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Artificial intelligence accuracy in detecting
pathological breath sounds in children
using digital stethoscopes
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Abstract

Background: Manual auscultation to detect abnormal breath sounds has poor inter-observer reliability. Digital
stethoscopes with artificial intelligence (AI) could improve reliable detection of these sounds. We aimed to
independently test the abilities of AI developed for this purpose.

Methods: One hundred and ninety two auscultation recordings collected from children using two different digital
stethoscopes (Clinicloud™ and Littman™) were each tagged as containing wheezes, crackles or neither by a
pediatric respiratory physician, based on audio playback and careful spectrogram and waveform analysis, with a
subset validated by a blinded second clinician. These recordings were submitted for analysis by a blinded AI
algorithm (StethoMe AI) specifically trained to detect pathologic pediatric breath sounds.

Results: With optimized AI detection thresholds, crackle detection positive percent agreement (PPA) was 0.95 and
negative percent agreement (NPA) was 0.99 for Clinicloud recordings; for Littman-collected sounds PPA was 0.82
and NPA was 0.96. Wheeze detection PPA and NPA were 0.90 and 0.97 respectively (Clinicloud auscultation), with
PPA 0.80 and NPA 0.95 for Littman recordings.

Conclusions: AI can detect crackles and wheeze with a reasonably high degree of accuracy from breath sounds
obtained from different digital stethoscope devices, although some device-dependent differences do exist.

Keywords: Artificial intelligence, Auscultation, Child, Respiratory sounds, Stethoscopes

Background
Accurately detecting abnormal breath sounds is vital in
clinical pediatric medicine, as the nature and presence of
pathological sounds guides diagnosis and initial treat-
ment of common respiratory conditions. However, use
of a standard binaural stethoscope by human practi-
tioners to detect abnormal chest sounds introduces as-
sessment subjectivity and research has shown that
significant inter-listener variability exists [1–3]. This
calls into question the accuracy of diagnoses made on

the basis of human auscultation. Treatment decisions in-
formed by the diagnosis made may therefore be mis-
guided, leading to unnecessary side effects and delay in
provision of effective treatment.
In recent years, stethoscopes capable of digitally re-

cording breath sounds have become more widely avail-
able, offering the ability to capture breath sounds with
superior sound quality and fidelity [4]. However, human
interpretation of the digital recordings can still exhibit
significant inter-listener variability [5]. As the soundwave
properties of pathologic breath sounds such as crackles,
wheezes and rhonchi have been well-studied and previ-
ously defined, computer algorithms and programs to
automatically detect them have been developed [6, 7].
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Increasingly, artificial intelligence (AI) algorithms have
been applied in medicine, and because they have the cap-
ability of self-improvement as they learn from new data
and cases, they can evolve to outperform traditional signal
processing techniques [8, 9]. AI programs based upon
neural network programming have been used to identify
melanomas from photographs of skin and suspicious soft
tissue / calcified lesions on routine mammograms with an
accuracy greater than most dermatologists and radiolo-
gists respectively, who were interpreting those images for
performance comparison [10, 11]. Similarly, an AI algo-
rithm designed to detect abnormal pediatric breath
sounds based upon several thousand patient recordings
collected using a digital stethoscope (DS) was reported to
outperform pediatricians, especially in coarse crackle de-
tection [12]. However, the study, which was primarily con-
ducted by developers of the technology, utilized breath

sounds collected using only the StethoMe DS. Therefore,
we aimed to establish the performance of the AI algorithm
in detecting pathological pediatric breath sounds collected
using other DS devices, to evaluate the algorithm’s
generalizability. We used blinding techniques and real-
world recordings to maximize the validity and applicability
of our study.

Methods
We obtained breath sound recordings from a sample of
twenty-five pediatric patients from four groups (Fig. 1)
at Monash Children’s Hospital, a tertiary institution in
Melbourne, Australia. Eligible patients and carers were
sequentially approached during times in which the
study’s data collector was available. Written informed
consent and human research ethics committee approval
(reference number 15327 L) was obtained. We excluded

Fig. 1 Participant recruitment and recording analysis flowchart
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those receiving oxygen or positive pressure ventilation.
Participants were grouped by auscultation findings de-
termined by their attending senior pediatric doctor using
a standard binaural stethoscope: group 1, normal breath
sounds (n = 9); group 2, wheeze only (n = 5); group 3,
crackles with or without wheeze (n = 5) and group 4,
cystic fibrosis (CF) clinic attendees with a clear chest ac-
cording to their respiratory physician (n = 6).
Recordings were obtained in the clinical setting, with

the child’s upper body clothing removed. Immediately
after standard auscultation, a twenty-second recording
from each quadrant of the posterior thorax was taken,
using a Clinicloud™ DS and a Littman™ 3200 Electronic
Stethoscope. Recordings were downloaded onto a com-
puter and processed with normalization and bandpass
filtering (high-pass 6th order Butterworth filter at 100
Hz plus low-pass 4th order Butterworth filter at 1000
Hz) to minimize heartbeat and extraneous sound intru-
sion. Four recordings obtained by each DS were ex-
cluded due to aberrant recording, occurring due to
inadequate chest wall contact made with the stethoscope
head at the time of the recording and/or cable connec-
tion failure. Using combined spectrographic, sound wave
and audio playback analysis by a pediatric respiratory
physician as previously described [13], recordings were
carefully checked and tagged for the presence or absence
of crackles and wheezes/rhonchi. As characteristic audi-
ologic morphologies of crackles and wheezes/rhonchi
have been previously elucidated, we used the following
cited established descriptions to define and identify
crackles and wheezes/rhonchi in the DS recordings on
an a priori basis: crackles – a short initial soundwave de-
flection from a baseline followed by a longer, dampening
sinusoidal wave with < 20 msec two-cycle duration and <
25msec total duration width [14], and wheeze/rhonchi -
a rapid periodic sinusoidal waveform of total length > 25
msec with a dominant frequency > 100 Hz [6]. To verify
accuracy of tagging, recordings from 20% of participants
were analyzed by a blinded second clinician in the same
fashion.
Untagged versions of the recordings in wavefile (.wav)

format devoid of participant information were analyzed
using StethoMe AI, a neural network based AI algorithm
that provided numerical scores for each recording, with
a separate score each for crackles and wheeze/rhonchi.
Each generated score, known as the probability raster,
represented the likelihood of presence of crackles or
wheeze/rhonchi detected by the automated system. The
neural network AI was trained and validated on a set of
> 10,000 real (not synthetically-generated) recordings
that did not include the recordings collected in this
study. Details of the specialized neural network and its
probability raster output have been previously described
[12]. Persons handling the AI and the AI itself were

blinded to tagged recordings as they were sent only un-
tagged versions, and no further recording exclusion due
to the AI algorithm perceiving poor audio quality (or for
any other reason) was permitted.
Neural network based pathological breath sound de-

tection was compared with tagged outcomes on a per-
recording basis. Positive percent agreement (PPA), true
positive rate (TPR) and negative percent agreement
(NPA) values were generated for different threshold cut-
offs applied to the numerical probability raster scores,
with a receiver operating characteristic (ROC) curve
used to identify optimal cutoffs that represented best
neural network performance. Due consideration was
given to achieving a balance between PPA, which is
similar to sensitivity, and NPA, which is similar to
specificity. This analysis was performed for each
pathological breath sound type (wheeze/rhonchi, and
crackles). Analysis was conducted for each DS type
(Clinicloud, Littman) separately.

Results
We studied 192 recordings from 25 children with a me-
dian age of 6.7 years and median weight of 22.2 kg
(Table 1). The Cohen’s kappa assessing inter-rater agree-
ment for scoring/tagging of the subset of recordings ana-
lyzed by the blinded second clinician was 1.0. Per
recording, the AI algorithm was able to deliver two
probability raster scores (one for crackles and one for
wheeze/rhonchi) for 100% of submitted recordings.
Scores ranged from 0.00 (AI suggesting absence of the
pathologic breath sound) to 0.88 (AI suggesting very
high probability of present pathologic breath sound).
Using a probability raster cutoff of > 0.00 to maximize
sensitivity in detecting abnormal breath sounds resulted
in a TPR of 0.95 (PPA 0.86, NPA 0.99) for crackles from
Clinicloud recordings and a TPR of 0.75 (PPA 0.6, NPA
0.96) for crackles from Littman recordings. For wheeze
detection using the same cutoff, TPR was 0.93 (PPA
0.90, NPA 0.97) for Clinicloud recordings and 0.8 (PPA
0.76, NPA 0.95) for Littman recordings.

Table 1 Patient Characteristics

Demographics N (% or interquartile range)

Female 7 (28)

Age, median (years) 6.7 (3.4)

Weight, median (kilograms) 22.2 (11.4)

Patient Groups

Patients with cystic fibrosis (CF) 6 (24)

Normal breath sounds, without CF 9 (36)

Wheeze onlya 5 (20)

Crackles ± wheezea 5 (20)
apatients in these groups were diagnosed with lower respiratory tract
infection, asthma or preschool wheeze
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Ideal probability raster cutoffs (i.e. score above which
recordings are considered positive for the presence of
crackles or wheeze/rhonchi) were determined by con-
struction of ROC curves (Figs. 2, 3, 4 and 5). For
Clinicloud-based crackle detection, an optimized cutoff
score of anywhere between 0.029 and 0.037 yielded a
PPA of 0.95 (NPA 0.99), whereas for Littman-based
crackle identification, using any cutoff from 0.024 to
0.03 resulted in a PPA of 0.82 (NPA 0.96). For wheeze
detection, utilizing a probability raster cutoff score be-
tween 0.001 and 0.005 returned a PPA of 0.90 (NPA
0.97) for Clinicloud recordings, whereas for wheeze
identification from Littman recordings, an optimized
cutoff score of between 0.004 and 0.006 had a PPA of
0.80 (NPA 0.95).

Discussion
Our independent, blinded validation of an existing AI
using recordings from foreign DS devices shows the
technology has the ability to detect abnormal pediatric

breath sounds with a promising level of accuracy similar
to or better than its performance when tested on record-
ings from the DS it was originally trained with [12]. This
demonstrates generalizability of the AI solution.
As there is no suitable ‘gold standard’ benchmark for

identifying the presence or absence abnormal breath
sounds, we used careful audio and spectrogram analysis
of real-world, in-hospital recordings to determine this,
with validation by a second blinded clinician who ap-
plied the same strict labelling criteria demonstrating ex-
cellent interrater agreement. Although human expert
labelling may introduce potential bias, previous multi-
center research has shown that this approach is a
method suitable for research of lung sounds [5]. Never-
theless, due to the absence of a true gold standard, we
report our results using PPA and NPA, rather than the
more familiar terms sensitivity and specificity.
Our study has some limitations. Firstly, our pediatric

test data was collected using only two different DS de-
vices, whereas several more are now available [4]. We

Fig. 2 Receiver Operating Characteristic (ROC) Curve: AI performance in detecting. Clinicloud-recorded wheeze

Fig. 3 Receiver Operating Characteristic (ROC) Curve: AI performance in detecting. Clinicloud-recorded crackles
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chose these two devices due to either their popularity or
local availability. Although optimal algorithmic threshold
cutoffs to maximize AI accuracy were similar and over-
lapping for the two devices tested, it is unclear if subtle
device-dependent differences regarding the optimal AI
cutoff settings exist. Furthermore, the AI performed bet-
ter using recordings from one DS compared to the
other. We speculate this to be due to differences in
the audio quality of the recordings outputted by each
DS; the Littman Electronic Stethoscope outputted files
with a sample rate of 4000 Hz (16-bit) whereas the
Clinicloud DS did so at 44,100 Hz (32-bit), producing
a noticeable resolution difference when viewed spec-
trographically [13].
Secondly, the size of our recording set, whilst suitable

for the purpose of initial independent testing of the AI,
was not large enough to test the neural network’s ability
to improve further with additional training. Finally, we
were not able to directly compare the performance of
the AI algorithm against the judgement of treating
pediatric clinicians, as clinician opinion on the presence

or absence of abnormal breath sounds per recording
area / quadrant auscultated was not obtained. We do
note however that when this has previously been per-
formed, the neural network classification often more
closely matched the established standard than clinician
judgement [15].

Conclusion
In recent years, AI algorithms have been developed that
perform as well or better than expert humans across a
range of specific tasks both within and outside of clinical
respiratory medicine [9]. As the integration of AI into
medical care gains momentum, independent validation
of AI capabilities and weaknesses is important to under-
take in order to ensure quality control [16]. Because
there are significant ethical, legal and social implications
inherently tied to the way in which medical decisions are
made, we have a duty to ensure that making changes to
this process, for example by incorporating machine
judgement, is indeed a beneficial step [8].

Fig. 4 Receiver Operating Characteristic (ROC) Curve: AI performance in detecting. Littman-recorded wheeze

Fig. 5 Receiver Operating Characteristic (ROC) Curve: AI performance in detecting. Littman-recorded crackles
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Our study independently validated the performance
and generalizability of an AI algorithm (StethoMe AI)
for the detection of pathological breath sounds in DS re-
cordings obtained from a population of children with
and without respiratory illness. We demonstrated the
neural network could identify pediatric breath sounds
with similar capability across multiple DS devices, al-
though some device-dependent differences do exist. Ac-
curacy of the AI solution is promising and is at least
similar to that of many clinicians routinely assessing and
guiding medical decisions for these children in current
clinical practice. Future efforts should focus upon im-
proving diagnostic accuracy, developing algorithm ele-
ments that can reliably track and predict patient
improvement and/or deterioration over time, and safely
assessing potential impacts of AI use in real-world clin-
ical environments.
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