.3. Cancer antigen and application of cancer vaccine in OCCC

Several antigens have been identified in ovarian cancers which might allow for the
development of a cancer vaccine therapy; however OCCC has yet been to be included in this
spectrum. Glypican-3 (GPC3), a member of the glypican family of heparan sulfate
proteoglycansone, is a potentially useful carcinoembryonic antigen for cancer vaccine
immunotherapy and is overexpressed in both hepatocellular carcinoma and OCCC [71].
HLA-A24-restricted GPC3298-306 (EYILSLEEL) and HLAA2-restricted GPC3144-152
(FVGEFFTDV) peptides, are able to induce GPC3-reactive cytotoxic T cells without
inducing autoimmunity [72]. In a small study, OCCC patients were treated with a GPC3-
derived peptide vaccine, and the overall response rate was reported as 9.4% (2 partial
response [PR] and 1 stable disease [SD]) with the disease control rate 17.9% in 32 patients
[73].

4.4. Neoantigens in OCCC

With the success of immune checkpoint blockade therapy, increased attention has been paid
to neoantigens. Neoantigens are derived from tumor-specific mutations, and because they
are foreign to the host immune system, they can be potential targets for anti-tumor
immunotherapy. Recent data has shown that these neoantigens make up a large part of the
functional targets of immune checkpoint blockade therapy [74]. Very few reports are
currently available regarding immune-targeting of neoantigens in OCCC. Matsushita and his
colleagues assessed the neoantigen load, the depletion of expected antigenic mutations and
immune signatures in 74 cases of OCCC using data from exome sequencing and expression
arrays [70]. They found that the number of predicted neoantigens assessed in the tumor did
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not correlate with clinical outcomes, but the number of neoantigens per missense mutation
did correlate with clinical outcomes.

Those with a lower number of neoantigens per missense mutation showed better clinical
outcomes and demonstrated a phenotype consistent with T cell-mediated inflammation. This
suggests that the cellular immune response functioned to eliminate neoantigen expressing
subclones in tumors with a lower number of neoantigens per missense mutation. In contrast,
decreased HLA class | expression as well as increased ratios of PD-1, Tim-3 and LAG3
were observed in tumors with higher number of neoantigens per missense mutation and
worse clinical outcomes [70].

Immune checkpoint signals and DNA mismatch repair deficiency in OCCC

Although several immunological mechanisms contribute to immune suppression in the
tumor microenvironment, the immune checkpoint signal PD-1/PD-L1 plays a central role in
many cancer types [75,76]. The success of PD-1/PD-L1 inhibitors in various types of
malignancies (such as RCC) has led to the expectation that they will be useful
immunotherapy targets for gynecologic tumors including OCCC [77-80]. Some reports have
identified the expression of PD-1 or/and PD-L1 on tumor cells and tumor-infiltrating
lymphocytes (TILs) in OCCC and a correlation between these and clinical outcome [81,82].

Microsatellite instability (MSI) high tumors are associated with an enriched tumor mutation
burden and a highly immunogenic phenotype. These tumors, including colorectal and
endometrial cancer, which are also characterized as MSI high or mismatch repair deficient,
are highly responsive to anti-tumor checkpoint inhibitors [83]. Women with Lynch
syndrome, and a germline mutation of the mismatch repair genes (i.e. MLHI1, MSHZ,
MSH6, and PMSZ2), have an increased life-time risk of colorectal, endometrial and ovarian
cancer [84]. Lynch syndrome-associated ovarian cancer includes OCCC as well as EMOC
[85]. Therefore, Lynch syndrome should also be taken into consideration with OCCC
patients, especially with a Lynch syndromerelated family history. In a previous clinical
sample analysis, PD-L1 expression was found in 43% of OCCC tumors, including 67% of
OCCC with mismatch repair defects (Fig. 2) [86]. PD-L1 expression is common in
mismatch repair proficient tumors and there is no correlation between PD-L1 expression and
mismatch repair status in OCCC. Nevertheless, PD-L1 expression is prevalent in mismatch
repair-intact OCCC [86].

Finally, OCCC with MSI exhibited a high number of CD8+ TILs and higher PD-1
expressing TILs compared with microsatellite stable (MSS) OCCC. PD-L1 expression in
tumor cells or immune cells was also noted in all cases of OCCCs with MSI. MSI in specific
subsets of OCCC was associated with endometriosis and ARID1A/BAF250A loss [82].
These observations may indicate an alternative therapeutic option for a subpopulation of the
patients with OCCC.

4.6. Clinical response of immune checkpoint blockade for OCCC

In a recent phase I trial of pembrolizumab for recurrent ovarian cancer (KEYNOTE-100),
anti-PD-1 antibody pembrolizumab for recurrent ovarian cancer (>300 patients)
demonstrated that while the overall response rate of all cohorts was low (~8%), the response
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rate of clear cell histology was 15.8% [87]. Another phase |1 clinical trial of the anti-PD-1
antibody nivolumab for heavily-treated platinum-resistant recurrent ovarian cancer, included
10% with a complete response (CR) demonstrating a durable antitumor effect (2 out of 20)
[88,89]. One of these CR patients had OCCC histologic subtype and another was diagnosed
as having an OCCC-like phenotype following additional gene expression profile analysis of
the tumor. Further experiments revealed that these two CR patients exhibited MSS by
immunohistochemistry and wild-type ARID1A by exome sequencing (unpublished data).

In an anti-PD-1 antibody trial with pembrolizumab, an exceptional complete responder with
chemo-/radiation-resistant OCCC was reported, and genomic analysis revealed a PD-L1-
genetic rearrangement in the tumor sample [90]. In a phase | study of the anti-PD-L1
antibody avelumab in recurrent ovarian cancer, both patients with OCCC exhibited a PR
[91]. In a phase I study of the anti-PD-L1 antibody durvalumab in combination with the poly
(ADP-ribose) polymerase inhibitor olaparib for recurrent ovarian cancer, only one patient
with OCCC was enrolled and exhibited a PR [92]. While the sample size of OCCC in these
clinical trials was small and further verification is needed, anti-PD-1 or -PD-L1 antibodies
appear to be a powerful new therapeutic agent for patients with OCCC [93].

A phase 11/111 trial of nivolumab for recurrent ovarian cancer (NINJA trial,
JapicCTI-153004; target accrual, 7= 300) is ongoing, and this study may directly validate
the antitumor effect of anti-PD-1 therapy specific for OCCC in the near future [89].

5. Clinical trials in OCCC

5.1.

Non-immunotherapeutic approaches

Salient trials related to OCCC are outlined in Table 2. Not surprisingly, OCCC-focused
clinical trials have thus far been very limited. A randomized phase Il study, which
compared the efficacy and safety of irinotecan plus cisplatin to standard paclitaxel plus
carboplatin in patients with stage I-1V OCCC, was conducted by JGOG as an international
inter-group trial (JGOG-3017), and the combination chemotherapy regimen with irinotecan
and cisplatin did not show superiority to standard regimen with paclitaxel and carboplatin in
those patients [94].

The mTOR-AKT pathway in OCCC is a candidate for therapeutic targeting, and Farley et
al., reported the results of phase Il study (GOG-268) in the 2016 ASCO meeting [95]. This
study evaluated temsirolimus in combination with carboplatin and paclitaxel followed by
temsirolimus consolidation as the first-line therapy in the treatment of stage 111-1vV OCCC.
Nearly half (54%) of those with optimal debulking had a progression-free survival (PFS)
longer than 12 months, however, this was not statistically significantly increased as
compared to historical controls [95].

Multiple targeted tyrosine kinase inhibitors (TKI) have also been tested in OCCC.
GOG-254, was a phase Il trial of SU11248 (sunitinib), an oral multi-targeted tyrosine kinase
inhibitor. This agent was studied for its efficacy and tolerability in persistent or recurrent
OCCC (NCT00979992). The results were published recently and showed that the median
PFS and overall survival (OS) was 2.7 and 12.8 months, respectively [96]. Sunitinib
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demonstrated minimal activity in those patients. Another TKI, BIBF1120 (nintedanib) is
currently being tested in patients with relapsed OCCC (NCT02866370).

Cabozantinib, a MET, VRGFR2 and RET TKI, was also evaluated recently in patients with
recurrent OCCC (NRG-GY001). No objective responses were observed. The median PFS
and OS were 3.6 and 8.1 months, respectively. Cabozantinib showed minimal clinical
activity in those patients [97]. ENMD-2076, an oral active kinase inhibitor, targeting the
mitotic kinase Aurora A, VEGFRs, and FGFRs, was investigated in recurrent OCCC
(NCT01914510). Somatic mutations in ARID1A, a key component of the SWI/SNF
chromatin remodeling complex, may result in up-regulation and overexpression of Aurora
A. Lheureux et al. presented the efficacy of ENMD-2076 at the 2017 ASCO meeting which
showed that the median PFS was 3.7 months, and 6-months PFS rate was 20% for the
evaluable patients (31% in ARID1A loss and 12% in ARID1A positive patients) [98].

T cell immunoglobulin mucin-1 (TIM-1) expression is up-regulated in several human
cancers, most notably in RCC and OCCC but has minimum expression in normal tissues. A
dose escalation trial of an antibody-drug conjugate, CDX-014 that targets TIM-1 and is
linked to a potent cytotoxic, monomethyl auristatin E (NCT02837991), is currently under
investigation in patients with advanced or metastatic RCC and OCCC.

Immunotherapeutic approaches

In a recent list of clinical trials for ovarian cancers including OCCC, over 50 are related to
immunotherapies including immune checkpoint inhibitors, immune-modulating drugs, and T
cell-engineered therapies either as a single agent or in combination with a traditional
chemotherapeutic or a different immunotherapy. OCCC-specific clinical trials with
immunotherapies are also listed in Table 2, including durvalumab (NCT03405454), a
combination treatment of nivolumab and the anti-CTLA4 antibody ipilimumab
(NCT03355976). Further studies characterizing the immunological, molecular, and genetic
make-up of OCCC holds promise to open the door for more personalized treatment using
specifically targeted immunotherapies.

6. Conclusion

OCCC is a distinct type of tumor from other histologic types of EOC. The compiled
information regarding genetic/epigenetic disorders, expression profiling, glycolytic
modification, and identified alterations in the immune-related response may shed light on
the novel therapeutic options in OCCC. It may be categorized as one of rare tumors with an
ethnicity-related distribution, however, candidate molecular targets generally overlap with
various types of tumors from other organs (especially with RCC). This should allow for the
testing of diverse molecular-targeted drugs in basket clinical trials. Additionally, clinical
sequencing in OCCC may identify various types of actionable mutations and prove helpful
in the development of precision medicine against ovarian cancer.
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HIGHLIGHTS

. OCCC is distinct from other ovarian cancers in its genetic, epigenetic,
metabolomic and immunologic profile.

. Epigenetic/metabolomic modifications contribute to cell survival against
oxidative stress.

. A unique immune microenvironment causes immune-suppressive state in
OCcCC.
. Genetic, epigenetic, metabolomic and immunologic differences of OCCC can

be used to design treatments specific to OCCC
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Fig. 1.

Pr%posed schema for oncogenesis of OCCC related to endometriosis. Various types of
CCCC-specific microenvironment and genetic/epigenetic alterations may contribute to
oncogenesis from the originated atypical cells (endometrium and/or possible endometriotic
cells) to OCCC Exposure to the specific OCCC-related microenvironment such as oxidative
stress, inflammation, glycolysis, and immune-suppressive state, possibly occurs before the
malignant transformation. Genetic mutations may appear even in endometriotic cysts. The
resultant gene disorders (induced by oncogenic activation of the PI3K, chromatin
remodeling dysregulation, neoantigens, and etc.) and copy number variations (CNVs) may
accelerate the cells to proceed to the malignant (invasive) state.
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Fig. 2.
Candidate molecular targets and key pathways on basis of genomic characterization in

OCCC. Frequently mutated genes (marked in red), frequently amplified genes (marked in
green), and frequently up-regulated genes (marked in blue) cooperate to promote a unique
cell survival advantage in OCCC. Genomic and/or immunologic-based candidate molecular
targeted drugs are listed, which have been already approved or under clinical trials for other
cancer types.
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Fig. 3.
Immunobiology and target in OCCC. NF-xB and STAT3 induce immunosuppressive

cytokine IL-6 and IL-8. NF-xB also induces PD-L1 on tumor cells. DNA mismatch repair
deficient state increases the number of tumor mutation burden and neoantigen, and then

dendritic cells and T cells recognize neoantigen and attack cancer cells. Activated immune

cells produce IFN-y and express PD-1, and then tumor cells express PD-L1 via IFN-y/

STAT1 signal. *DC, dendritic cell; MMR, DNA mismatch repair deficient; IFN-y, interferon

gamma; and IFN-»R, interferon gamma receptor. Y-shape figure indicates antibody.
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