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Abstract

Halopyridines are key building blocks for synthesizing pharmaceuticals, agrochemicals, and 

ligands for metal complexes, but strategies to selectively halogenate pyridine C–H precursors are 

lacking. We designed a set of heterocyclic phosphines that are installed at the 4-position of 

pyridines as phosphonium salts and then displaced with halide nucleophiles. A broad range of 

unactivated pyridines can be halogenated, and the method is viable for late-stage halogenation of 

complex pharmaceuticals. Computational studies indicate that C–halogen bond formation occurs 

via an SNAr pathway, and phosphine elimination is the rate-determining step. Steric interactions 

during C–P bond cleavage account for differences in reactivity between 2- and 3-substituted 

pyridines.

Graphical Abstract

INTRODUCTION

Haloarenes are fundamental building block compounds in which the carbon–halogen bond 

enables access to an array of derivatives with precise regiocontrol (eq 1).1 Furthermore, 

haloarenes are inherently valuable in functional molecules and frequently occur in 

pharmaceuticals and agrochemicals.2 Halogenation methods are historically important in 

synthetic chemistry; numerous seminal advances in synthetic methodology use the carbon–

halogen bond as a platform, and haloarene synthesis by electrophilic aromatic substitution 

(EAS) reactions is central to understanding aromatic reactivity.3 In EAS processes, reaction 

Corresponding Authors: Robert S. Paton – Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, 
United States; robert.Paton@colostate.edu, Andrew McNally – Department of Chemistry, Colorado State University, Fort Collins, 
Colorado 80523, United States; andy.mcnally@colostate.edu.
Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c04674

The authors declare no competing financial interest.

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c04674.
Experimental procedures, spectral data and details of the computational methods (PDF)
Molecular coordinates and thermochemistry data (ZIP)

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2020 September 30.

Published in final edited form as:
J Am Chem Soc. 2020 June 24; 142(25): 11295–11305. doi:10.1021/jacs.0c04674.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/jacs.0c04674?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c04674?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c04674/suppl_file/ja0c04674_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c04674/suppl_file/ja0c04674_si_002.zip


of the arene π-system with an electrophilic halogen source forms the carbon– halogen bond. 

However, this reactivity principle typically favors halogenation of electron-rich and electron-

neutral aromatics. Electron-deficient π-systems, such as pyridines, are electronically 

mismatched toward EAS processes; their halogenation reactions require harsh conditions 

and are significantly more limited in scope.4 Developing broadly applicable pyridine 

halogenation methods will address current limitations in accessing essential synthetic 

halopyridine intermediates and biologically relevant molecules.5

Positional selectivity is a useful way to classify pyridine halogenation reactions. EAS 

processes are 3-selective and often require strong mineral acids as solvents or Lewis acid 

promotion with elevated temperatures and elemental halides.6 Lower temperatures and 

alternate electrophiles can be used to halogenate pyridines, but electron-donating groups are 

typically required.7 2-Selective halogenation reactions use pyridine N-oxides, and Hartwig 

reported that AgF2 directly 2-fluorinates pyridines.8,9 Two strategies are generally used to 

halogenate pyridines at the 4-position (eq 2). First, metalation-trapping sequences exploit 

directing groups such as carbonyls and halides.10 Second, sequences that convert pyridines 

into N-oxides are followed by 4-selective nitration. Halopyridines are then formed directly 

by treatment with PHal3 or P(O)Hal3 reagents, or by displacing the nitro group with a 

nucleophilic halide and then reducing the N-oxide.11,12 Requiring preinstalled functional 

groups, strong bases, oxidants, and highly acidic media limits the applicability of these 

approaches.13 As a result, there are considerably fewer commercial 4-halopyridines than 

other isomers, and those available can be prohibitively expensive. Our goal was to develop a 

general strategy to halogenate pyridines at the 4-position that tolerates a range of functional 

groups as well as steric and electronic variance.14 Herein, we present a two-step approach 

that hinges on designing heterocyclic phosphine reagents (eq 3). The process uses metal 

halides, or halogen acids, to displace electrophilic phosphonium ions, applies to other 

azines, and functions on complex substrates including late-stage halogenation of 

pharmaceuticals.
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RESULTS AND DISCUSSION

Phosphonium salts can be selectively formed at the 4-position of pyridines and displaced by 

nucleophiles.15 We envisioned that nucleophilic halides could displace the phosphonium 

group and considered two mechanistic pathways at the outset: halide addition to the 

phosphonium ion to form a P(V) intermediate followed by ligand coupling or an SNAr 

pathway with PPh3 as a leaving group.16 As there are no reports of C–Hal bond formation 

via phosphorus ligand–ligand coupling reactions, we strongly preferred an SNAr 

mechanism, and in either case, we suspected the halide countercation would play an 

important role in coordinating to the pyridine N-atom.

We tested a set of nucleophilic chloride sources with isomeric salts 1 and 2 (Scheme 1A). 

Despite investigating a range of reaction conditions, only low yields of 3 and 4 could be 

obtained using HCl in dioxane at 80 °C. Given that these PPh3-derived phosphonium salts 

did not react efficiently with chloride nucleophiles, we considered that more electrophilic 

analogs were required. Therefore, we implemented a set of criteria to prepare more reactive 

phosphonium salts, as shown in Scheme 1B. First, introducing a pyridyl ligand would 

increase the electrophilicity of the resulting phosphonium salt, where two pyridines, rather 

than one, could be activated by Lewis or Brønsted acids.17 Second, we altered the C–P bond 

substitution pattern in the pyridine component to ensure the pyridine of interest was 
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selectively chlorinated; both ligand-coupling processes and SNAr reactions are unfavorable 

at the 3-position of pyridines.16–18 Third, installing a 2-CF3 group would prevent reaction 

with Tf2O during the salt-forming stage and ensure C–P bond formation occurs on the 

pyridine of interest, rather than on the phosphine reagent.19 Importantly, preparing 

phosphine I is straightforward in one step from diphenylphosphine and 2-trifluoromethyl-5-

bromopyridine (Scheme 1C).

To test the hypothesis that more electrophilic phosphonium salts are viable for chlorination, 

we selected 2-phenylpyridine and 3-phenylpyridine as test substrates (Scheme 1D). We 

synthesized the corresponding phosphonium salts 5 and 6 in good yields and then subjected 

them to a range of metal chlorides or HCl and examined a range of reaction parameters (see 

the Supporting Information (SI) for full details). The results showed that 3-substituted 

isomer 3 was obtained in high yields using LiCl or HCl, but significantly lower amounts of 

the 2-substituted isomer 4 formed. Notably, we did not detect any chlorination of the 2-CF3 

pyridine group in the crude reaction mixtures. Our hypothesis that phosphonium 

electrophilicity can influence reactivity appeared valid; however, as 2-substituted salt 6 was 

less reactive, we suspected that steric destabilization from the 3-phenyl substituent in 5 was 

also a significant factor. Therefore, to chlorinate 2-substituted pyridines, we speculated that 

more electrophilic phosphonium salts were required (Scheme 2A) and synthesized modified 

phosphine II, possessing two pyridyl groups (Scheme 2B). In line with this approach, salt 7 
was prepared in good yield, and heating in dioxane at 80 °C with 4 equiv of LiCl, or 1 equiv 

of HCl, efficiently formed chlorinated product 4 (Scheme 2C). An increase in 

electrophilicity of phosphonium salts is predicted computationally at both the 4-position and 

the P-atom in the order of salts derived from PPh3, I, and II (Figure S2). A one-pot salt-

formation–halogenation reaction is possible, but significant decreases in yield and reversion 

of the phosphonium salt to the parent C–H compound are observed (Table S6).

A 3,5-disubstituted pyridine presented further opportunity to examine the effects of steric 

destabilization on the of reactivity phosphonium salts with chloride nucleophiles (Scheme 

3). Based on the observations in Scheme 1, the significant steric hindrance in these systems 

was expected to result in more facile chlorination. Forming salt 8 proved challenging using 

phosphine I, although the subsequent chlorination reaction was effective (9). In contrast, we 

obtained PPh3-derived salt 10 in a much higher yield, and 9 formed in comparable yield. 

The greater steric destabilization present in these systems outweighs the requirement for 

electron-deficient phosphoniums such that designed phosphines I and II are replaceable with 

PPh3 for the reactions of 3,5-disubstituted substrates.

After identifying a set of phosphines, we explored the substrate scope of the pyridines and 

related azines amenable to the chlorination process (Table 1). Based on the substitution 

pattern, we matched pyridines with one of three phosphines I, II, and PPh3. For pyridines 

possessing a 3- or 5-substituent (but not both), monoheterocyclic phosphine I is most 

appropriate. From Scheme 1, both HCl and LiCl are effective chlorination reagents, but we 

proceeded with LiCl because of the likelihood of a broader substrate scope and compatibility 

with acid-sensitive groups, such as Boc-protected amines. As a typical case, chloropyridine 

11 was obtained in 56% yield using LiCl, without evidence of Boc-deprotection. Using HCl 

as a reagent, the corresponding secondary amine was observed in the reaction mixture using 
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LCMS analysis. The chlorination step tolerated 3-substituents such as pyrazoles, alkynes, 

and other substituted pyridines (12–15). The two-step process also chlorinated 2,3- and 2,5-

disubstituted pyridines in moderate to good yields for each stage (16–22). In this set, 

chlorinating a 2-cyanopyridine was unsuccessful using LiCl or HCl, and the starting 

phosphonium salt was largely unreacted (19). On the other hand, 2-chloro substituents can 

be present, although the reaction requires 72 h to reach completion (20). We hypothesized 

that the cyano group prevents pyridine activation by the Lewis or Brønsted acid. Phosphine I 

is also a suitable reagent for quinolines and isoquinolines for which we obtained isomeric 

chlorinated products 23–26 with complete control of regioselectivity. Diazines 27–29 were 

successfully chlorinated, as were fused triazines 30 and 31.

Phosphine II and PPh3 were then used to chlorinate 2- and 3,5-substituted pyridines. Using 

the former, we obtained an SF5-aryl derivative 32 without difficulty. The acid-sensitive 

groups in chlorides 33 and 34 were again preserved using LiCl; we observed TBS 

deprotection by LCMS analysis using HCl as a chloride source. Forming chlorides 35 and 

36 is viable using PPh3-derived salts, and as pyrimidines undergo facile SNAr reactions, we 

proposed that this attribute would also enable chlorination using PPh3 as a reagent. Using 

this approach, we obtained aryl-substituted chloropyrimidines 37 and 38 in moderate yields.

Next, we developed protocols to install halides other than chlorides using phosphonium salt 

7 as a test substrate (Scheme 4). For bromination, low yields of product 39 were obtained 

using LiBr, KBr, or Bu4NBr as nucleophiles at 80 °C. However, when we combined 4 equiv 

of LiBr with 1 equiv of TfOH, bromination occurred in good yield, presumably because 

protonation generates a more reactive pyridinium salt. Using the analogous iodide salts, 

either no reaction or low yields of pyridyl iodide 40 were observed at 80 °C; heating the 

reactions at 120 °C and prolonging the reaction times to 48 h did result in iodination, and 

again, combining LiI with TfOH was optimal. Using these conditions, we chose a selection 

of substrates from Table 1 to examine bromination and iodination (Scheme 4). The reaction 

conditions translated well to halogenate a 2-aryl-SF5 derivative (42 and 43). Phosphonium 

salts derived from II and PPh3 also required acid for bromination and iodination with 

products 45–48 obtained in moderate to good yields. When we examined fluoride 

nucleophiles or HF sources, phosphonium salts predominately cleaved to the parent C–H 

compounds and no fluorinated products formed using these protocols. Efforts are currently 

ongoing in our laboratory to improve this fluorination process.

Diversifying complex pyridine-containing structures is valuable for medicinal chemistry, and 

selective halogenation represents a means to access multiple analogs by subsequently 

transforming the C–Hal bond. We first tested compounds representative of drug fragments or 

lead compounds (Table 2). Using phosphine I, a precursor to the antihistamine Bepotastine 

was chlorinated and brominated (49 and 50). Halogenation of two isomeric ester-containing 

structures proceeded in good overall yields for the two-step process, and ester C–O bonds 

were not cleaved during the process (51–53). Site-selective halogenation is a valuable 

attribute of this protocol; we obtained bis-pyridyl halides 54–56 with exclusive selectivity 

favoring the pyridine without 2- or 6-substitution in each case. Table 2 also shows late-stage 

halogenation of pyridine-containing pharmaceuticals. The 2-substituted pyridines in 
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Bisacodyl and a Vismodegib derivative were chlorinated to form 57 and 58 using phosphine 

II. Monoheterocyclic phosphine I was used to generate a variety of halide derivatives of 

Etoricoxib, Loratadine, Nicoboxil, and Abiraterone Acetate, with exclusive 4-selectivity in 

all cases (59–66). With the 4-position in the pesticide Quinoxyfen blocked, the 2-position of 

the quinoline was chlorinated (67). Finally, the two-step process was effective at chlorinating 

the quinoxaline core within a protected version of Varenicline in moderate yield (68).

To further emphasize that diverse libraries of analogs could be generated using this 

halogenation strategy, we tested our previously reported site-selective switching protocol on 

an MK-1064 precursor (Scheme 5).20 Using phosphine PPh3 and DBU as a base, salt 

formation and subsequent chlorination occurred on the 2,6-unsubstituted ring to form 

chloride 69, in line with the kinetically preferred reaction with Tf2O. Although the yield of 

the subsequent chlorination was low, only one isomer formed. Applying the base-switch 

protocol, using NMe2Cy as well as 2 equiv of Tf2O and II, allowed us to synthesize 

isomeric pyridyl chloride 70 with excellent control of regioselectivity and site selectivity. 

This result aligns with the rationale where the phosphine adds to the Tf-activated 2- and 3,5-

disubstituted pyridine rings to form dearomatized adducts. Steric interactions between the 3- 

and 5-substituents and the trialkylamine base prevent rearomatization, whereas these effects 

are absent in the 2-substituted pyridine. Numerous transformations then apply to 69 and 70 
to synthesize libraries of isomeric compounds.

COMPUTATIONAL STUDIES

We turned to quantum chemical calculations to model the mechanism of carbon–halogen 

bond formation, using density functional theory (DFT)21 with the SMD solvation model 

(1,4-dioxane)22 to study these reactions. Results are presented at the ωB97X-D/def2-

QZVPP//ωB97X-D/def2-SVP level of theory. The presence of anionic nucleophiles and 

hypervalent P(V) species present potential challenges for computation,23 and benchmarking 

studies were carried out. The use of larger basis sets and additional diffuse basis functions 

during geometry optimizations and single-point energy calculations, including Def2-TZVPP, 

Def2-TZVPPD, and Def2-QZVPPD, were examined, and very similar results were obtained 

with these different protocols (see the Studies using larger basis sets with diffuse functions 

section of the SI). We selected 3-Ph and 2-Ph phosphonium salts 5 and 6, respectively, as the 

substrates for the computational study. We included the triflate counteranion in all 

calculations unless otherwise stated, since the calculated energy of the dissociated ions in 

dioxane is considerably larger than that of the ion pair (19.0 kcal/mol). However, the overall 

mechanism is qualitatively unaffected by omitting this counterion (Figure S7).

First, we address the question of whether hypervalent P(V) intermediates are formed prior to 

C–X bond formation. Figure 1 shows the calculated Wiberg Bond Orders (WBOs)24 and 

bond distances of P–X bonds for the optimized geometries of 6 with the different halides 

used experimentally. Chloro-, bromo-, and iodophosphoranes do not form stable pentavalent 

geometries and instead prefer phosphonium halide ion-pair structures. Fluorophosphoranes, 

on the other hand, form stable P(V) intermediate structures as illustrated in Figure 1B. These 

DFT results are consistent with tabulated P–X bond strengths (P–Br: 267, P–Cl 289, P–F 
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439 kJ/mol).25 Excluding fluorination, these results implicate the direct attack of the halide 

at carbon (i.e., an SNAr pathway) rather than via phosphorus ligand-coupling.

Figure 2A shows the overall Gibbs energy profile for the formation of chloropyridines 3 and 

4. The computed transition structures (TSs) indicate an SNAr-type mechanism takes place.26 

A relatively flat potential energy surface exists, across which two discrete steps occur: 

addition of chloride at the 4-position of an activated pyridinium (here modeled by HCl 

protonation) in TS-I, and the subsequent cleavage of the C–P bond in TS-II. The 

intervening Meisenheimer complex, Int-III, is a stable intermediate structure, although this 

lies very close in energy with the first TS. The second TS, forming products 3 and 4 and 

phosphine byproduct, lies highest in energy and is the rate-limiting step. Figure 2B 

highlights the critical role of a Brønsted or Lewis acid additive (either HCl or LiCl), as the 

activation barrier is raised prohibitively high (42.5 kcal/mol for salt 6) in their absence, via a 

concerted mechanism.27 The calculations also clarify why reagents such as Bu4NCl are not 

effective due to the relatively weak Lewis acidity of the ammonium counterions with 

pyridine Lewis bases. The differential reactivity of 2- and 3-substituted pyridines results 

from steric interactions that are enhanced as the phosphine departs in TS-II (Figure 2C). 

Compared to TS-I, the phosphine lies further out of the aromatic plane, bringing it closer of 

the ring substituents. As seen in the NCI plots, the P-aryl groups make contact with the 3-Ph 

substituent of salt 5 while these interactions are less significant with the more remote 2-Ph 

group in salt 6. The computed ΔΔG‡ of 2.8 kcal/mol is indicative of around a 50-fold 

increase in reactivity of 5 over 6. Computations suggest that this energy difference is due to 

sterics, rather than arising from differences in pyridine electronics, since similarly sized but 

electronically distinct groups are predicted to behave in the same way (Figure S6). This 

finding reinforces the role of sterics over electronic effects, and we believe the hypothesis is 

generalizable to a reasonable extent based on the substrates examined in this study.

The computed activation barrier obtained in 1,4-dioxane (20–22 kcal/mol) would be 

indicative of room temperature sreactivity,28 whereas experimentally we required heating to 

80 °C. We attribute this in part to the heterogeneous nature of the reaction, and potential 

solubility effects, that were not modeled computationally. Qualitative conclusions 

concerning the C– Hal bond-forming process and the differences in reactivity between 2- 

and 3-substituted pyridines, which are consistent with experiment, are unaffected by these 

differences.29,30

Finally, we considered the failure of phosphonium salt fluorination to occur under these the 

same conditions, and the return of the parent C–H bond as the major outcome. As described 

above, a mechanistic switch vs other halogens is expected, involving the intermediacy of a 

P(V) fluorophosphorane. In the optimized geometry of this intermediate, the axial P–Cpyr 

bond is lengthened, and therefore weakened, considerably relative to its equatorial 

counterpart (1.96 and 1.91 vs 1.84 Å, Figure 1C), and can potentially decompose in the 

same manner as when pyridine phosphonium salts react with carbonates, hydroxides, and 

alkoxides.31 Elongation of the axial P–Cpyr bond can occur relatively easily 

(computationally, stretching by 0.2 Å costs just 3.9 kcal/mol), such that reaction of this 

pyridyl group with an external proton source at the 4-position is possible; we have not 
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identified the nature of the proton source at this point in our studies and have observed the 

same result with rigorously dried reaction reagents and solvents.

CONCLUSIONS

In summary, we have developed a set of designed phosphine reagents that enable 4-selective 

halogenation of pyridines. The key design element was to incorporate electron-deficient 

pyridine ligands on the phosphine reagents so that the corresponding phosphonium salts are 

more reactive toward halide nucleophiles. Pyridines with a variety of substitution patterns 

and variations in steric and electronic properties are amenable to this two-step strategy, 

which is also effective for late-stage halogenation of complex pharmaceuticals. 

Computational studies indicate that C–Hal bond formation occurs via a stepwise SNAr 

pathway that requires N-activation of the pyridyl group. Phosphine elimination is the rate-

determining step. Steric interactions between the departing phosphine and pyridyl 

substituents are most pronounced during C–P bond cleavage and account for differences in 

reactivity between 2-and 3-substituted pyridines. Given the deficiency in existing methods to 

produce these halogenated products, we anticipate the protocol will be useful in medicinal 

chemistry. Current efforts are focusing on elucidating the mechanism of the carbon–halogen 

bond-forming step and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) WBO and distances of P–X bonds of the different species formed with phosphonium 

salts and different halogen anions. (B) Representation of the most stable conformers when 

using F and Cl atoms. (C) Lengths of axial and equatorial P–C bonds, in Å, in multiple 

conformations of the fluorophosphorane studied.
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Figure 2. 
(A) Boltzmann weighted relative G in kcal/mol during the formation of products 3 (3-Ph 

substituent, black line) and 4 (2-Ph substituent, red line) at 80 °C (ωB97X-D/Def2-QZVPP//

ωB97X-D/Def2-SVP, SMD with 1,4-dioxane). (B) Reaction coordinate to form 4 when 

using Cl– instead of HCl. ΔG‡ is shown in kcal/mol. (C) Representations of the most 

favorable TS-I and TS-II steps with P–C and Cl–C bond distances (in Å) when using 5 and 

6, along with NCIPlot32 surfaces of the corresponding TS-II steps. Bonds involved in the 

TSs are represented as yellow lines. Phosphorus substituents and the TfO– counteranion are 

omitted for clarity in some cases.
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Scheme 1. Design of Heteroarylphosphinesa,b

aIsolated yields shown (unless otherwise stated). bYields calculated by 1H NMR using 1,3,5-

trimethoxybenzene as an internal standard.
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Scheme 2. Chlorination of 2-Substituted Pyridinesa,b

aIsolated yields shown (unless otherwise stated). bYield calculated by 1H NMR or GC 

analysis using 1,3,5-trimethoxybenzene as an internal standard.
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Scheme 3. Chlorination of 3,5-Disubstituted Pyridinesa,b,c

aIsolated yields shown (unless otherwise stated). bSalt isolated with 5% of an unknown 

impurity. cYields calculated by 1H NMR using 1,3,5-trimethoxybenzene as an internal 

standard.
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Scheme 4. Pyridine Bromination and Iodinationa,b

aIsolated yields. bYields by 1H NMR or GC using 1,3,5-trimethoxybenzene 

triphenylmethane as internal standards.
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Scheme 5. Site-Selective Chlorinationa

aIsolated yields are shown. Standard C–P bond formation: Heterocycle (1.0 equiv), Tf2O 

(1.0 equiv), PPh3 (1.1 equiv), DBU, (1.0 equiv), CH2Cl2. Switch C–P bond formation: 

Heterocycle (1.0 equiv), Tf2O (2.0 equiv), Phosphine II (2.0 equiv), NMe2Cy (2.0 equiv), 

CH2Cl2.
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