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A B S T R A C T   

COVID-19 pandemic has underlined the impact of emergent pathogens as a major threat to human health. The 
development of quantitative approaches to advance comprehension of the current outbreak is urgently needed to 
tackle this severe disease. 

Considering different starting times of infection, mathematical models are proposed to represent SARS-CoV-2 
dynamics in infected patients. Based on the target cell limited model, the within-host reproductive number for 
SARS-CoV-2 is consistent with the broad values of human influenza infection. The best model to fit the data was 
including immune cell response, which suggests a slow immune response peaking between 5 to 10 days post- 
onset of symptoms. The model with the eclipse phase, time in a latent phase before becoming productively 
infected cells, was not supported. Interestingly, model simulations predict that SARS-CoV-2 may replicate very 
slowly in the first days after infection, and viral load could be below detection levels during the first 4 days post 
infection. 

A quantitative comprehension of SARS-CoV-2 dynamics and the estimation of standard parameters of viral 
infections is the key contribution of this pioneering work. These models can serve for future evaluation of control 
theoretical approaches to tailor new drugs against COVID-19.   

1. INTRODUCTION 

Epidemics by infectious pathogens are a major threat to humankind. 
The year 2020 has uncovered one of the biggest pandemics in history, 
the novel coronavirus SARS-CoV-2 that was first reported in Wuhan, 
Hubei Province, China in December 2019 (CDC, 2020). While China did 
a large effort to shrink the outbreak, COVID-19 developed into a 
pandemic in more than 210 countries moving the epicentre from China 
to Europe and consequently to America(CDC, 2020). Several countries 
are planning to relax the strict social distancing regulations. Neverthe
less, epidemic rebound risks are latent(Lopez & Rodo, 2020; 
Ricardo-Azanza & Vargas-Hernandez, 2020). 

Coronaviruses are found in different species of animals (e.g. bats and 
camels) and can evolve to infect humans by droplets from coughing or 
sneezing. In February 2003, the Severe Acute Respiratory Syndrome 
(SARS-CoV) was reported in Asia resulting in 8422 cases with a case- 
fatality rate of 11% (CDC, 2020). Later, in 2012, the Middle East res
piratory syndrome (MERS-CoV) was identified in Saudi Arabia with 
about 2506 cases, killing 862 between 2012 and 2020 (CDC, 2020). 
Metagenomics studies previous to the COVID-19 outbreak envisaged the 

possibility of future threats due to the identification of several sequences 
closely related SARS-like viruses circulating in the Chinese bat pop
ulations (He et al., 2014; Menachery et al., 2015). 

So far, no vaccine or antiviral drug is likely to be available soon. 
Either monoclonal antibody or vaccine approaches have failed to 
neutralize and protect from coronavirus infections (Menachery et al., 
2015). Therefore, individual behaviour (e.g early self-isolation and so
cial distancing), as well as preventive measures such as hand washing 
and covering when coughing are critical to control the spread of 
COVID-19 (Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 
2020; Mejia-Hernandez & Hernandez-Vargas, 2020; Prather, Wang, & 
Schooley, 2020). Additionally to these measures, several travel re
strictions and quarantines have taken place in many countries around 
the globe. 

Epidemiological models have highlighted that social distancing in
terventions to mitigate the epidemic is a key aspect (Anderson et al., 
2020; Lopez & Rodo, 2020; Mejia-Hernandez & Hernandez-Vargas, 
2020; Ricardo-Azanza & Vargas-Hernandez, 2020). Nevertheless, 
there are many epidemiological unknowns with the COVID-19 
pandemic (Anderson et al., 2020). The case fatality rate for COVID-19 
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is about 0.3-1% (CDC, 2020). However, adjusted estimations by Baud 
et al. (2020) indicates that the COVID-19 mortality rate could be as high 
as 20% in Wuhan. In its early stages, the epidemic has doubled in size 
every 7.4 days (Li et al., 2020). Moreover, the basic reproductive 
number was estimated to be 2.2 (95% CI, 1.4 to 3.9) (Li et al., 2020). 
Based on the relatively long incubation period for COVID-19, about 5–6 
days, (Anderson et al., 2020; CDC, 2020) suggested a considerable 
pre-symptomatic infectiousness. 

While there are many mathematical models developed at epidemi
ological level for COVID-19 to discuss the transmission of SARS-CoV-2 
and de-confinement strategies (Anderson et al., 2020; Ferretti et al., 
2020; Lopez & Rodo, 2020; Mejia-Hernandez & Hernandez-Vargas, 
2020; Peng, Yang, Zhang, Zhuge, & Hong, 2020; Ricardo-Azanza & 
Vargas-Hernandez, 2020), there are too few models at within-host level 
to understand SARS-CoV-2 replication cycle, interactions with the im
mune system, and drug effects (Du & Yuan, 2020; Ejima et al., 2020; 
Gonçalves et al., 2020; Goyal, Cardozo-Ojeda, & Schiffer, 2020; Su, 
Ejima, Ito, Iwanami, & Ohashi, 2020; Wang et al., 2020). Among 
different model structures to represent viral dynamics, the target cell 
limited model has served to represent several diseases such as HIV 
(Hernandez-Vargas and Middleton (2013); Perelson and Ribeiro (2013); 
Pinkevych et al. (2016); Rong and Ã (2009)), Hepatitis (Graw and Per
elson (2015); Reluga, Dahari, and Perelson (2009)), Ebola (Nguyen, 
Binder, Boianelli, Meyer-Hermann, and Hernandez-Vargas (2015); 
Nguyen and Hernandez-Vargas (2017)), influenza (Baccam, Beau
chemin, Macken, Hayden, and Perelson (2006); Handel, Longini, and 
Antia (2007); Hernandez-Vargas et al. (2014b); Pawelek, Dor, Salmeron, 
and Handel (2016)), among many others. A detailed reference for viral 
modelling can be found in Hernandez-Vargas (2019). Very recent data 
from infected patients with COVID-19 has enlightened the within-host 
viral dynamics. Zou et al. (2020) presented the viral load in nasal and 
throat swabs of symptomatic patients. Interestingly, SARS-CoV-2 repli
cation cycles may last longer than flu, about 10 days or more after the 
incubation period (Anderson et al., 2020; Zou et al., 2020). Here, we 
contribute to the mathematical study of SARS-CoV-2 dynamics at the 
within-host level based on data presented by Wölfel et al. (2020). 

2. MODELLING SARS-CoV-2 DYNAMICS IN THE HOST 

Using ordinary differential equations (ODEs), different mathematical 
models are presented to adjust the viral kinetics reported by Wölfel et al. 
(2020) in patients with COVID-19. ODEs are solved using the MATLAB 
library ode45, which is considered for solving non-stiff differential 
equations (Mathworks, 2020). 

Note that the viral load (Wölfel et al., 2020) was sampled from throat 
swab cultures and measured in copies/ml, g Swab, at Log10 scale. The 
clinical data set of 9 individuals is from Wölfel et al. (2020). Due to close 
contact with index cases and an initial diagnostic test before admission, 
patients were hospitalized in Munich (Wölfel et al. (2020)). Viral load 
kinetics were reported in copies/ml per the whole swab for 9 individual 
cases. All samples were taken about 2 to 4 days post symptoms. Further 
details can be found in Wölfel et al. (2020). 

Parameter identification aims to estimate model parameters based 
on minimizing the error between model prediction and experimental 
data. The viral load is measured in Log10 scales, thus, parameter fitting 
is performed using the following cost function: 

Definition 1. Root Mean Squared Logarithmic Error (RMSLE). This 
is the difference on Log10 scales between the model output (yi), and the 
experimental measurement (yi). This writes as follows 

RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(

log(yi) − log
(

yi

))2
√

(1)  

where n is the number of measurements. Turn out that the minimi
zation of a cost function implies a nonlinear optimization problem, 

complex, with several variables, and multiple minima. This complexity 
can be tackled using evolutionary optimization algorithms such as the 
Differential evolution (DE) algorithm (Storn & Price, 1997). Note that 
several optimization solvers were considered in previous modeling work 
(Hernandez-Vargas et al., 2014b), including both deterministic (fmincon 
Matlab routine) and stochastic (e.g Genetic and Annealing algorithm) 
methods. Simulation results revealed that the DE global optimization 
algorithm is robust to initial guesses of parameters than other mentioned 
methods (Torres-Cerna, Alanis, Poblete-Castro, Bermejo-Jambrina, & 
Hernandez-vargas, 2016). 

Note that multiple models can provide the same fit with observed 
experimental data. Thus, it becomes necessary to choose between 
different models. The standard approach to model selection is first es
timate all model parameters from the data, then select the model with 
the best-fit error and some penalties on model complexity. A very used 
model selection criteria is defined next. 

Definition 2. Akaike information criterion AIC. The corrected (AIC) 
writes as follows: 

AICc = Nlog
(

RSS
N

)

+
2MN

N − M − 1
(2)  

where N is the number of data points, M is the number of unknown 
parameters and RSS is the residual sum of squares obtained from the 
fitting routine. AIC is used here to compare the goodness-of-fit for 
models that evaluate different hypotheses (Burnham & Anderson, 
2002). A lower AIC value means that a given model describes the data 
better than other models with higher AIC values. Small differences in 
AIC scores (e.g. < 2) are not significant (Burnham & Anderson, 
2002). Redundant parametrization in models provides difficulties to 
estimate the parameters uniquely. Ambiguous parameters θsub ⊂ θ may 
be varied without changing the output y resulting in constant values for 
the cost function to minimize e.g residuals. This is particularly important 
for biological systems, where a large variability is presented from one 
host to another host, limiting the prediction value of mathematical 
models and estimated parameters (Xia & Moog, 2003). 

Definition 3. Identifiability. (Xia & Moog, 2003) A mathematical 
model is identifiable if θ can be uniquely determined from the measur
able output y(t); otherwise, the system is unidentifiable. 

Note that a mathematical model is algebraically identifiable may still 
be practically non-identifiable if the amount and quality of the data are 
insufficient and the data manifest large deviations. The computational 
approach by Raue et al. (2009) exploits the profile likelihood to deter
mine identifiability and is considered here. This methodology can detect 
both structurally and practically non-identifiable parameters (Hernan
dez-Vargas, 2019). 

2.1. Target cell limited model for SARS-CoV-2 

The mathematical model used here to represent SARS-CoV-2 dy
namics is based on the target cell-limited model (Ciupe & Heffernan, 
2017; Hernandez-Vargas, 2019; Perelson, 2002), which writes as 
follows: 

dU
dt

= − βUV , (3)  

dI
dt

= βUV − δI, (4)  

dV
dt

= pI − cV. (5) 

Equation (3) represents the dynamics of susceptible cells (U) while 
the equation (4) represents the dynamics of infected cells (I). Note that 
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SARS-CoV-2 can replicate in a variety of cell types, including epithelial 
cells. In fact, SARS-CoV-2 infection may promote the induction of 
endotheliitis in several organs as a direct consequence of viral involve
ment (Varga et al., 2020). 

Viral dynamics are represented by (5). Viral particles (V) infect 
susceptible cells with a rate β ((copies/ml)1 day1). Once cells are pro
ductively infected, they release virus at a rate p (copies/ml day1 cell1) 
and virus particles are cleared with a rate c (day1). Infected cells are 
cleared at rate δ (day1) as a consequence of cytopathic viral effects and 
immune responses. 

It is still debatable in the literature which compartments SARS-CoV-2 
can infect, however, there is a common agreement that the infection 
mainly takes place in respiratory epithelial cells (Tyrrell & Myint, 1996). 
Previous mathematical modelling work for human influenza infection 
has computed the number of target cells in an adult, U(0), is about 4 ×
108 cells (Baccam et al., 2006). Initial values for infected cells (I(0)) are 
taken as zero. Note that V(0) cannot be measured as it is below detect
able levels (about 100 copies/ml) (Wölfel et al., 2020). Previous 
modelling work has suggested using half of the detection levels (less 
than 50 copies/ml) (Hernandez-Vargas et al., 2014b; Thiebaut et al., 
2006). Here, using a regression model, the initial viral concentration V 
(0) was estimated to be about 0.31 copies/ml. 

Remark 1. SARS-CoV-2 kinetics are measured after the onset of 
symptoms (Wölfel et al., 2020). However, it is unknown when the initial 
infection took place. Patients infected with MERS-CoV in Oh et al. 
(2016) showed that the virus peaked during the second week of illness, 
which indicated that the median incubation period was 7 days (range, 2 
to 14) (Oh et al., 2016). The incubation period for SARS-CoV-2 has a 
median time of 2-5 days from exposure to symptoms onset (Lauer et al., 
2020). Therefore, for simulation purposes, we explore different sce
narios of initial infection day (ti), that is, -7, -3 days before the onset of 
symptoms. 

Definition 4. Infectivity. This is the ability of a pathogen to establish 
an infection (Diekmann, Heesterbeek, & Metz, 1990). To quantify 
infectivity, the within-host reproductive number (R0) is employed to 
compute the expected number of secondary infections produced by an 
infected cell (Heffernan, Smith, & Wahl, 2005). When R0 < 1, one 
infected cell would infect less than one cell. Thus, the infection would be 
cleared from the population. Otherwise, if R0 > 1, the pathogen would 
be able to invade the target cell population. For the model (3)-(5), the 
reproductive number is 

R0 =
U(0)pβ

cδ
. (6)   

Remark 2. Using only the viral titters for parameter fitting procedures 
in the target cell limited model would result in identifiability problems 
(Nguyen, Klawonn, Mikolajczyk, & Hernandez-Vargas, 2016). That is, 
parameter values are rescaled and consequently the validity of param
eters would be doubtful to extract biological meaning. As the viral 
clearance is attributed to a process not directly related to the immune 
system or viral particle per se, the viral clearance parameter (c) is fixed 
here with previous estimates in humans, e.g approximately 2.4 for 
influenza and HIV (Baccam et al., 2006; Hernandez-Vargas & Middleton, 
2013). 

Assuming the day of infection closer to the post symptom onset (pso), 
day 0, numerical results show high reproductive numbers (R0) and 
higher infection rates (β) as presented in Table 1. Considering the 
Remark 1, it is assumed the initial day of infection is -7 or -3 pso, 
therefore, the rate of infection (β) would be slow but associated with a 
high replication rate (p). Note that individual parameter values should 
not be interpreted because of identifiability problems. Fig. 1 reveals that 
viral replication is below detectable levels from 3 to 4 days post- 

infection. Independently of the starting infection time (ti), numerical 
results at the Table 1 reveal high reproductive numbers (more than 
4.91), implying that SARS-CoV-2 would invade most of the susceptible 
target cells. 

Remark 3. An additional state known as the “Eclipse Phase” has been 
proposed by Beauchemin et al. (2008); Holder et al. (2011) to represent 
the time frame of the infection more adequately. Newly infected cells 
spend time in a latent phase (E) before becoming productively infected 
cells (I), this can be written as follows: 

dU
dt

= − βUV , (7)  

dE
dt

= βUV − kE, (8)  

dI
dt

= kE − δI, (9)  

dV
dt

= pI − cV. (10) 

Cells in the eclipse phase (E) can become productively infected at 
rate k. For SARS-CoV-2, we found that the eclipse phase model (AIC ≈
34) does not improve the fitting respect to the target cell model. This can 
be attributed to identifiability problems as we only have data for the 
viral titter (Nguyen et al., 2016). 

2.2. Model for SARS-CoV-2 and its immune response 

Previous modelling studies have acknowledged the relevance of the 
immune T-cell response to clear influenza virus (Hancioglu, Swigon, & 
Clermont, 2007; Hernandez-Vargas et al., 2014b; Lee et al., 2009; Miao 
et al., 2010; Pawelek et al., 2012; Saenz et al., 2010). Here, we adapted a 
minimalistic model derived by Almocera, Nguyen, and Hernandez-
Vargas (2018); Boianelli et al. (2015) to represent the interaction be
tween influenza and immune response dynamics. The model assumes 
that the virus (V) level induces the proliferation of T cells (T) as follows: 

dV
dt

= pV
(

1 −
V
K

)

− cT VT − cV (11)  

dT
dt

= sT + rT
(

Vm

Vm + km
T

)

− δT T (12) 

Equation (11) refers to SARS-CoV-2 dynamic. Viral replication is 
modelled with a logistic function with a maximum carrying capacity K 
and a replication rate p. K is the maximum viral load for each of the 
patients in Wölfel et al. (2020). The initial viral concentration V(0) is 
0.31 copies/ml. The virus is cleared at a rate c, which is considered as in 
the Remark 2. The term cTVT represents the rate of killing infected cells 
by the immune response. 

Equation (12) represents the T cell response against SARS-CoV-2. T 

Table 1 
Estimations for the target cell model (3)-(5). The “Mean” arrow represents the 
average of parameter fitting results to the data sets of 9 patients from Wölfel 
et al. (2020). The 95% confidence intervals (95% CI) of the parameters is 
computed based on the fitting results for the 9 patients. The parameter c is fixed 
in 2.4.  

ti  β δ p R0 AIC 

-3 Mean 4.71× 10− 8  1.07 3.07 22.53 11.64  

95% 
CI 

[0.075-21.3]×
10− 8  

[0.71- 
1.91] 

[0.2- 
360] 

[9.13- 
70] 

[6.81- 
20.91] 

-7 Mean 1.58× 10− 8  1.04 5.36 13.51 7.59  

95% 
CI 

[0.03-13.5]×
10− 8  

[0.61- 
2.01] 

[0.2- 
362] 

[4.5- 
45.12] 

[4.91- 
20.8]  
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cell homoeostasis is represented by sT = δTT(0), where T(0) is the initial 
number of T cells and δT is the half life of T cells. It is assumed T(0) is 
about 106 cells. The steady state condition must be satisfied to guarantee 
the T cell homeostatic value T(0) = sT/δT in the absence of viral infec
tion. The half life of T cells is approximately 4-34 days (McDonagh & 
Bell, 1995), therefore we take δT = 0.1. T cells can proliferate at a rate r. 
It is assumed that the activation of T cell proliferation by the virus fol
lows a log-sigmoidal form with half saturation constant kT. The coeffi
cient m relates to the width of the sigmoidal function. While different 
values of m were tested, m = 2 rendered the best fit. 

The summary of fitting procedures at ti = − 3 dpso is presented in 
Table 2, which highlights that the mean of AICs values of the model (11)- 
(12) are smaller than those presented in the target cell limited model. 
Results of parameter fitting are portrayed in Fig. 2. Independently of the 
starting infection day, the immune response by T cells peaks between 5 
to 10 dpso as shown in Fig. 3. Note that this model represents viral 
clearance only for patients D, H and I. In the other patients the viral 
clearance was not reported in the data (Wölfel et al., 2020). 

3. CONTROL INSIGHTS INTO COVID-19 TREATMENT 

The novel coronavirus SARS-CoV-2 first reported in Wuhan in 
December 2019 has paralysed our societies, leading to self-isolation and 
quarantine for several days. Indeed, COVID-19 is a major threat to 
humans, with alarming levels of spread and death tolls, in particular on 
the elderly. COVID-19 is the first pandemic after the H1N1 ”swine flu” in 
2009 (CDC, 2020). While many mathematical models have concentrated 
on the epidemiological level predicting how SARS-CoV-2 would spread, 
this paper aims to model SARS-CoV-2 dynamics at the within-host level 
to quantify SARS-CoV-2 infection kinetics in humans. 

Data from Oh et al. (2016) showed that MERS-CoV levels peak 

during the second week with a median value of 7.21 (log10 copies/mL) 
in the severe patient group, and about 5.54 (log10 copies/mL) in the 
mild group. For SARS, the virus peaked at 5.7 (log10 copies/mL) be
tween 7 to 10 days after onset (Peiris et al., 2003). For COVID-19, the 
viral peak was approximately 8.85 (log10 copies/mL) before 5 dpso 
(Wölfel et al., 2020). Liu et al. (2020) found that patients with severe 
disease reported a mean viral load on admission 60 times higher than 
mild disease cases. Additionally, high viral levels persisted in severe 
patients for 12 days after onset (Liu et al., 2020). 

The reproductive number for human influenza ranges from 3.5 - 75 
(Baccam et al., 2006; Hernandez-Vargas, Colaneri, & Middleton, 
2014a), which is consistent with the values reported here for COVID-19. 
Interestingly, both of our models when fitted to the data set of patient A 
predict that the virus could replicate below detection levels for the first 4 
dpi. This may explain why infected patients with SARS-CoV-2 would 
take from 2-14 dpi to exhibit symptoms. 

The model with immune system (Fig. 3) highlights that the T cell 
response is slowly mounted against SARS-CoV-2 (Anderson et al., 2020). 
Thus, the slow T cell response may promote low inflammation levels 
during the first days post infection (Hernandez-Vargas et al., 2014a), 
which might be a reason to the observations during COVID-19 pandemic 
of the detrimental outcome on French patients that used non-steroidal 
anti-inflammatory drugs (NADs) such as ibuprofen. However, so far, 
there is not any conclusive clinical evidence on the adverse effects by 
NADs on SARS-CoV-2 infected patients. 

Accelerating therapeutic and prophylactic medication against SARS- 
CoV-2 is unprecedented. Among the different medical strategies, anti
virals are central in inhibiting one or several parts of the viral cycle, see 
Fig. 4. Network proximity analyses of drug targets by Zhou et al. (2020) 
prioritized 16 potential anti-SARS-CoV-2 drugs among them melatonin, 
mercaptopurine, and sirolimus. Additionally, Zhou et al. (2020) iden
tified three potential drug combinations (e.g sirolimus plus dactinomy
cin, mercaptopurine plus melatonin, and toremifene plus emodin). 
Based on a rhesus macaque model of MERS-CoV infection, (de Wit et al., 
2020) revealed that early remdesivir treatment may provide a clear 
clinical benefit with a decrease virus replication in the lungs. 

Several stages would take place to optimize protocols for the 
different drugs pointed out against SARS-CoV-2. Mathematical models 
can help to evaluate in silico the potential of hypothetical drugs. For 
instance, mathematical terms to represent antiviral effects in the model 
(3)-(5) writes as follow 

dU
dt

= − (1 − uh)βUV, (13)  

dI
dt

= (1 − uh)βUV − δI, (14)  

dV
dt

= (1 − ur)pI − cV, (15)  

where uh and ur would represent the effect of inhibiting the replication 

Fig. 1. Target cell model for SARS-CoV-2. Continuous line are simulation based on the taget cell model (3)-(5). Blue circles represents the data from Wölfel et al. 
(2020). The most complete data sets to represent the exponential viral growth in Wölfel et al. (2020) were for the patient A in panel (A) and the patient B in panel (B), 
respectively. Infection time was assumed at -7 and -3 days post symptoms onset. 

Table 2 
Estimations for model with immune system (11)-(12) using experimental data 
from Wölfel et al. (2020) assuming m = 2 and infection time -3 dpso.  

Patient r cT p kT AIC 

A 0.794 1.58× 10− 6  6.31 7.94 × 107 -1.33 

B 0.126 7.94× 10− 6  12.58 1.99 × 106 11.43 

C 0.020 1.58× 10− 5  19.95 1.58 × 103 14.28 

D 0.251 1.58× 10− 6  6.31 3.16 × 104 7.16 

E 0.316 1.00× 10− 6  5.01 5.01 × 105 16.04 

F 0.398 1.26× 10− 6  6.31 1.00 × 107 7.07 

G 0.158 1.99× 10− 6  6.31 7.94 × 104 24.59 

H 0.050 2.52× 10− 5  31.62 2.52 × 103 10.23 

I 0.794 1.58× 10− 8  3.98 1.00 × 103 -42.49 

Mean 0.194 1.89× 10− 6  8.57 1.26 × 105 5.22 

95% CI [0.05- 
0.79] 

[1-15.8] ×
10− 6  

[5.01- 
12.58 ] 

[1.58-2000] 
× 103 

[-1.33- 
24.59]  
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cycle and the release of virus, respectively. In this direction, (Gonçalves 
et al., 2020) found that in order to reduce the peak viral load by more 
than 2 logs, drug efficacy needs to be greater than 80% if treatment is 
administered after symptom onset. In a similar direction, the modelling 
work by Goyal et al. (2020) predicted that to lower viral area under the 
curve therapies need to be given before the SARS-CoV-2 viral load peaks. 

Additionally, mathematical models have served to investigate the 
effect of immune therapies such as in vivo neutralization of pro- 

inflammatory cytokines during secondary streptococcus pneumoniae 
infection post influenza infection (Sharma-Chawla et al., 2019). In the 
context of COVID-19, our model with immune response (11)-(12) could 
integrate a term to represent antiviral effects (ur) as well as immune 
modulation (um) to promote the proliferation of T cells, this would be 
represented as follows: 

dV
dt

= (1 − ur)pV
(

1 −
V
K

)

− cT VT − cV, (16) 

Fig. 2. SARS-CoV-2 dynamics with immune responses. Continuous lines are the simulations based on (11)-(12). Blue circles represent the data from Wölfel et al. 
(2020). Infection time was assumed at -3 days post symptom onset. 
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dT
dt

= sT + umrT
(

Vm

Vm + km
T

)

− δT T. (17) 

In other viral infections such as Ebola Nguyen and Hernandez-Var
gas (2017), monoclonal antibodies (mAbs) played an important role to 
inhibit viral replication, e.g the term (1 − ur)p while increasing viral 
clearance e.g cV. Another way to suppress SARS-CoV-2 replication is 
when in co-infections with other viruses because of SARS-CoV-2 has a 
slower growth rate than the other viruses examined in Pinky and 

Dobrovolny (2020). Our parameters fitted with the data sets from 
Wölfel et al. (2020) support also the idea of a slow replication by 
SARS-CoV-2. 

The humoral response against SARS-CoV-2 is urgently needed to 
evaluate the protection to reinfections. A longitudinal study in rhesus 
monkeys by Bao et al. (2020) uncovered that infected monkeys pre
sented viral replication at 7 days post-infection (dpi). A significant in
crease of specific IgG was detected at 14, 21 or 28 dpi. Infected monkeys 
were re-challenged after specific antibody tested positively and 

Fig. 3. T cell immune response dynamics. Continuous lines are the simulations based on (11)-(12). Infection time was assumed at -3 days post symptom onset.  
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symptoms vanished. Monkeys with re-exposure presented no recurrence 
of COVID-19, highlighting that protection can be presented to subse
quent exposures. Regarding antiviral drugs, Remdesivir treatment has 
shown a good prophylactic effect during the first 24 hours post 
MERS-CoV infection in a non-human primate model (de Wit et al., 
2020). Furthermore, several benefits were reported for treatment if 
provided during 12 hours post MERS-CoV infection (de Wit et al., 2020). 
Our study here mainly addressed T cell responses, therefore, future 
modelling attempts should be directed to establish a more detailed 
model of antibody production and cross-reaction (Hernandez-Mejia & 
Hernandez-Vargas, 2020) as well as in silico testing of different antivirals 
(Hernandez-Mejia, Alanis, Hernandez-Gonzalez, Findeisen, & 
Hernandez-vargas, 2019). 

There are technical limitations in this study that need to be high
lighted. The data for SARS-CoV-2 kinetics in Wölfel et al. (2020) is at the 
onset of symptoms. This is a key aspect that can bias parameter esti
mation as mathematical models initiate on the day of infection. In fact, 
we could miss viral dynamics at the onset of symptoms as well as the 
SARS-CoV-2 viral load peak. For example, from throat samples in Rhesus 
macaques infected with SARS-CoV-2, two peaks were reported on most 
animals at 1 and 5 dpi (Shan, 2020). 

In a more technical aspect using only viral load on the target cell 
limited model to estimate parameters may lead to identifiability prob
lems (Miao, Xia, Perelson, & Wu, 2011; Nguyen & Hernandez-Vargas, 
2015; Nguyen et al., 2016; Xia, 2003). Thus, our parameter values 
should be taken with caution when parameter quantifications are 
interpreted to address within-host mechanisms. For the model with the 
immune system, there is not data confrontation with immune response 
predictions, thus, new measurements on cytokines and T cell responses 
would uncover new information. 

The race to develop the first vaccine to tackle COVID-19 has started 
with the first clinical trial just 60 days after the genetic sequence of the 
virus. Modelling work developed in this paper paves the way for future 
mathematical models of COVID-19 to reveal prophylactic and thera
peutic interventions at multi-scale levels (Almocera & 
Hernandez-Vargas, 2019; Feng, Cen, Zhao, & Velasco-Hernandez, 2015; 
Feng, Velasco-Hernandez, Tapia-Santos, & Leite, 2012; Handel & 
Rohani, 2015; Nguyen, Mikolajczyk, & Hernandez-Vargas, 2018; 
Parra-Rojas, Nguyen, Hernandez-Mejia, & Hernandez-Vargas, 2018). 
Further insights into immunology and pathogenesis of SARS-CoV-2 will 
help to improve the outcome of this and future pandemics. 

Ultimately, previous modelling efforts here and from others (Gon
çalves et al., 2020; Goyal et al., 2020; Pinky & Dobrovolny, 2020) to 
represent SARS-CoV-2 could be further extended with control theoret
ical approaches such as optimal control and model predictive control to 
schedule drug candidate as well as immune modulators. Control theory 

in cooperation with Pharmacokinetic (PK)/Pharmacodynamic (PD) 
modelling have served for optimizing therapies in HIV and influenza 
infection (Chang & Astolfi, 2008; Hernandez-Mejia et al., 2019; Riva
deneira, Caicedo, Ferramosca, & Gonzalez, 2017; Rivadeneira et al., 
2014). 
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