
Earth observations and integrative models in support of food 
and water security

Stephanie Schollaert Uz1,*, Alex C. Ruane2, Bryan N. Duncan1, Compton J. Tucker1, George 
J. Huffman1, Iliana E. Mladenova1,3, Batu Osmanoglu1, Thomas R.H. Holmes1, Amy 
McNally1,3, Christa Peters-Lidard1, John D. Bolten1, Narendra Das4, Matthew Rodell1, Sean 
McCartney1,5, Martha C. Anderson6, Brad Doorn7

1NASA Goddard Space Flight Center, Greenbelt, MD, USA

2NASA Goddard Institute for Space Studies, Climate Impacts Group, New York, NY, USA

3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

4NASA Jet Propulsion Laboratory, Pasadena, CA, USA

5Science Systems and Applications, Inc., Lanham, MD, USA

6USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA

7NASA Headquarters, Washington, DC, USA

Abstract

Global food production depends upon many factors that Earth observing satellites routinely 

measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-

available satellite data products can improve efficiencies in resource management and provide 

earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-

term record that can be used effectively to detect large-scale features over time, such as a 

developing drought. Accuracy and capabilities have increased along with the range of Earth 

observations and derived products that can support food security decisions with actionable 

information. This paper highlights major capabilities facilitated by satellite observations and 

physical models that have been developed and validated using remotely-sensed observations. 

Although we primarily focus on variables relevant to agriculture, we also include a brief 

description of the growing use of Earth observations in support of aquaculture and fisheries.
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Introduction

For decades, the United States (US) National Aeronautics and Space Administration 

(NASA) has worked in partnership with agencies such as the US Department of Agriculture 
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(USDA), the US Agency for International Development (USAID) and the National 

Oceanographic and Atmospheric Administration (NOAA), as well as international 

organizations and private industry to support and advance the use of remotely-sensed data 

for more informed decision-making and societal benefit. A changing profile of extreme 

weather hazards and societal exposure increasingly require the large-scale view afforded by 

a fleet of satellites observing Earth as a system, particularly when set against a backdrop of 

challenges that include a growing world population, rapid socioeconomic development, and 

the need to sustainably manage finite natural resources. For example, the United Nations 

estimates that the world’s population will increase by 2.2 billion by 2050, with most of that 

growth occurring in tropical and subtropical areas, especially Africa.

Despite substantial progress over the last few decades, world hunger has been rising since 

2014, and the combined threats of conflict, population growth, limited arable land, and 

climate variability and change will exacerbate this situation (FAO et al., 2018). For example, 

seafood is an important source of protein for a significant number of people. Wild catches 

cannot match increasing demand and, in fact, their sustainability is in question. Therefore, 

aquaculture is an ever more important complement to agriculture to feed the human 

population. At the same time, however, the increased use of fertilizer for agriculture has led 

to increased runoff of nitrogen and phosphorus causing the eutrophication of water bodies, 

threatening aquatic ecosystems. Aside from production, lack of access to nutritious food 

choices or clean water and sanitation can exacerbate food insecurity and lead to 

malnutrition. Clearly, monitoring food production and distribution systems, in addition to 

water quantity and quality in support of food security, requires a global perspective.

Earth observing satellites provide the unique ability to simultaneously monitor these and 

other interrelated systems. Advances in our ability to measure multiple variables, combined 

with integrative models that help us understand the connections between these systems, 

provide a unique opportunity to support food security assessments. For example, ongoing 

international efforts on crop monitoring by the Group on Earth Observations Global 

Agricultural Monitoring (GEOGLAM) and others integrate remote sensing data into global 

and regional crop production projections, as detailed elsewhere (i.e. Becker-Reshef et al., 

2010, McNally et al., in review). Toward the objective of highlighting satellite data products 

that may be applied in support of smarter agriculture or aquaculture, we review the current 

status of several remotely-sensed observables: variables related to vegetation, land 

degradation, water quantity, water quality, and air quality, as well as data assimilation and 

modeling efforts that combine observations with hydrodynamic, geophysical, and sometimes 

socioeconomic models to yield a more complete picture. This review is intended to inform 

the larger science community, resource managers, and policy-makers from those unfamiliar 

with satellite data to those already using some but perhaps not the full suite of the 

observables presented here.

Observable: primary production

Estimates of gross primary production (GPP) provide valuable information on the spatial 

distribution and temporal variability of primary production, which in an agricultural setting, 

determines crop yields and fodder production for animals. Agricultural food security 
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requires measured or modeled agricultural GPP to determine important crop and fodder 

production for areas of interest. Observations and models are both used to support food 

security solutions.

The normalized difference vegetation index (NDVI) is the ratio of the difference in surface 

reflectances measured in the red and near-infrared spectral bands and their sum (Tucker, 

1979). NDVI distinguishes vegetated areas from other surface types (Figures 1,2), but is not 

necessarily linked to GPP.

There are several techniques that use satellite observations to determine primary production, 

and here we describe just a few. For example, one technique involves extrapolating net 

carbon exchange from eddy-covariance flux tower observations using satellite measured 

absorbed photosynthetically active radiation at the 1 km scale (Beer et al., 2010; Jung et al., 

2011); a second technique uses MODIS satellite observations in conjunction with a light-use 

efficiency model to produce GPP estimates at the 1 km scale (Zhao and Running, 2010); a 

third technique uses satellite observations directly to determine both GPP and agricultural 

production at the native 250 m resolution of MODIS using spectral vegetation indices 

through the growing season (USDA, 2018) (Figure 1); and a fourth technique uses 

chlorophyll fluorescence from the GOME-2 satellite to estimate agricultural production in 

combination with optical, thermal, and microwave satellite data (Guan et al., 2017).

An advantage of these four approaches is that the satellite observations also provide realistic 

surface conditions of vegetation photosynthetic capacity, phenology, disturbances, recovery, 

and human management. A limitation of the chlorophyll fluorescence approach is the spatial 

resolution of these data is <1 km, while MODIS is now producing 250 m spectral vegetation 

indices data, and sustained land imaging is now producing 30 m spectral vegetation indices 

data (Li and Roy 2017).

Agricultural production estimates must be restricted to crop-specific areas to avoid 

confusion from other crops, natural vegetation, and areas of no vegetation. This translates 

into being able to follow specific crops through time with continued observations (Figure 2). 

This capability is available from space, now at greater accuracy and lower latency, with 

sustained land imaging and multi-spectral 30 m data from Landsat-8, Sentinel-2a and 

Sentinel-2b. The Harmonized Landsat and Sentinel-2 (HLS) project is now producing 30 m 

time series multi-spectral observations with an equatorial revisit frequency of 3.7 days at the 

equator (Li and Roy 2017). Landsat-9 is planned for launch at the end of 2020 to join the 

sustained land imaging instrument suite, at which point the equatorial revisit frequency will 

drop to 3 days. It is highly likely that a combination of chlorophyll fluorescence and 250 and 

30 m multi-spectral satellite data will be developed in the near future to predict global 

agricultural crop and fodder production.

Observable: land degradation

Land degradation has been highlighted as a key development challenge by numerous 

international bodies, including the United Nations Convention to Combat Desertification, 

the Convention on Biological Diversity, the United Nations Framework Convention on 
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Climate Change, and the Sustainable Development Goals. These conventions seek to avoid, 

reduce, and reverse land degradation, especially desertification and deforestation, by 

supporting better practices. Sustainable land management seeks to maintain vegetative cover, 

build soil organic matter, make efficient use of inputs, such as water, nutrients and 

pesticides, and minimize off-site impacts (Bierbaum et al. 2014).

Three indicators have been identified as metrics for quantifying land degradation that are 

also geophysical variables measured by Earth-orbiting satellites: land cover, carbon stocks, 

and land productivity or gross primary production. A review of these three land degradation 

indicators led Tucker and Pinzon (2017) to focus on land productivity or gross primary 

production during a pilot study in four countries: Senegal, Uganda, Kenya, and Tanzania. 

NDVI from several satellite data sources at spatial scales ranging from 30 m to 8 km, was 

evaluated and found to be well-suited for identifying degrading areas.

Time integrals of spectral vegetation indices were compared to time integrals of GOME-2 

chlorophyll fluorescence from Joiner et al. (2011) and found to be linearly and very highly 

correlated for twenty-two test areas. This confirmed the validity of using NDVI as a direct 

measurement of gross primary productivity. Growing season integrals of NDVI were 

regressed against growing season integrals of soil moisture over the AVHRR, SeaWiFS, and 

MODIS records for Kenya, Senegal, Tanzania, and Uganda. Consistent negative residuals 

were identified as areas of land degradation following the method of Ibrahim et al. (2017). 

Aggregations of pixels with negative residuals were studied with Landsat 30 m and 50 cm 

commercial satellite data for all four countries, to confirm or refute the occurrence of land 

degradation and to identify its cause (Tucker and Pinzon 2017).

Observable: precipitation

The rain and snow that fall on the Earth’s surface provide the water upon which agriculture 

depends, whether directly or in replenishing stores as snowpack, lakes, reservoirs, and 

ground water that are later used. The occurrence of precipitation is governed at large scales 

by atmospheric constraints on moisture convergence and vertical motions, but how it 

actually gets released at the small scales displays a great deal of variability right down to the 

microphysical processes that govern conversions among vapor, liquid, and ice phases. 

Because precipitation events are so strongly driven by these small-scale processes, and the 

fact that much of the time there is no precipitation, the resulting statistics are far from 

Gaussian, highly skewed, and multi-scaled, rendering the analysis of precipitation 

challenging.

A relatively long history of precipitation data is available from surface gauges, which 

provide point measurements as a function of time. Because they provide actual 

measurements of precipitation, gauges are considered the standard, even with significant 

limitations. This includes the lack of correlation with surrounding areas on short time scales, 

which makes point-to-area analyses challenging. The typical under-reporting of amounts is 

due to both wind effects reducing the effectiveness to capture precipitation and the inability 

of some gauge technologies to correctly record snowfall. The problem of representativeness 

is exacerbated by a lack of sufficiently dense gauge networks over most of the globe.
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A second approach to developing precipitation records is to use surface-based radar 

measurements from which the precipitation amount must be estimated. These estimates can 

be locally useful in the U.S. and western Europe, but systematic coverage elsewhere is 

lacking.

The third approach to obtaining global precipitation information is to use satellite sensors. 

Over the past couple of decades this has become the dominant approach for many 

applications due to the quasi-global coverage by satellites, an acceptably fine time/space 

scale of results, and relatively short latencies. One important advantage for satellites is that 

they typically provide precipitation estimates over both land and ocean, versus the land 

siting for most gauges and land/coastal coverage for radars. At present, passive microwave 

sensors flying on a virtual (because uncoordinated) constellation of low-Earth orbit satellites 

provides observations every three hours or less about 90% of the time, with footprint sizes 

on the order of 10-20 km. The resulting data are processed into precipitation estimates for 

the individual sensors and then combined into multi-satellite products that are typically 

useful for agricultural applications. Estimates of precipitation that use infrared sensor data 

from geosynchronous orbit satellites are considered less accurate than microwave-based 

data. However, they are typically available for the entire latitude belt 60°N-S every half hour, 

so they can be used in combination with the microwave or as stand-alone products. Some 

products are created within about four hours after observation time, but longer latencies of 

12-24 hours in other products are usually satisfactory and allow more-complete estimates to 

be assembled.

Many satellite-based algorithms have been developed over the years and a number are 

routinely used to create publicly available datasets. The International Precipitation Working 

Group (IPWG) maintains a listing of freely available, quasi-global, long-term datasets at 

http://www.isac.cnr.it/~ipwg/data/datasets.html. For most users, the multi-satellite datasets 

with and without explicit use of surface gauge data are the most relevant. It is somewhat 

challenging for new users to determine the fitness of use for the various datasets for their 

particular application; see “How Do I Choose a Data Set?” for pointers. In general, data will 

be more accurate when time/space-averaged; are most representative of typical behavior, as 

opposed to extremes; and show reduced skill in mountainous regions and cold seasons.

Taking the NASA Global Precipitation Measurement (GPM) project’s Integrated Multi-

satellitE Retrievals for GPM (IMERG) datasets as examples, there are three latencies 

available: 4 hours, 12 hours, and 3.5 months (Early, Late, and Final, respectively), each on a 

0.1°x0.1° latitude/longitude grid every half hour. Longer latencies use more data and should 

therefore be more accurate. The page https://pmm.nasa.gov/data-access/downloads/gpm 

provides several format options and hot links to documentation. Currently, Version 05 covers 

the period March 2014 to the present, but Version 06 (planned for early 2019) will extend 

back to June 2000. All three IMERG products are provided for the entire period of record so 

that products such as crop yield models can be assured of a relatively homogeneous data 

record for developing calibrations.
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Observable: terrestrial water storage

Food cannot be grown on land without freshwater, so monitoring and understanding how 

freshwater storage is distributed across the land and how it changes over time is essential to 

assessing food security. A portion of the water that precipitates onto the land surface is 

stored as surface water, snow, ice, soil moisture, or groundwater. The sum of these is known 

as terrestrial water storage (TWS). The importance of TWS is obvious, but it is difficult to 

monitor at regional to global scales using ground-based networks because installation of 

automated observing systems for all of the components is expensive and labor intensive, and 

because most countries do not share the data that they do collect (Famiglietti et al., 2015).

The NASA/German Gravity Recovery and Climate Experiment (GRACE) mission and its 

successor, the GRACE Follow On Mission, measure temporal changes in Earth’s gravity 

field that can be interpreted to determine variations in TWS (Tapley et al., 2004). The 

GRACE and GRACE Follow On based TWS data have significantly lower spatial (~150,000 

km2 at mid-latitudes) and temporal (~monthly) resolutions than other Earth observing 

satellite measurements, and they provide only the departures from the period-mean TWS 

state (known as TWS anomalies) as opposed to estimates of the total amount of water stored 

in each TWS component. Nevertheless, because satellite gravimetry is the only remote 

sensing technology able to detect changes in the storage of water below the first few 

centimeters of the soil column, including groundwater, GRACE proved to be enormously 

valuable for hydrological science and related applications. GRACE launched in 2002 and 

delivered 15 years of TWS data before the mission ended in 2017. GRACE Follow On, 

which launched on 22 May 2018, is expected to extend the TWS data record for at least 

another five years.

Among many scientific discoveries enabled by GRACE, it was used to quantify groundwater 

depletion in several major food producing regions around the world. In particular, Rodell et 

al. (2009) and Tiwari et al. (2009) documented shocking rates of groundwater decline in 

northern India caused primarily by extensive and intense agricultural irrigation supported by 

aquifers where groundwater recharge cannot keep up with extractions. Considering that 

hundreds of millions of people live there and depend on these crops, the situation is dire. 

Subsequent studies applied GRACE data to quantify groundwater losses associated with 

irrigated agriculture in California’s Central Valley (Famiglietti et al., 2011), the Middle East 

(Voss et al., 2013), Saudi Arabia (Sultan et al., 2014), the North China Plain (Feng et al., 

2013), and other regions. Richey et al. (2015) and Rodell et al. (2018) provide global 

overviews, and the latter also discusses the combined effects of natural interannual 

variability, climate change, and human water management and consumption on TWS.

To overcome the challenges of low spatial and temporal resolution and data latency (which 

was typically 2-5 months with GRACE but is expected to be significantly reduced with 

GRACE Follow On), Zaitchik et al. (2008) introduced a data assimilation approach for 

integrating data from GRACE and other, timelier and higher resolution observations in order 

to produce fields of groundwater, soil moisture, and snow water equivalent in near-real time. 

Since 2011 variants of that approach have been applied to deliver wetness/drought indicator 

fields for the contiguous U.S. (Figure 4) that are disseminated by the National Drought 
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Mitigation Center, used by farmers, ranchers, other agricultural interests, public agencies, 

and private consultants, among others (Houborg et al., 2012). Global, GRACE data 

assimilation-based wetness/drought indicators have recently been developed as well, which 

will help to satisfy the need for timely freshwater availability data worldwide (Li et al., 

2018).

Observable: snow water equivalent

Worldwide more than 1.2 billion people rely on seasonal water runoff coming from snow 

pack and glaciers (Barnett et al., 2005). The Indus Basin in Asia is the largest irrigation 

system in the world; its snow melt is essential for the rice production in the basin and 

estimated to have contributed about 13 km3 to agricultural irrigation in 2008 (~1/3 of the 

Hoover Dam) (Grogan personal communication, Grogan et al., 2016). Since 1967, one 

million square miles of spring snow cover has disappeared from the northern hemisphere, an 

area roughly the size of Argentina (Brown and Robinson, 2011). This change in the global 

snow cover has a significant impact on food production. Reduced seasonal runoff cause 

increased reliance on ground water across the world for sustained agricultural production, 

leading to land subsidence in some parts of the world (Mankin et al., 2015).

NASA sensors like Advanced Microwave Scanning Radiometer-2 (AMSR2) and the 

Airborne Snow Observatory (ASO) can measure snow water equivalent (SWE) remotely. 

AMSR2 provides 99% coverage of Earth every 2 days, providing a SWE retrieval at 25km 

global resolution with about 80% accuracy over flat areas covered in dry snow. Also, ASO 

can provide SWE measurements at a spatial resolution of 50m with an accuracy of 5-8% 

over limited geographic regions (Dozier et al., 2016).

There are about 800 snow telemetry (SNOTEL) sites located in remote, high-elevation 

mountain watersheds in the western U.S. as a part of the U.S. Department of Agriculture 

(USDA) Natural Resources Conservation Service. These sites provide valuable information 

to forecast downstream water supply. Some stations also include a snow pillow, which 

records the weight of the snow on top of it, and thereby the water equivalent, but these sites 

are limited to flat ground and don’t represent the terrain very well (Dozier et al., 2008). 

Remote sensing of SWE by airborne instruments like ASO provide an alternative to better 

understand the entire picture for effective management of water resources during both dry 

and high snow pack years.

One way to calculate SWE is to multiply snow depth with its density over a snow covered 

area. However direct measurements are often lacking especially in remote areas. Therefore, 

agroclimatologists use remotely sensed measurements and models to infer where there might 

be flooding when snow melts, and how much water can be expected for irrigation during the 

growing season (McNally et al., 2015)

SWE is monitored both for its potential to give advanced warning of natural disasters such 

as flooding due to rapid melting of winter snow in spring, but also its beneficial role as much 

needed water supply and is thus used in crop monitoring and early warning activities (e.g. 

GEOGLAM Crop Monitor; FEWS-NET). The impact of drought on crop revenues in 
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California alone was $856 million in the year 2015 (Howitt et al., 2015). Monitoring and 

understanding SWE using ground measurements, remote sensing, and modeling allows 

scientists to better forecast changes in SWE.

Observable: soil moisture

Soil moisture, defined as the amount of water stored in the soil profile, is an essential 

climate variable that plays a key role in the Earth’s water, energy, and carbon cycles. Soil 

moisture is a dynamic boundary condition between the land surface and atmosphere and 

controls the exchange of water and heat fluxes and storages between the land surface and the 

atmosphere. Thus, soil moisture has important impacts on water availability, ecosystem 

exchange processes, vegetation growth, and more. To this end, the availability of adequate 

and timely soil moisture information is of great importance for numerous applications, 

including weather forecasting, and drought and flood mapping which are tightly linked to 

crop health and yield formation monitoring. Water availability is also vital for crop growth 

and yield formation. Timely, within-season information on expected end-of-season crop 

production is critical for food security and related decision-making activities as well as 

identifying approaches for reducing the yield gap. Change in soil moisture conditions is a 

direct response to weather variability and can be used to detect the occurrence of water-

related stress that can potentially hamper plant growth and lead to suboptimal yield 

production.

Soil moisture monitoring can be achieved through the following techniques (Mladenova et 

al. 2017):

(1) Ground- based monitoring using in situ sensors:

Observations collected using in situ stations characterize with high accuracy, but provide 

limited spatial coverage.

(2) Satellite-based soil moisture estimation using radiative transfer modeling:

This approach generates reliable global datasets with typical accuracy of 0.04 m3/m3. The 

corresponding soil moisture estimates are representative of the top few centimeters of the 

soil profile (2-5 cm). Temporal coverage is limited to the operational life span of the 

mission, which typically do not enable long-term stable climatologies based on individual 

sensors. Several passive- and active-based systems currently provide operational global soil 

moisture data sets, including AMSR2, SMOS, SMAP, and ASCAT.

(3) Model-based estimation using water or energy balance models:

The model-based approach provides data with global coverage. Reliability of the model-

based soil moisture observations is highly susceptible to the accuracy of the precipitation 

quality. GLDAS, NLDAS, FLDAS generated by the NASA’s LDAS system are examples of 

model-based soil moisture data products (Xia et al. 2012a; Xia et al. 2012b; McNally et al. 

2017), detailed in the later section on modeling and assimilation.
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(4) Soil moisture monitoring using data assimilation techniques:

These datasets are generated by integrating airborne- or satellite-based soil moisture 

observations into a hydrologic model, which enhances the model performance and corrects 

for precipitation related inaccuracies (Bolten and Crow 2012). Examples of such data sets 

are the SMAP L4 Root-zone soil moisture and the NASA-USDA Global Soil Moisture Data 

(Bolten and Crow 2012; Mladenova et al. 2017; Sazib et al. 2018). The latter is operationally 

used by the U.S. Department of Agriculture-Foreign Agricultural Service (USDA-FAS) for 

assessing the impact of drought on crop production (Figures 5, 6) and generating the 

agency’s global crop statistics. These data are also utilized by the U.S. Department of 

Agriculture-National Agricultural Statistics Service (NASS) and the Group on Earth 

Observations-Global Agricultural Monitoring (GEOGLAM).

Observable: evapotranspiration

Evapotranspiration (ET) describes the exchange of water vapor between the land-surface and 

the atmosphere and includes water evaporated from the soil, water bodies, and other surfaces 

(E) and water used by plants through the process of transpiration (T). ET is central to 

processes that constrain agricultural food production, linking the energy, water, and carbon 

cycles in mutually dependent relationships (Fisher, 2013). An increase in energy (i.e. 

lengthening days, reduced cloud cover) favors carbon assimilation through photosynthesis 

(primary production) and also increases ET, extracting available water from the soil, 

representing the largest component of consumptive water use in the US.

If the soil water is not replenished through rain or irrigation, plants close their stomata to 

conserve water and primary production is reduced. The associated reduction in transpiration 

shifts the surface energy balance from latent heat (water exchange with the atmosphere) to 

sensible heat (heat exchange). By comparing observed ET to a modelled expectation of crop 

water requirements, ET observations can be used to schedule irrigation applications and 

improve agricultural water management. In rain-fed agriculture, reductions in actual ET are 

often a leading indicator that drought may impact food production (Anderson et al., 2016b, 

2016a; Otkin et al., 2016). Similarly, the link between transpiration and primary production 

can be used to inform agricultural yield predictions, and assess agricultural water use 

efficiency (crop per drop).

Despite the importance of ET in understanding the agricultural food system, it is also one of 

the least constrained components of the hydrological cycle. The lack of regular, spatially 

dense ET observations makes ET the greatest remaining data gap in water resources 

management. ET may play a key role in providing accurate and timely drought forecasts to 

water managers [Fisher et al. 2017]. The ET-based Evaporative Stress Index (ESI) 

(Anderson et al., 2007, 2011,2013) is one of the few drought metrics to capture the 

magnitude, intensity, and timing of the 2012 US drought at resolutions applicable for 

management (~ 5 km) (Otkin et al., 2016). For retrospective studies there are several other 

approaches available at spatial resolutions on the order of 25 km, e.g. the LandFlux 

evaluation (Jiménez et al., 2011; Mueller et al., 2013). Continental scale estimates of ET are 

based on more readily available meteorological and hydrological observations and require a 

significant process model or statistical framework. Long records of these observation-based 
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estimates improve our understanding of the feedbacks within the climate system that directly 

affect our food system (e.g. Miralles et al., 2014; Lei et al. 2018).

Because ET can differ from field to field, a spatial resolution of 50-100 m is needed to infer 

actionable information for individual farmers. At that resolution, the most direct diagnostic 

of ET is the surface temperature observed through thermal infrared sensors, most notably 

Landsat. There are various different approaches with long legacy that estimate ET from 

surface temperature observations in combination with an analysis of the surface energy 

balance (EB). Many of these approaches have found wide application in agricultural studies 

or water management applications (e.g. Allen et al., 2011; Anderson et al., 2012; 

Bastiaanssen et al., 2005).

The first group of larger scale EB approaches treat evaporation as a single bulk flux that 

includes soil and vegetation sources, and applies a scene-based scaling (e.g. SEBAL 

(Bastiaanssen et al., 1998), SEBS (Su, 2002), METRIC (Allen et al., 2007), and SSEB 

(Senay et al., 2016)). These approaches evaluate the energy balance at ‘dry’ and ‘wet’ 

extremes and estimate ET between these extremes based on the spatial variation of internally 

calibrated temperature within the scene of the satellite image. In order to also assess 

agricultural water use efficiency, it is essential to distinguish between beneficial water use 

(transpiration) and non-beneficial water use (evaporation from the soil). Two-source EB 

approaches consider soil and vegetation as separate ‘sources’ for heat and water exchange 

(Kustas et al., 2018; Kustas and Norman, 1999; Norman et al., 1995). ALEXI/DisALEXI 

combines the regional scale ALEXI ET estimate with high resolution observations (e.g. 

Landsat).

The processing and calibration of large sets of Landsat images is computationally 

demanding and impacts the availability and latency of high-resolution ET estimates for 

stakeholders. The use of cloud computing now allows for the processing of Landsat images 

at a greater scale. An example of this is the adaptation of METRIC to work on Google Earth 

Engine (GEE) allowing for the calibration of Landsat images with weather-station data, and 

generation of Earth Engine Evapotranspiration Flux (EEFlux) [Allen et al., 2015]. Now 

anyone with Internet can access Landsat data, choose a location, and see an 

evapotranspiration map within seconds. The OpenET effort builds on the initial success of 

EEFlux, adding additional ET models (both single- and two-source) to a GEE framework for 

ensemble assessment of predicted consumptive water use. OpenET will allow ready 

intercomparison between multiple high-resolution ET models over a broad range in climatic 

and vegetation cover conditions, enabling users to select a model that performs best in their 

area of interest or extracting a multi-model average.

Observable: water quality

Water quality is as important to food production as water quantity, but is harder to measure 

from space because many of its characteristics are invisible. Fresh and clean water is needed 

for agriculture production while fresh or salt water with a balanced, healthy ecosystem is 

critical for aquaculture as a sustainable food source. Land use choices control nutrient, 

sediment, salt and pollution runoff to water bodies. When those are impacted in a significant 
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way, restrictions have to be imposed on agriculture to improve water quality. In this way, 

water quality can also impact water availability for agriculture. Additionally, the quality of 

water in catchments and reservoirs is important for healthy crops and livestock.

In recent years, coastal and inland water quality has been declining with population growth, 

expanded human activities near waterways and climate change (UNESCO, 2006, 2012). In 

the U.S., the declining quality of freshwater systems has led to estimated annual economic 

losses of $4.6 billion for sectors including agriculture, aquaculture and fishing, as well as 

tourism, real estate, and healthcare (Dodds et al., 2009). Other parts of the world have 

greater population pressure on their water quality, e.g. from raw sewage. World-wide, the 

combination of warmer temperatures, increased intensity of storms causing flooding, 

erosion, and an overabundance of nutrient run-off from land have compromised adjacent 

waters with severe environmental impacts such as harmful algal blooms, dead zones with 

little or no oxygen, and the loss of biodiversity.

Harmful blooms of blue-green algae or cyanobacteria respond quickly to ecosystem changes 

and are an increasing problem due to warming temperatures and water column stratification 

combined with excess nutrients (Paerl and Huisman, 2008; Michalak et al, 2013). These 

harmful algal blooms have become a global health issue through fish and shellfish diseases 

and mortality as well as illness in humans and animals that eat them (Ashworth and Mason, 

1946; Gilroy et al., 2000; Miller et al., 2010). Livestock drinking water containing 

cyanobacteria can suffer reductions in growth, lactation, and reproduction or even mortality. 

Consuming fresh vegetables that have been irrigated with water containing cyanobacteria 

can also cause illness and mortality in humans.

The importance of water quality for food safety and security lends urgency to the need to 

remotely sense its parameters. Land use change, urban sprawl, ecosystem health, vegetation 

and crop cover have been monitored by the Landsat Thematic Mapper and Enhanced 

Thematic Mapper at 30m resolution about twice a month for several decades. Although not 

optimized for aquatic measurements, the NASA/USGS Landsat 8 Operational Land Imager 

(OLI) has added new spectral bands that can be applied to water resources and coastal zone 

investigations of water clarity, turbidity, chlorophyll-a and surface temperature (Pahlevan et 

al., 2014; Franz et al., 2015; Pahlevan et al., 2018). Furthermore, the frequency of these 30m 

measurements can increase toward three days when Landsat OLI is harmonized with the 

European Space Agency (ESA) Sentinel-2 Multi-Spectral Imager (MSI) (Claverie et al., 

2017). Water quality indicators derived from these sensors are gradually being applied to 

aquaculture decisions. One of the earliest attempts addresses water clarity. Since 1866, water 

clarity has been quantified at discreet locations by the depth at which a Secchi disk lowered 

into the water from the surface disappears from view (Preisendorfer, 1986). The deeper the 

Secchi depth, the better the water clarity. Satellite data are now used to remotely estimate 

this variable over large areas (Figure 7) as a water quality indicator for fishing, crabbing, and 

shellfish aquaculture sites (e.g. Snyder et al., 2017).

Aquatic ecosystems in the open ocean have been continuously monitored from space for the 

past 20 years by NASA ocean color spectrometers (McClain, 2009). These satellite-borne 

sensors were designed to provide a nearly daily view of the open ocean where sampling 
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opportunities are rare and expensive. The color measured at the ocean’s surface is used to 

derive chlorophyll-a concentrations, the primary photosynthetic pigment in phytoplankton. 

Continuously monitoring the whole Earth from the visible to near infrared portions of the 

spectrum at 1-10 km spatial resolution advanced our understanding of mechanisms fostering 

global primary production. Ocean color sensors were not optimized for monitoring water 

quality in coastal and inland waters where the myriad of constituents in the water and 

overlying atmosphere are optically challenging, further confounded by land adjacency 

effects and their spatial resolution is too large for most inland water bodies. These technical 

issues as well as confidence in satellite data continuity have limited their adoption by water 

quality managers (Schaeffer et al., 2013; Mouw et al., 2015). Yet the great demand for this 

information has led to some clever adaptations in the coastal ocean, large estuaries, lakes, 

and rivers. Remotely sensed observations from the visible to near infrared portions of the 

spectrum include water clarity, turbidity, sediments and detritus, chlorophyll-a and other 

pigments indicating phytoplankton biomass and community composition, shallow 

submerged and floating aquatic vegetation, surface oil slicks, and other variables estimated 

or inferred through regional correlations between field measurements and remotely sensed 

proxies (e.g. harmful algal blooms) (Muller-Karger, 1992; Schaeffer et al., 2013; IOCCG, 

2018). Additionally, surface temperature from remotely sensed infrared measurements is 

another important variable related to water quality. Invisible variables that cannot be directly 

sensed remotely include nutrients, dissolved oxygen, acidity or pH, microbes and pollutants.

Although satellite observations do not detect the presence of toxins, they are useful for 

estimating cyanobacterial abundance and directing in situ sampling (Stumpf et al., 2016). 

The ESA MEdium Resolution Imaging Spectrometer (MERIS) spectrometer, 2002-2012, 

followed by the Ocean and Land Colour Instrument (OLCI) sensor on the Sentinel-3 that 

launched in 2016 (Donlon et al., 2012), were designed with additional spectral resolution 

that enables the detection of algal blooms of cyanobacteria (Figure 8) (Miller et al., 2010; 

Stumpf et al., 2012). Increased spectral resolution by MERIS followed by OLCI enable 

monitoring the likelihood of these cyanobacterial harmful algal blooms and their frequency 

of occurrence, yet have been limited to about 6% of continental U.S. freshwater lakes and 

reservoirs by their 300m bin size (Clark et al., 2017; Urquhart et al., 2017). 30m bin size 

would resolve more than 60% of freshwater lakes and reservoirs (Clark et al., 2017). Thus, a 

combination of sensors with additional spectral resolution and new methods to synthesize 

multiple types of measurements could improve this coverage in the future.

Airborne and upcoming satellite-borne hyperspectral remote sensing present options for the 

detection of dissolved organic carbon and additional water quality variables, (e.g. Mannino 

et al., 2016; Fichot et al., 2016). After 2022 when NASA launches the Plankton, Aerosol, 

Cloud, ocean Ecosystem (PACE) satellite, information from its hyperspectral Ocean-Color 

Imager at 1 km resolution may be combined with higher spatial resolution data, and perhaps 

LiDAR for vertical information (Behrenfeld et al., 2016). Coupling these sophisticated 

synoptic observations with in situ bio-physical and bio-optical measurements and long-term 

datasets from sensor networks and monitoring programs will inform water resource planning 

to address goals of water and food security, biodiversity, and sustainable ecosystem 

management (Hestir et al., 2015; Mouw et al., 2015; Schollaert Uz et al., in review). 

Challenges to global water quality monitoring by satellites remain, yet increasingly 
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accessible Earth observations have the potential to significantly advance near real-time water 

quality indicators in support of decisions related to food production and security around the 

world.

Observable: air quality

Food security programs usually focus on water, nutrition, and disruptions to food 

distribution systems, while the impact of air pollution on crops is often overlooked. The 

economic impact of crop yield loss due to pollution is significant all over the world, 

including in regions that experience food insecurity (Van Dingenen et. al, 2009; Avnery et 

al., 2011a; Ainsworth, 2017). Most losses occur from one pollutant, tropospheric ozone 

(O3), which can lower photosynthetic rates and decrease yield and yield quality (Ainsworth 

2017). Emberson et al. (2018) define O3 damage hot spots as regions with more than three 

months exposure to surface O3 concentrations above 44 ppbv. Global crop yield losses for 

wheat, corn, and soybeans are estimated to range from $11-26 billion (U.S. 2000) annually, 

with the greatest economic loss estimated to occur in the United States ($3.1 billion). Yield 

reductions may be as high as 50% for some crops in highly polluted areas such as India 

(Burney and Ramanathan, 2014). The greatest economic loss is estimated to occur in the 

United States ($3.1 billion) despite the fact that scientists have been working with farmers 

for decades to identify and propagate O3-tolerant varieties for high crop productivity (e.g., 

Ainsworth, 2017). Crop losses associated with air pollution exposure are projected to 

increase for many world regions over the next decade, including in areas most vulnerable to 

food insecurity (Averney et al., 2011b).

Surface-level O3, at elevated concentrations above injury thresholds, reduces crop yields 

following uptake through a plant’s stomata (i.e., tiny pores on the lower leaf surface) and 

chemical reaction with plant cells. O3 injury to plants is evident often as a fine tan to dark 

colored stippling pattern on the upper leaf surface that accumulates throughout the growing 

season (Figure 9). However, the impact of O3 on plants is not always obvious to the naked 

eye. When O3 air pollution exceeds injury thresholds during air stagnations, the pollutant 

can seriously affect overall plant health, ultimately reducing growth and yields. This effect is 

referred to as “hidden” O3 injury.

Although it is not currently feasible to infer surface O3 from satellite data of O3, satellites 

provide information on the chemical precursors that lead to O3 formation, including nitrogen 

oxides (NOx = NO + NO2). NOx occurs naturally in the atmosphere, but human activities, 

such as the burning of fossil fuels, elevate its concentrations, allowing unhealthy levels of 

surface O3 to form. Nitrogen dioxide (NO2) serves as a proxy for NOx and is observable 

from space (Leue et al., 2001; Velders et al., 2001). Satellite data of NO2 are used as input to 

computer simulations of atmospheric chemistry and transport to estimate surface O3 

pollution. These simulations give valuable information on O3 levels in agricultural areas, the 

long-range transport of O3 from urban to agricultural areas, and how O3 levels are evolving 

over time. Current and future O3 concentrations can then be fed into crop modules equipped 

with next-generation O3 response modules, enabling a more detailed examination of plant 

response to elevated O3 during different phenological stages or in combination with 

additional drought and heat stresses (Emberson et al. 2018). The model output may then be 
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used to inform stakeholder decisions related to agricultural planning and air pollution 

management.

NO2 data from the Dutch-Finnish Ozone Monitoring Instrument (OMI), a spectrometer that 

observes solar backscatter radiation in the visible and ultraviolet wavelengths, have given us 

an unprecedented look at how NO2 has varied around the world, including over agricultural 

regions (Figure 10); OMI is on the NASA Aura polar-orbiting satellite, which was launched 

in 2004 (Duncan et al., 2016). Several new satellite instruments of similar heritage as OMI 

were recently launched or are nearing launch and promise to provide even better NO2 data. 

For instance, the ESA TROPOspheric Monitoring Instrument (TROPOMI; launched in 

2017) on the polar-orbiting Sentinel-5 Precursor satellite collects data on NO2 at sub-urban 

spatial resolutions (e.g., a few kilometers), a much finer resolution than OMI (Veefkind et 

al., 2012). Additionally, a fleet of satellites in geosynchronous orbit over East Asia (Korean 

Space Agency Geostationary Environment Monitoring Spectrometer (GEMS)), North 

America (NASA Tropospheric Emissions: Monitoring Pollution (TEMPO)), and Europe 

(European Space Agency Sentinel-4) will provide much needed information on how air 

pollutant concentrations and emissions vary throughout the day; launches are expected in the 

early 2020s. Given the potential of air pollution to increase with projected population growth 

in the tropics and subtropics, geosynchronous satellites with similar capabilities are needed 

over the megacities and agricultural regions of the tropical and subtropical land masses as 

well.

Observations of atmospheric ammonia (NH3) from satellite instruments give complementary 

information to NO2 data by indicating when and where nitrogen-based fertilizers are applied 

(Warner et al., 2016). While thermal power plants and automobiles are the dominant NOx 

sources, the application of nitrogen-based fertilizers may also be an important source of NOx 

to the atmosphere in agricultural regions, potentially allowing high levels of surface O3 to 

form. Instruments observe NH3 using infrared wavelengths, e.g. IASI (Clarisse et al., 2009), 

CrIS (Shephard and Cady-Pereira, 2015), AIRS (Warner et al., 2016). While the impact of 

O3 pollution has a clear, negative impact on plant health, the impact of particulate matter 

(PM) pollution from dust and smoke is more complicated (e.g., Schiferl and Heald, 2018). 

Depending on concentration, PM in the atmosphere can either reduce or enhance crop yields 

by scattering light. For instance, PM can diffuse sunlight, creating a more even and efficient 

distribution of photons, which can offset the haze-induced reduction in total sunlight 

reaching the plant.

Physical model: hydrology data assimilation

Monitoring and forecasting drought and its impacts on crops requires an objective definition 

of drought or a “convergence of evidence” process by which drought may be defined. The 

Land Data Assimilation System (LDAS) is an effort that take many of these satellite-derived 

observations and assimilate them with other observations and model output for use in 

regularly gridded retrospective and current assessments and forecasts.

The NASA Land Information System (LIS) software provide data to both NOAA’s North 

American Land Data Assimilation System (NLDAS) Drought Monitor and the associated 
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National Integrated Drought System (Xia et al. 2012a; Xia et al, 2012b), and FEWS NET 

via the FEWS NET LDAS (FLDAS; McNally et al. 2017). These LDAS systems use 

optimal inputs (forcing and parameters) to produce estimates of the water balance 

(precipitation, runoff, evapotranspiration, soil moisture) and energy balance 

(evapotranspiration, temperature, radiation). These data can then be used to derive indices, 

like soil moisture anomalies (Figure 11a and 11b) and QuickDRI that inform drought and 

crop growing conditions.

In 1999, the U.S. Drought Monitor (USDM) was established as a weekly map of drought 

conditions produced jointly by the National Oceanic and Atmospheric Administration 

(NOAA), the U.S. Department of Agriculture (USDA), and the National Drought Mitigation 

Center at the University of Nebraska-Lincoln. Internationally, the Famine Early Warning 

Systems Network (FEWS NET), established in 1985 by US Agency for International 

Development (USAID), produces a weekly map of drought conditions for Africa, Central 

Asia, and Latin America. Other international drought monitors include the Middle East and 

North Africa Drought Platform (e.g. Sheffield et al. 2014; Aadhar and Mishra 2017). A 

number of other organizations collate data from other sources, including FEWS NET, e.g. 

the UN Food and Agriculture Organization (FAO) Global Information and Early Warning 

System on Food and Agriculture (GIEWS), the Global Drought Information System Portal 

(Pozzi et al. 2013), and the GEOGLAM Crop Monitor led by the University of Maryland 

(Becker-Reshef et al. 2010).

Given that different Earth observation products that rely on various sensors and models may 

not agree, analysts use a “convergence of evidence” approach. Evidence from different 

products is weighed by experts, who ultimately decide the classification and extent shown in 

both on the US Drought Monitor and FEWS NET Hazards maps. The US Drought Monitor 

employs a classification scheme where a category/description has associated impacts as well 

as thresholds for different metrics including the Palmer Drought Severity Index (PDSI), soil 

moisture percentiles, streamflow percentiles, the standardized precipitation index (SPI), and 

a composite index. Similarly, FEWS NET has criteria for determining levels of dryness that 

increase in severity from abnormal dryness, to drought, to severe drought. The criteria for 

“drought” classification for example are (1) the area must have previously been defined as 

“abnormal dryness” (2) are must reginate season precipitation, soil moisture and runoff 

deficits below 20th percentile (3) reports of developing drought conditions and impacts on 

crop and water resources from the field.

The NLDAS and FLDAS system are updated routinely and provide long term estimates of 

relevant conditions so that standardized indices and percentiles (i.e. precipitation, soil 

moisture) can be computed and provide decision support to analysts that generate the 

drought hazard maps.

Impact model: retrospective, real-time, and future analysis of crops

Process-based crop models simulate day-to-day crop growth and development over the 

course of an agricultural season in response to environment, management, and genetics as 

determined by fundamental biophysical processes (Jones et al. 2017). Environmental drivers 
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include conditions within the soil profile (texture, temperature, and moisture within 5-10 soil 

layers extending to nearly 2 meters below the surface) and surface meteorology (typically 

daily maximum and minimum temperatures, precipitation, and solar radiation; more 

advanced models also include relative humidity or vapor pressure and wind speed). 

Management information includes data on planting (dates, row spacing, row depth, etc.), 

inputs (irrigation, fertilizers), and harvest (equipment and limiting dates). Genetic 

information describes the fundamental traits of the crop variety (characteristics universal to a 

given species and those specific to the selected cultivar, typically represented as genetic 

parameters). Crop development depends on balanced flows of water, energy, carbon, and 

nutrients, which drive and respond to crop processes depending on phenological stage and 

the potential presence of stress factors (e.g., water, temperature, or nitrogen stress). Crop 

models can predict yield and resource use (water and nitrogen) to help optimize current and 

alternative systems under a variety of priority criteria.

Earth information is critical to the configuration, evaluation, and application of crop models 

to meet a variety of stakeholder needs. Remote sensing data can determine the date and area 

planted for many crop species. In situ networks and remote sensing platforms provide 

meteorological observations, while weather and climate models fill in gaps and expand 

beyond observations with forecasts and projections. Crop models are often quite sensitive to 

common biases within atmospheric models, requiring additional bias-adjustment for 

improved fidelity (Ruane et al., 2015). Simulated crop progress and status may also be 

compared against field and remotely-sensed observations of crop conditions.

A well-configured and -evaluated crop model serves a variety of stakeholder-driven 

applications that range across a continuum of time scales and alternative farm systems. 

Models operating under historical conditions utilize (and potentially assimilate) multiple 

observations to attribute observed anomalies, establish climatological expectations, and 

potentially reconcile biases across diverse observational datasets within a physically-

consistent crop process framework. Crop models applied in the near-real-time contribute to 

monitoring and early-warning efforts while also potentially providing timely forecasts of 

seasonal outcomes and intervention opportunities. Crop models may also project future 
climate conditions, alternative farming systems, or the response to hypothetical extreme 

events.

The Agricultural Model Intercomparison and Improvement Project (AgMIP) is an 

international community of 1000+ experts working to develop agricultural system 

frameworks for applications related to resilient production and food security (C. Rosenzweig 

et al. 2013). AgMIP facilitates the use of cutting-edge earth information and encourages 

ensemble modeling activities at the field scale (Asseng et al. 2013; Martre et al. 2015; Bassu 

et al. 2014; Li et al. 2015; Fleisher et al. 2017; Singels et al. 2014; Asseng et al. 2015) as 

well as across global grids (Rosenzweig et al. 2014; Elliott et al. 2014; Müller et al. 2017). 

Crop model output can be combined with broader integrated assessment models to evaluate 

the implications of large-scale policy and investment decisions (Ruane et al. 2017), can 

include further impact factors (e.g., pests, diseases, and ozone damages; Donatelli et al. 

2017; Emberson et al. 2018) and can directly link with other disciplines, scales, and models 

within coordinated assessments (Rosenzweig et al., 2016, 2018; Ruane et al. 2018).
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Damage module: Earth systems modelling of pests and disease

Agricultural lands respond strongly to anomalies in temperature, precipitation, and solar 

radiation, but additional biotic and abiotic pressures can also have acute impacts on short- 

and long-term production with broad consequences for local and global stakeholders. Here 

we examine the unique threats posed by pests, diseases, and elevated ozone concentrations 

affecting agricultural production, as well as the observations and models that are needed to 

understand and apply earth information to improve decision-making.

While there are millions of specific pests and diseases that affect crop systems, these may be 

generalized according to critical climatological thresholds for their spread and the ways in 

which they affect plants (Boote et al. 1983; Donatelli et al. 2017). Earth information can 

identify conditions that are conducive to pest and disease spread, as well as to recognize 

affected plants as an element of early warning systems that allow corrective or preparatory 

interventions. Pests are often limited by total rainfall amounts and annual minimum 

temperatures that can interfere with reproductive and development cycles. Plants are more 

receptive to disease when the stem and leaf canopy is wet, with key sensitivities to diurnal 

cycles of relative humidity and temperature as well as extended periods of precipitation or 

flooding. Some pest vectors and disease spores are also carried by prevailing winds, with jet 

stream patterns shifting affected areas from year-to-year. Analysis of these metrics helps us 

identify hazardous climate conditions which we can monitor, forecast, and project into the 

future.

Remote sensing can pick up declines in productivity and crop failures in affected areas, and 

technology empowers corporations and citizens to observe and document outbreaks using 

social media. Pest and disease modules are increasingly being added or coupled to crop 

models in recent years to forecast likely outbreaks and their likely ramifications and attribute 

observed losses, leading to new decision support systems that could help users identify and 

prioritize actions (Donatelli et al. 2017). Pest and disease modules coupled with crop and 

climate models also help stakeholders understand how climate variability, such as the El 

Niño/Southern Oscillation, and climate change shift the probability of outbreaks, aiding in 

the determination of preventative measures (Rosenzweig and Tubiello 2007).

Impact model: sector shocks and disaster risk

The agricultural system is vulnerable to a wide array of natural and man-made hazards that 

can disrupt production, processing, transportation, and prices with direct and indirect 

implications for food security. Identifying and anticipating these shock events helps 

stakeholders respond to ongoing disasters, prepare for likely shocks, and build resilience in 

order to ensure food system stability.

Decision support systems may utilize NASA earth information in attributing, monitoring, 

and forecasting major agroclimatological hazards. Meteorological observations and 

atmospheric models track heat waves, cold snaps, floods, drought, heavy storms, hail, and 

freezing rain events that can decrease yield, damage production quality, or kill crops before 

harvest can even occur. The level of shock depends on the magnitude, spatial extent, 
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duration, and timing of these extremes in comparison to critical crop development stages. 

More subtle weather sequences can be equally disruptive, as illustrated by two examples. 

First, ‘false starts’ to the monsoon season occur when the initiation of seasonal precipitation 

encourages farmers to transplant, only to watch seedlings die as dry conditions return ahead 

of the persistent monsoon arriving weeks later. Second, late winter warming can melt snow 

cover and entice blooming of fruit trees, exposing vulnerable plants to frost damage when 

normal winter and early spring conditions return (Grotjahn et al., In review).

Models and observational products may also be used to track important external hazards 

affecting the food system. Weather products can identify conditions conducive to the spread 

of pests and diseases, while satellites can observe their net reductions in agricultural 

productivity. Satellites are also important elements of response and recovery efforts 

following major disasters that can affect agricultural transportation networks, including 

hurricanes, landslides, earthquakes, tsunamis, and floods. Agricultural risks are a growing 

element of new efforts to examine interactions between disasters as part of the United 

Nations Sendai Framework for Disaster Risk Reduction 2015-2030 (UNISDR 2015). 

Nations that are a party to the Sendai Framework have also committed to increased reporting 

of agricultural disasters, which will provide new ground-truth datasets that may be used to 

develop and evaluate next generation decision support products.

While guarding against shock and disaster risk in one’s own region is critical, it is also 

important to remain vigilant against shocks and disaster risk affecting distant agricultural 

regions given the increasingly interconnected nature of the global agricultural sector which 

builds reliance on food baskets and major trading partners. A diverse trade networks can act 

to disperse shocks but also spreads risk widely given elevated global exposure and 

streamlined flows of goods that has tended to concentrate regions of production for key 

agricultural commodities. Assessment of current and future risk therefore requires regional 

and global disaster information to be placed in the context of markets and consumer 

populations while also recognizing the potential human toll of food insecurity.

The agricultural sector faces long-term shifts in its risk profile due to population growth, the 

rapid expansion of agricultural lands and infrastructure, socioeconomic development, 

technological innovations, geopolitical events, and global environmental changes including 

climate change and the degradation of soil and water resources. Changes in shock and 

disaster risk can be explored using a combination of climate projections (e.g., Schmidt et al. 

2014), bias-adjustment of climate model outputs (Ruane et al. 2015; Thrasher et al. 2012), 

process-based crop models (Rosenzweig et al. 2013; Jones et al. 2017), and integrated 

assessment models incorporating future socioeconomic conditions (O’Neill et al. 2014; 

Valdivia et al. 2015)

Impact model: climate change projections

Future agricultural systems will be shaped by overlapping pressures from climate change, 

population growth, socioeconomic development, and technological innovation. Long-term 

climate impact projections also shed light on present extreme events, elucidating likely 

trends and shifts in probability as the climate pushes toward a new equilibrium. Anticipating 
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agricultural production and food security implications provides critical information for 

policymakers debating action to mitigate climate change, but also informs a variety of 

current stakeholder decisions with time scales of a decade or more.

To illustrate the types of decisions under consideration today, take an example agricultural 

region where climate projections indicate warmer mean temperatures, declines in 

precipitation, and a later rainy season. Current crop varieties may no longer be suitable 

under the changed conditions; however, it typically takes 8 to 15 years to mass-produce 

targeted seeds and even longer if key traits do not already exist in current varieties’ 

germplasm. This region may also require new water storage and distribution facilities for 

irrigation that can take a decade to construct and would be expected to last for a century or 

more even as the climate changes. Farmers and extension services may also recognize the 

growing need to change farm systems toward more suitable agricultural commodities, 

altering value chains and the utility of established processing plants and transportation 

facilities. Changing climate zones and food demand will also place tremendous pressure on 

water, land, and energy resources, with widespread implications for food prices and 

agricultural encroachment into natural ecosystems.

Anticipating climate change impacts on agricultural production requires a combination of 

process understanding to resolve the mechanics of production and resource use changes, 

present-day observations of climate and agriculture, probabilistic climate scenario 

generation, coherent coupling between multi-disciplinary systems (climate, biophysical, 

socioeconomic, and geopolitical), and consistent scenarios to place climate changes in the 

context of other global change pressures. Earth information products provide critical 

information about the world’s agricultural systems, current climate (Gelaro et al. 2017; 

Ruane et al. 2015), and future climate projections (Schmidt et al. 2014; Thrasher et al. 2012; 

Ruane et al. 2015). Process-based crop models driven by earth information inputs are 

particularly useful for climate impact studies given their ability to capture non-linear 

responses outside of observed conditions (Jones et al. 2017).

The Agricultural Model Intercomparison and Improvement Project (AgMIP) fosters an 

international community of climate, crop, livestock, economics, and nutrition experts to 

develop and apply multi-discipline, multi-scale, and multi-model frameworks to assess 

future agricultural production and food security (C. Rosenzweig et al. 2013). AgMIP 

activities incorporate cutting-edge products and track the implications of climate changes 

and uncertainties (Wallach et al. 2015) as impacts reverberate between local and global 

markets and the populations that depend on agricultural systems for adequate and stable 

food supply (Wiebe et al. 2015; Ruane et al. 2018; Rosenzweig et al. 2018; Rosenzweig and 

Hillel 2015). AgMIP has assessed agricultural responses to core climate change factors (i.e. 

shifts in temperature, precipitation, and CO2 concentrations) across local and global gridded 

crop model ensembles (Ruane et al. 2017). Transient simulations also elucidate shifting 

patterns of global production and water use (Rosenzweig et al. 2014; Elliott et al. 2014), and 

are useful in conjunction with pathways of agricultural system transformation that help 

stakeholders shape a more productive and resilient future (Antle et al. 2015; Valdivia et al. 

2015).
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Conclusions

As the world’s population grows and climate changes, food security is a growing global 

problem, inextricably tied to water and energy, demanding a multi-sectoral, global solution. 

Global satellite data products and integrated models are required to better understand and 

manage resources in the food-water-energy nexus. Global monitoring of geophysical 

variables from satellites provide near-real-time quantification of the Earth system that can be 

assimilated into early warning and predictive tools. Here we have highlighted several of the 

Earth observational products related to vegetation, water quantity, water quality, and air 

quality that can be combined with additional information to inform decisions around food 

production. Remote sensing by satellite and airborne sensors yields measurements over large 

areas on a regular, consistent basis, providing the ability to monitor changes over time. 

Published literature shows recent progress in the adoption of Earth observations for 

agriculture and aquaculture applications, the former more quickly than the latter. As we 

gradually overcome challenges associated with calibrating and validating new measurements 

and new applications of existing measurements, confidence in these capabilities will 

increase, leading to wider use and better understanding of the benefits of remote sensing in 

support of food security. Sensors are currently being planned and built with finer spectral, 

spatial or temporal resolution that can be integrated with increasingly sophisticated data 

assimilation and modeling to support informed decisions by farmers, fishers, humanitarian 

aid organizations, first responders and more. New and emerging science and technology can 

foster solutions for some of society’s challenges regarding current and future hunger, 

malnutrition, and instability due to food shortages.
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PDSI Palmer Drought Severity Index

PM Particulate matter

SeaWiFS Sea-Viewing Wide Field-of-View Sensor

SM Soil moisture

SMAP Soil Moisture Active Passive
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Figure 1. 
This NDVI time series produced on August 30, 2018 compares 2017 and 2018 wheat 

growing in three Canadian provinces (USDA, 2018).The historical record of MODIS data 

since 2000 enables quantitative agricultural food and fodder production estimates using 

minimum value, maximum value, and the historical mean value by time period, calculated in 

very close to real time.
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Figure 2. 
Landsat 8 scenes showing field-scale RBG and changes in NDVI over the 2017 growing 

season, advancing global food security to the field level. Source: Landsat-8 Project Office, 

NASA Goddard Space Flight Center.
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Figure 3. 
Global long-term average precipitation patterns. Source: Global Precipitation Climatology 

Project
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Figure 4. 
Groundwater wetness/drought indicator (wetness percentile relative to all Augusts during the 

period 1948-present) based on the assimilation of GRACE data into a land surface model for 

August 15, 2011. Note the severe drought encompassing most of New Mexico, Texas, 

Louisiana, and the Southeast.
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Figure 5: 
Sub-surface soil moisture (SM) anomalies over South Africa developed using the USDA-

FAS Palmer model and satellite observations from the NASA Soil Moisture Active Passive 

(SMAP) mission. South Africa has been experiencing a decline in rainfall, which reached 

record low amounts during the 2017 growing season, and had an adverse impact on the 

wheat production in the area. This is captured by the negative anomaly values (i.e. brown 

colored end of the scale bar) indicative of water deficiency for crop production.
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Figure 6: 
Sub-surface soil moisture (SM) anomalies over Australia at the end of July 2018 developed 

using the USDA-FAS Palmer model and satellite observations from the NASA Soil Moisture 

Active Passive (SMAP) mission. Soil was especially dry over New South Wales where the 

drought had impacted large areas of grazing and cropland.

Uz et al. Page 36

Remote Sens Earth Syst Sci. Author manuscript; available in PMC 2020 September 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 7. 
Secchi depth of the upper Chesapeake Bay and several tributaries derived from the Landsat 

OLI (left) and the same April 13, 2016 Landsat scene in true color (right). Credit: Lachlan 

McKinna and NASA Earth Observatory
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Figure 8: 
NOAA Lake Erie Harmful Algal Bloom Bulletin for July 30, 2018 shows medium 

cyanobacterial density in the southwestern lake, with a threshold for cyanobacteria detection 

of 20,000 cells/ml. Grey indicates clouds or missing data. Source: http://

tidesandcurrents.noaa.gov/hab/lakeerie.html
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Figure 9: 
Characteristic O3–induced injury on the topside of green bean plant leaves. The stippling, 

which does not occur on veins, is associated with dark pigments accumulating within injured 

cells. O3 injury symptoms often vary with different crops. Photo Credit: Emerson Sirk/

NASA
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Figure 10: 
From Duncan et al., 2016, OMI data show that NO2 levels have decreased from 2005 to 

2016 by about 20-60% over most U.S. cities as a result of environmental regulations. As a 

national average, surface monitors indicate that O3 decreased by about 15% as a 

consequence, good news for both human and plant health. However, increasing trends in O3 

pollution in other regions of the world pose a threat to food security.
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Figure 11a. 
Within FEWS NET: FLDAS Soil moisture anomaly derived from CHIRPS rainfall, 

MERRA-2 meteorology, forcing the Noah land surface model.
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Figure 11b. 
(A) NLDAS Soil moisture anomaly derived from NCEP’s Eta model-based Data 

Assimilation System (EDAS) (Rogers et al., 1995) meteorological forcing, and a merged 

precipitation product derived from stations, radar and reanalysis and the Noah land surface 

model. (B) The QuickDRI is derived from NLDAS soil moisture, in addition to 

evapotranspiration, precipitation and vegetation conditions from other sources.
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