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ABSTRACT

Objective: Much has been invested in big data analytics to improve health and reduce costs. However, it is un-

known whether these investments have achieved the desired goals. We performed a scoping review to deter-

mine the health and economic impact of big data analytics for clinical decision-making.

Materials and Methods: We searched Medline, Embase, Web of Science and the National Health Services Eco-

nomic Evaluations Database for relevant articles. We included peer-reviewed papers that report the health eco-

nomic impact of analytics that assist clinical decision-making. We extracted the economic methods and esti-

mated impact and also assessed the quality of the methods used. In addition, we estimated how many studies

assessed “big data analytics” based on a broad definition of this term.

Results: The search yielded 12 133 papers but only 71 studies fulfilled all eligibility criteria. Only a few papers

were full economic evaluations; many were performed during development. Papers frequently reported savings

for healthcare payers but only 20% also included costs of analytics. Twenty studies examined “big data analy-

tics” and only 7 reported both cost-savings and better outcomes.

Discussion: The promised potential of big data is not yet reflected in the literature, partly since only a few full

and properly performed economic evaluations have been published. This and the lack of a clear definition of

“big data” limit policy makers and healthcare professionals from determining which big data initiatives are

worth implementing.
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INTRODUCTION

Extracting valuable knowledge from big healthcare data has been an

important aim of many research endeavors and commercial entities.

While no clear definition for big data is available, they are often de-

scribed according to their complexity and the characteristics of the

data such as the size of a dataset (Volume), the speed with which

data is retrieved (Velocity) and the fact that the data come from

many different sources (Variety).1 Bates et al2 emphasize that big

data comprise both the data with their large volume, variety, and ve-

locity, as well as the use of analytics. In this respect, analytics are the

“discovery and communication of patterns in data.”

Big data’s potential to assist clinical decision-making has been

expressed for a variety of clinical fields such as intensive care,3,4

emergency department,2,5 cardiovascular diseases,6,7 dementia,8 dia-

betes,9 oncology,10–12 and asthma.13 Big data analytics could also

lead to economic benefits.1,2,14–17 Annual savings for the United

States (US) healthcare system of providing timely, personalized care

have been estimated to exceed US$140 billion.18
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Over the years, much has been invested to achieve the promised

benefits of big data. For instance, the US has invested millions in

their Big Data to Knowledge centers.19 While in Europe, many calls

and projects in Europe’s Horizon 2020 program have focused on the

use of Big Data for better healthcare (ie, AEGLE, OACTIVE, Big-

Medylitics). In 2018, US$290 million was allocated to The All of Us

initiative which aims to personalize care using a wide variety of data

sources (ie, genomic data, monitoring data, electronic health record

data) from 1 million US citizens.20 The investments by governments

are far exceeded by the investments in “big data technologies” in the

commercial sector.21 For example, IBM has already invested billions

of dollars in “Dr. Watson” and big data analytics,22 and Roche pur-

chased FlatIron Health for US$1.9 billion in 2018.11

For optimal spending of scarce resources, economic evaluations

can be used to assess the (potential) return on investment of novel

technologies. Economic evaluations are comparative analyses of the

costs and consequences of alternative courses of action.23 Economic

evaluations that provide evidence on the health and economic im-

pact of a technology can assist decision-making and justify further

investments required to achieve a technology’s potential. Despite the

promise that big data analytics can lead to savings, it is unclear

whether this promise is corroborated by good evidence. Therefore,

we aimed to determine the health and economic impact of big data

analytics to support clinical decision-making. Given the absence of a

clear definition for big data, we first determined how analytics im-

pacted clinical practice. We then considered which of these analytics

could be classified as big data analytics.

MATERIALS AND METHODS

The study follows the Preferred Reporting Items for Systematic

reviews and Meta-Analyses extension for Scoping Reviews

(PRISMA-ScR) Checklist.24

Search strategy and study inclusion
Since there is no consensus on the definition of big data,1 we wid-

ened the scope of our search to identify economic evaluations of a

variety of analytics. An information specialist from the Academic Li-

brary at the Erasmus University Medical Centre was consulted when

developing the search strategy (Supplementary Appendix A). In the

search strategy, we included MesH and title/abstract terms related

to (big data) analytics, economic evaluations, and healthcare. These

terms for (big data) analytics included artificial intelligence, tools

used to extract patterns from big data, such as machine learning,

and generic tools that use analytics to enable decision-making, such

as clinical decision support. We combined these with terms such as

economic evaluations and cost-effectiveness and terms to exclude

studies that had no relation to healthcare (ie, veterinary care).

All major databases were searched (Embase, Medline, Web of

Science, and the NHS Economic Evaluations Database). We in-

cluded all English, peer-reviewed, primary research papers and lim-

ited our search to studies of humans. The primary search was

performed in March 2018 and updated in December 2019. Initial

screening was performed by 1 author (LB). Hereafter, all studies

about which there was uncertainty regarding their inclusion were

discussed with 2 other authors (JA, WR). Studies were included if

they met the following criteria: a) the study reported pattern discov-

ery, interpretation, and communication to assist decision-making of

clinical experts at the individual patient level; b) the study imple-

mented analytics in clinical practice using computerized technology;

and c) the study reported a monetary estimation of the potential im-

pact of the analytics. Application of these 3 criteria led to the exclu-

sion of studies that only reported time or computation savings and

studies that did not assist clinical experts at the individual patient

level. Thus, we did not include studies that informed guidelines or

policy makers. We also excluded analytics that produced results that

could be easily printed on paper for use in clinical practice (ie, Ot-

tawa Ankle Rules) and studies that simply used data mining technol-

ogies to extract records from an electronic health record (EHR) but

not to perform any analyses of the extracted data.

Data extraction
Data extraction was performed by 1 author (LB). For a random

10% of papers, data was extracted by a second author (WR) to

check for concordance. In the end, there were no significant differ-

ences in the results. We extracted the following data for each study:

patient population, description of the technology in which the ana-

lytics are embedded (ie, clinical decision support systems); the ana-

lytics used for discovery and communication of patterns in data;

description of the data; the intervention and the comparator in the

economic evaluation; the perspective, outcomes, and costs included;

and results, recommendations, and conflicts of interest. Conflicts of

interest included those reported in the paper (related and unrelated),

commercial employment of authors, and funding by industry.

We also reported the type of economic evaluation (ie, full or par-

tial) that was used. A full economic evaluation compares 2 or more

alternatives and includes both costs and consequences. Partial eco-

nomic evaluations do not contain a comparison or exclude either

costs or consequences.23 Thus, when a study reported cost estimates

but no health outcomes, they were classified as partial. For full eco-

nomic evaluations, we reported the ratio of costs over effects, also

known as the incremental cost-effectiveness ratio. Furthermore, eco-

nomic evaluations can offer valuable insights for decision-makers at

many different stages in the development process (ie, during and af-

ter development).25 After development, they can assist healthcare

payers when choosing novel technologies in which to invest their

constrained budget. During development, an “early” economic eval-

uation can assist developers by identifying minimal requirements of

the technology, areas for further research, and viable exploitation

and market access strategies.25–27

In our results, we also distinguished in which stage of develop-

ment the economic evaluation was performed. If a study provided

recommendations for developing a technology that did not exist, it

was categorized as “before” development. Studies were categorized

as “during” development when the economic evaluation was per-

formed and presented alongside development unless the aim of the

study was to inform purchasing decisions of funding bodies (ie, per-

spective of the National Healthcare Services) or when the analytics

were already implemented in clinical practice. All remaining studies

were categorized as being performed “after” development.

We also performed an analysis to identify economic evaluations

that might be classified as “big data analytics”. We used broad crite-

ria to select the highest possible number of papers to sketch a best-

case scenario. We defined these criteria based on the volume, vari-

ety, and velocity of the data. We classified papers as having big vol-

ume when they utilized next generation sequencing data, EHR

records or claims data with a sample size of more than 100 000 units

(ie, patients, admissions), and all imaging papers published after

2013. Papers were included because of their variety when they com-

bined multiple data types (ie, structured and unstructured data,
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combining multiple data sources). All papers that used monitoring

data published after 2013 were included because they might fulfil

the velocity criteria.

RESULTS

The initial search yielded 12 133 records of which 71 papers were

included in the final analysis after title/abstract and full-text screen-

ing (Figure 1). Important exclusion criteria for full-text papers were

that no monetary estimates were included and that no analytics

were used.

Summary of papers
We found that all papers could be classified into 4 categories accord-

ing to the type of data that was used: medical history databases (ie,

data from EHRs, clinical trial databases, claims databases), imaging

data, monitoring data (ie, continuous data collection using sensors),

and omics data (ie, proteomics, genomics, transcriptomics, metabo-

lomics) (Table 1). Almost all papers originated from North America

and Europe (87%). The US was well represented with 39 papers

mainly focusing on the use of medical history and omics data. The

number of papers originating from Europe was considerably lower

(n¼20), while few or no papers originated from South America,

Australia, and Africa. There has been a clear increase in the number

of publications from 2016 onwards (Figure 2).

Most studies were partial economic evaluations and found that

analytics may improve outcomes and generate savings. A perspective

was not often reported, and no study reported a societal perspective.

Almost all partial economic evaluations reported savings compared

to half of the studies reporting results from full economic evalua-

tions. When grouped according to conflict of interest, no significant

differences were found in the percentage of studies that reported sav-

ings and improved health. For economic evaluations without a con-

flict of interest, 61% were performed during development compared

to 22% with no conflict of interest. All but 1 reported savings.

In the following paragraphs we will discuss economic results for

all 4 data types. An overview of the economic results for all papers

can be found in Supplementary Appendix B. A detailed description

of all analytics and data used can be found in Supplementary

Appendix C.

Analytics for medical history data
The first category consisted of studies that used historic databases

containing information on patient demographics and medical his-

tory (ie, test results and drug prescriptions) (n¼44).28–71 All papers

presented predictive or prescriptive analytics that assist clinical

decision-making using a variety of techniques, such as regression,

support vector machines, and Markov decision processes. The risk

of readmission (n¼9) and problems pertaining to the emergency de-

partment (n¼5) were most often examined and 1 study addressed

pediatric care.42 Both structured data, such as demographics and

laboratory results, and unstructured data, such as free text messages

(n¼4),37,40,44,50 were used and the sample size varied from N¼80

patients65 to more than 800 000 urine samples.68 This was the only

category in which authors referred to the term “big data”

(n¼6).32,35,37,40,50,60

Most of the studies in this category were partial economic evalu-

ations (n¼36) and most were conducted during development

(n¼31). Results were often limited to model performance (ie, classi-

fication accuracy, area under the curve) and were rarely translated

into health benefits such as quality-adjusted life-years. Almost all

studies found that the analytics could lead to monetary savings, yet

only 2 papers included implementation costs of the analytics.33,62

These costs could, for instance, consist of licensing costs and costs of

implementing analytics within a hospital system. Authors often rec-

ommended to continue development and focus on improving the an-

alytics. Furthermore, the need for further validation prior to

implementation was frequently emphasized.

Analytics for imaging data
Eight studies presented predictive analytics for 7 different types of

imaging data (CT, MRI, Chest radiographs, digital cervical smears,

mammographies, digital photographs, and ventilation-perfusion

lung scans).72–79 The number of full economic evaluations73,75–77,79

and studies performed after development73–76,78 were both higher

than the first group of papers that used medical history data. Four

studies measured effects in (quality-adjusted) life-years,73,75–77 and

more than half of the studies included implementation costs of ana-

lytics.73–77 The number of studies that found the analytics could

lead to cost-savings was once again quite high (63%).72–74,78,79 Just

like the studies that used medical history data, authors of studies in

this category emphasized the need for further validation prior to im-

plementation. However, several studies also emphasized the balance

between the requirements of the technologies (ie, test sensitivity)

and potential health benefits and cost-savings.75,76,79

Analytics for monitoring data
Monitoring data collected with a variety of devices and sensors (ie,

airflow monitoring, continuous glucose monitoring, continuous per-

formance tests, infrared cameras, vital signs monitors) was used in

8 studies.80–87 Five of these studies reported descriptive analytics

that monitored patient outcomes and compared this to a range or

reference value.81,83–85,87 This group of papers differed from those

using imaging and medical history data since most analytics were

implemented in a medical device. All technologies were evaluated af-

ter development, of which many were partial economic evaluations.

Roughly half of the studies resulted in more effects82–84,86 and sav-

ings82,84–87 and included costs of the device and/or analytics.81,86,87
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Figure 1. PRISMA flowchart.
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Analytics for omics data
Eleven papers reported the potential impact of predictive and pre-

scriptive analytics of omics data, often with the aim of applying

them as a test in clinical practice.88–98 Only 2 of these papers fo-

cused on the use of Next Generation Sequencing data94,96 and 1 pa-

per combined multiple types of data (pharmacogenomics, literature,

medical history).89 The remaining papers utilized microarray data,

and all the analytics that were adopted as a test were used in oncol-

ogy (n¼9).88,90–93,95–98

Compared to the other categories, the percentage of full eco-

nomic evaluations was high.90,92,93,95–98 In half of the studies, the

perspective used was that of the payer or the healthcare system.

Furthermore, just like the studies that used monitoring data, all

economic evaluations were performed after development. Seven

studies reported increased effects ,88,90–93,96,97 and 6 studies

reported that use of analytics would increase costs.90,93–95,97,98 All

but 1 study included the costs of the analytics or the test in which

the analytics were implemented.89 Moreover, unlike the other cat-

egories, several papers discussed price thresholds at which the ana-

lytics or the test would be cost-neutral or dominant (ie, more

effects and lower costs) or thresholds at which the analytics or test

would be cost-effective (ie, where the incremental cost-

effectiveness ratio would be below a specific cost-effectiveness

threshold).

Table 1. Summary of all records according to data type used

Total Medical history Imaging Monitoring Omics

Total 71 44 8 8 11

Continent

North America 42 27 3 3 9

Europe 20 11 2 5 2

Asia 7 5 2 – –

Africa 1 – 1 – –

South America 1 1 – – –

Australia – – – – –

Type of economic evaluation

Full 22 8 5 2 7

Partial 49 36 3 6 4

Perspective

Payer perspective 7 3 – – 4

National healthcare system 8 3 1 2 2

Provider perspective 3 1 – 1 –

Other 2 – 2 – –

No perspective reported 52 37 5 5 5

Stage of development

Before development 1 1 – – –

During development 33 31 2 – –

After development 37 12 6 8 11

Measure of effectiveness

QALYs and Life Years 15 5 4 2 4

Model Performance 29 27 2 – –

Other 20 10 2 3 5

Not included 7 2 – 3 2

Incremental health effects

Decrease in effects 5 2 1 – 2

No difference 5 3 – 2 –

Increase in effects 41 23 7 4 7

Not included 20 16 2 2

Incremental costs

Savings 54 39 5 5 5

No difference 5 2 – 3 –

Increase in costs 12 3 3 – 6

Include costs of implementing analytics 22 2 5 5 10

Recommendations for research & development

Focus development on improving the analytics 30 23 2 2 3

Validation and feasibility of implementation 19 13 3 2 1

Development for other clinical areas or subgroups 11 8 2 1 –

Pricing and economics of the analytics 9 2 3 – 4

Cost-effectiveness research 5 4 – 1 –

Development of the intervention that follows 3 3 – – –

Multidisciplinary collaboration 2 2 – – –

Refer to big data in the text 6 6 – – –

Potential to be classified as big data analytics 20 8 5 4 3

Abbreviations: QALYs, quality adjusted life years.
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Big data analytics
We found that less than a third of all papers (n¼20) might fulfil cri-

teria for classification as “big data analytics” (Table 2). Most papers

were included because their volume might be large enough to be

considered big data (ie, N>100 000, imaging data) and studies that

used monitoring data were included because of the potential speed

with which the data is collected (velocity). Eight of these papers

used medical history data,32,37,40,44,45,50,60,68 5 used imaging

data,72–74,76,78 4 used monitoring data,80,82,83,87 and 3 used omics

data.89,94,44,96 Most were partial economic evaluations (n¼15) and

12 were performed after development. All but 544,76,80,83,94 corrob-

orated expectations that big data analytics could result in cost-

savings, varying from US$126 per patient89 to more than US$500

million for the entire US healthcare system.72 However, only a hand-

ful of papers included the costs of the analytics.73,74,76,87,94,96

DISCUSSION

In this review, we aimed to determine the health and economic im-

pact of big data analytics for clinical decision-making. We found

that expectations of big data analytics with respect to savings and

health benefits are not yet reflected in the academic literature. Most

studies are partial economic evaluations and the costs of implement-

ing analytics are scarcely included in the calculations. To ensure op-

timal decision-making, guidelines recommend a full economic

evaluation that includes all relevant costs for payers (ie, costs of ana-

lytics). Our results align with earlier research noting deployment

costs are rarely considered while these costs can be a major barrier

to successfully implementing analytics.99

We found that a small subset might be classified as big data ana-

lytics. We adopted a broad definition of big data to maximize the

number of studies that would be considered as studies of big data.

Therefore, the actual number of studies would be even lower if

papers were to be assessed by a panel of experts. This corroborates a

previous study from 2018 which found that quantified benefits of

big data analytics are scarce.1

The studies were grouped into 4 categories according to the data

sources used, which were similar to those reported by Mehta et al.1

Two main differences were that we grouped all databases that

reported information relating to a patient’s medical history (instead

of separating claims and EHR data) and we included a category that

evaluated analytics for monitoring data generated in the hospital.

This category was not available in the classification used by Mehta

et al. However, they reported some categories (ie, social media and

wearable sensors) that are not yet represented in the literature on

economic evaluations. None of the studies evaluated technologies

that used patient-generated data collected using different methods

such as healthcare trackers.

Recommendations for future economic evaluations
Good policy making decisions about the use of analytics requires

knowledge of the impact that the analytics will have on costs and

health outcomes. With this in mind, policy makers could provide

incentives to developers of analytics to perform good-quality eco-

nomic evaluations. Economic evaluations of analytics are still scarce

and the studies that were available often did not adhere to best-

practice guidelines, thereby limiting their value to inform decision-

making. Often a partial instead of a full economic evaluation was

performed, costs of purchasing and implementing the analytics were
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excluded, or only intermediate outcomes were reported. For payers

and policy makers, excluding for instance the costs of the analytics

could result in an underestimation of the investment needed to im-

plement the technology or an overestimation of its financial benefits.

By means of incentives, policy makers could stimulate developers to

adhere to guidelines and best practice recommendations (ie, Drum-

mond,23 Buisman,26 Morse99) This could improve the quality of

results and thus their ability to inform decision-making.

We found a relatively high number of studies that performed an

economic evaluation of analytics during development compared to

other fields (ie, drug or medical device development).100,101 A possi-

ble explanation for this is the high cost of validating and deploying

analytics, known important barriers to implementation.11,99 Few ar-

tificial intelligence and big data analytics solutions have been imple-

mented successfully.3,11 To overcome this challenge, Frohlich et al

recommend the use of pilot trials to illustrate the potential effective-

ness and efficiency of analytics. These results can then be used to

find new investors for clinical research.11 In our results, we also saw

that those without a conflict of interest (ie, academia) were more in-

clined to publish during development which might be explained by

the need to attract funding for further development.

Defining big data to assist evaluation
Without consensus on a definition, no objective assessment can be

made as to whether investments following the introduction of big

data in healthcare have realized expectations, whether they can be

considered good value for money, and whether future investments

should be stimulated. In our analysis, we found that it likely that a

small number of studies have performed an economic evaluation of

big data analytics. However, this absolute number is uncertain since

a clear definition of “big data” is still lacking almost 10 years after

its introduction in healthcare. For policy makers and those who

wish to practice evidence-based medicine, it is essential to know

where and how big data analytics would result in health and finan-

cial benefits before investing in products described in mainstream

media as “big data” technologies (ie, Afirma GSC, You-

Script).102,103 This remains a challenging task if there is no consen-

sus on its definition. Therefore, we recommend experts in the field

reconsider the possibility of generating a quantitative definition of

big data in healthcare.

Defining big data is no easy task, and we think that a definition

will only be accepted by the healthcare field if it is developed by a

multidisciplinary collaboration of experts from academia, health-

care organizations, insurers, federal entities, policy makers, and

commercial parties. Many authors have described the term in

slightly different words,1,104 some have tried to quantify,105 and

others have purposefully refrained from doing so.14 Auffray et al14

stated in 2016 that a single definition of big data would probably be

“too abstract to be useful” and proposed the use of a workable defi-

nition in which big data covers the high volume and diversity of

data sources managed with best-practice technologies such as ad-

vanced analytics solutions. However, descriptions such as “best-

practice,” “advanced,”14 or “traditional”106 are time-dependent.

What is “traditional” in 2014 is not necessarily “traditional” in

2020. Thus, perhaps a definition of big data should quantify the

“data” element, include a concrete list of analytics that are consid-

ered advanced or best practice, be time-dependent, and be updated

regularly. We recognize that it might be extremely difficult to

achieve wide consensus and we do not think this can be realized

without support from academic, clinical, policy, federal, and com-

mercial stakeholders.

Limitations
One limitation of our research is that economic evaluations do not

always describe the analytics element of the intervention that was

being evaluated. For instance, in studies of omics data, the papers

Table 2. Classification of papers that could be defined as “big data” studies based on the criteria of volume, velocity, and variety. These

papers represent a subset of the initial 71 papers

Volume Velocity Variety

Article Next generation

sequencing data

Medical history data

with N> 100,000

Imaging data

published after 2013

Monitoring data

published after 2013

Combines multiple

data types

Burton (2019) X

Duggal (2016) X

Golas (2018) X

Hunter-Zinck (2019) X X

Jamei (2017) X

Lee (2015) X X

Rider (2019) X

Wang (2019) X

Carballido-Gamio (2019) X

Crespo (2019) X

Philipsen (2015) X

Sato (2014) X

Sreekumari (2019) X

Brocklehurst (2018) X

Calvert (2017) X

Hollis (2018) X

S�anchez-Quiroga (2018) X

Brixner (2016) X

Mathias (2016) X

Nicholson (2019) X

Total 2 6 5 4 5
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generally referred to the tool (ie, Afirma GSC) but did not describe

the analytics used in this tool. One way to ensure that economic

evaluations that assess a big data technology are included in future

reviews would be to specify explicit tools that might contain big

data analytics (ie, Afirma GSC) for each data type in a search strat-

egy. However, such a list is likely to be very long, and this will also

be challenging without a definition of big data. Research into the

economic value of big data analytics might also be facilitated by bet-

ter reporting in economic evaluations on the data and analytics used

for development. Another limitation is that studies that did not refer

to cost estimations in their title/abstract were excluded. This could

have led to exclusion of studies that perform a cost estimation but

do not report this as a primary outcome in the abstract. A possible

solution for future research would be to include studies for full-text

screening when 1 of the authors is a health economist or employed

in a health policy or economics department.

Also, since our review included only published economic evalua-

tions, it is possible that our results are influenced by the absence of an

incentive to submit an academic paper and by publication bias. Com-

mercial developers do not always have an incentive to publish but do

have an incentive to market their products using the results of eco-

nomic analyses. If these studies do not include costs of analytics in

their estimation of benefits, this would only underline the importance

of our recommendations. It is also possible that studies that do not

find a technology cost-effective include costs of analytics more often

and are rejected for publication because of negative results.

Methodological limitations were that study selection and data

extraction were performed by a single reviewer due to the size of the

hits from the search strategy and the fact that Business Review Com-

plete (BSC) was not included in the literature search. While this may

have resulted in the exclusion of some relevant studies, we expect

this number to be small. Moreover, this does not affect the conclu-

sions of our study. Our search was limited to analytics for decision-

making of clinical experts at the individual patient level. There are

many other ways in which analytics could improve health, such as

managing epidemics and policy making to improve population

health that were beyond the scope of this article. To conclude, it is

possible that developers sometimes have a valid reason for not in-

cluding costs of analytics which we did not consider in this study.

CONCLUSION

This is the first study to assess the health and economic impact of

big data analytics for clinical decision-making. At present the poten-

tial benefits of big data analytics for clinical practice cannot yet be

corroborated with academic literature despite high expectations. We

found that economic evaluations were sometimes used to estimate

the potential of analytics. However, many studies were partial eco-

nomic evaluations and did not include costs of implementing analyt-

ics. Therefore, economic evaluations that adhere to best-practice

guidelines should be encouraged. This and the lack of an appropri-

ate definition of big data complicate justification of future expenses

and makes it exceedingly difficult to determine whether expectations

of big data analytics have thus far been realized. Therefore, we rec-

ommend key experts in the field of data science in healthcare recon-

sider the possibility of defining big data analytics for healthcare.
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