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Abstract

How genome-wide association studies-identified single-nucleotide polymorphisms (SNPs) affect remote genes remains
unknown. Expression quantitative trait locus (eQTL) association meta-analysis on 496 prostate tumor and 602 normal
prostate samples with 117 SNPs revealed novel cis-eQTLs and trans-eQTLs. Mediation testing and colocalization analysis
demonstrate that MSMB is a cis-acting mediator for SNHG11 (P < 0.01). Removing rs10993994 in LNCaP cell lines by
CRISPR/Cas9 editing shows that the C-allele corresponds with an over 100-fold increase in MSMB expression and 5-fold
increase in SNHG11 compared with the T-allele. Colocalization analysis confirmed that the same set of SNPs associated with
MSMB expression is associated with SNHG11 expression (posterior probability of shared variants is 66.6% in tumor and
91.4% in benign). These analyses further demonstrate variants driving MSMB expression differ in tumor and normal,
suggesting regulatory network rewiring during tumorigenesis.

Introduction
Genome-wide association studies (GWAS) have now identified
over 160 loci at which common genetic polymorphisms are
associated with the risk of a diagnosis of prostate cancer
of any grade (1–3). As this has been typical for results from
such genome-wide scans, the identified SNPs do not exert
their effects through changes in protein coding regions of
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genes. Instead, many of the single-nucleotide polymorphisms
(SNPs) associated with prostate cancer risk are associated
with gene expression changes at the mRNA level in both the
normal and cancerous prostate tissues (4–9). Some of these
quantitative associations extend beyond mRNA expression, as
several prostate cancer risk SNPs are associated with levels
of prostate-secreted proteins in prostate secretions and blood
(10–13). Prostate cancer risk variants are enriched in regulatory
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Figure 1. Schematic representation of findings illustrating SNHG11 mediated through MSMB, the SNPs involved and their differential effect depending on tumor versus

normal samples.

regions of prostate tissue (14, 15), further supporting a role for
regulatory variation in prostate cancer risk.

How GWAS-identified prostate cancer risk SNPs affect
expression of genes, in particular remote ones, remain unknown.
It has been proposed that ‘information’ about the slightly
increased risk of disease indicated by a SNP, typically with odds
ratios between 1.1 and 1.2, flows through the transcriptional
network first by influencing expression of nearby gene(s) and
then propagating through the network (16). If this is the case,
then downstream ‘trans’ targets, which are indirectly regulated
by the risk-conferring SNP, can be identified and characterized. If
so, then expression of these trans-genes could be mediated by the
activity of a cis-expression quantitative trait locus (eQTL) gene,
and such cis-eQTL genes could mediate numerous trans-eQTL
genes. Following on the ideas suggested by Yao et al. (17) and
Larson et al. (18), here we test this hypothesis by meta-analysis of
prostate eQTL datasets from 496 tumor and 602 normal samples,
followed by a systematic discovery of trans-eQTLs, mediation,
and colocalization testing and determine the extent to which
such cis-mediated trans-eQTLs correspond with prostate cancer
risk SNPs to build our understanding of the regulatory networks
underlying prostate cancer risk, as summarized in Figure 1.

Results
To begin to understand the role of regulatory variation in
modulating gene expression in prostate cancer, we performed
whole-genome genotyping and whole-transcriptome expression
profiling of prostate tissue from 91 individuals from Turku Uni-
versity Hospital, Turku, Finland, who underwent radical prosta-
tectomy for prostate cancer. Of those, we were able to obtain and
maintain high quality RNA from 56 samples containing prostate

cancer tissue and 58 adjacent samples containing normal
prostate tissue for gene expression microarray analysis (Sup-
plementary Table 1). We genotyped ∼2.5 million SNPs in one
sample from each of the 91 unique individuals contributing
prostatectomy specimens on the Illumina Omni-2.5 array (see
section Materials and Methods). After quality control (QC), we
were left with 2 366 230 SNPs. Expression levels of 18 087 genes
were measured in 114 RNA samples that passed QC using the
Illumina Human HT-12 array; we refer to this dataset as the
‘Finland dataset’.

We first asked to what extent SNPs in these individuals
correlate with gene expression in both the normal and tumor
prostate tissues. Given our limited sample size, we only asked
this for cis-effects, where we limited consideration to genes
within 200 kb of the SNP of interest, thereby greatly reduc-
ing the multiple testing burden. To speed up the computation,
we adjusted gene expression levels for principal components
of ancestry and batch, as this has been previously described
(19). This approach allows us to run the longer, multivariate
regression model fitting algorithm once per gene instead of once
per SNP/gene pair, and then rapidly compute the association
statistics using the analytical solution for single variable linear
regression without covariates. We identified 622 SNP/gene pairs
that were significant in the tumor tissue and 778 in normal
at a significance level of P < 0.05 after correcting for multiple
testing within each of the two analyses (tumor and normal,
Supplementary Table 2).

eQTLs for prostate phenotype-associated SNPs

While the above results generally describe eQTLs in prostate tis-
sue, they do not describe the extent to which prostate cancer risk
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Figure 2. Top five SNPs from trans-eQTL hotspot analysis and their cis- and trans-associated genes. Boxes indicate cis-eQTLs. A different color is used to represent each

eQTL hotspot SNP.

SNPs correlate with gene expression. To answer this question, we
focused on 117 SNPs previously associated with prostate cancer
or levels of prostate-secreted proteins (Supplementary Table 3).
To identify genes influenced by the genotype at these prostate
cancer associated-SNPs, we first performed a cis-eQTL analysis.
Analyzing the tumor and adjacent normal tissues separately, we
asked if each SNP was associated with expression levels of any
of the nearby genes. After correcting for the number of tests
at false discovery rate (FDR) 10%, two significant associations
(IRX4 with rs12653946 (adjusted P-value 2.03 × 10−4), RGS17 with
rs1933488 (adjusted P-value 4.06 × 10−4) were found in the tumor
tissue (Supplementary Table 4), both of which had been pre-
viously identified (4, 20, 21). Analysis of the adjacent normal
tissue showed these two eQTLs again, along with several others
(Supplementary Table 4). Trans-eQTL analysis did not identify
any additional significant results.

We hypothesized that the limited sample size in our study
severely reduced our ability to find eQTLs. To address this prob-
lem, we used meta-analysis to combine prostate eQTL datasets.
We combined our samples from the Finland dataset with 74
individuals from the Genotype-Tissue Expression (GTEx) project
(22), 470 individuals from a study from the Mayo Clinic (6) and
440 individuals from The Cancer Genome Atlas (TCGA) (23)
(Supplementary Table 5).

Using these datasets, we performed a meta-analysis
searching for both cis- and trans-eQTLs of the 117 SNPs of
interest. We applied meta-analysis to tumor (TCGA, Finland)
and normal samples (GTEx, Mayo, Finland) datasets separately,
though we combined normal tissue from prostate cancer
patients and individuals without prostate cancer. Because of
differing types of attainment and processing of the studies,
we opted for a sample size-based meta-analysis approach. At

an FDR of 10%, we identified 39 cis-eQTLs in tumor samples
and 141 cis-eQTLs in normal samples. Most of these had been
previously reported in analyses from single cohorts as expected,
validating our meta-analysis approach, while we were also
able to identify novel ones. Comparing these results from
meta-analysis to the previously reported cis-eQTL findings
from 470 normal samples in a single cohort (6), we observed
53 cis-eQTLs in common and 58 novel, including rs3096702
with NOTCH4 (P = 4.06 × 10−4, q = 2.33 × 10−3 for normal). This
is of particular interest as functional studies suggest both
tumor suppressive and oncogenic roles of notch in prostate
cancer (24).

For trans-eQTLs, at an FDR of 10%, filtering for the same
direction of effect, we identified 10 trans-eQTLs in normal (Sup-
plementary Table 6a) and 33 in tumor (Supplementary Table 6b)
samples.

Trans-eQTL hotspot analysis

When SNPs at a trans-eQTL locus affect the expression of mul-
tiple genes, the region is defined as a trans-eQTL hotspot (17). To
identify SNPs that seemed to have the largest effect on the gene
expression network, we performed trans-eQTL hotspot analysis,
where we rank-ordered SNPs by the number of genes for which
they are trans-eQTLs. Detailed in Figure 2 are the top five SNPs, of
which two are at genes that code for prostate-secreted proteins:
rs10993994 for MSMB and rs17632542 for KLK3 [PSA]; while the
other three are at transcription factor genes: rs12653946 which
is confirmed as a cis-eQTL with IRX4 (4), rs1512268 which is near
NKX3–1, a transcription factor known to play a role in prostate
cancer (25) and rs339331, which has been shown to associate
with RFX6 activity (26).
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Table 1. Results from the mediation analysis testing if rs10993994’s
effects on trans genes is mediated through cis target genes

rs10993994

Cis Trans ACME P-value ADE P-value

MSMB SNHG11 <0.01 0.50
PTPRO 0.06 0.76
SPON2 0.04 0.26
NDRG1 0.04 0.58
ACPP 0.94 0.94

NCOA4 SNHG11 0.98 0.02
PTPRO 0.96 0.78
SPON2 0.92 0.38
NDRG1 0.98 0.74
ACPP 1.00 0.64

AGAP7 SNHG11 0.86 0.02
PTPRO 0.88 0.86
SPON2 1.00 0.44
NDRG1 0.84 0.56
ACPP 0.88 0.90

ACME, average causal mediation effect; ADE, average direct effect. Significant
p-values are highlighted in bold.

Mediation analysis of trans-eQTLs

As many of these SNPs are both cis- and trans-eQTLs, we next
asked if these trans-eQTL effects are mediated through the cis-
eQTL and this has been previously described (17). Causal mech-
anisms can be statistically investigated by mediation analy-
sis, where a set of linear regression models is fitted and the
estimates of ‘mediation effects’ are computed from the fitted
models. For cases where a particular SNP is both a cis-eQTL and
a trans-eQTL, we used mediation analysis to test if the effect we
observe between the eQTL SNP and the target trans gene is medi-
ated at least in part through the SNP’s effect on the cis gene. We
tested all five trans-eQTL hotspots to find only rs10993994 gave
significant results (Supplementary Table 8), so we investigated
this hotspot further. The SNP rs10993994 is located in the pro-
moter of the MSMB gene, which encodes β-microseminoprotein
(β-MSP), one of the major secretory products of the prostate; this
SNP is known to alter promoter function (27).

Out of five trans-eQTLs of the rs10993994 SNP, three appear
to be mediated through MSMB expression levels (SNHG11, SPON2
and NDRG1) while none appear to be mediated through NCOA4
and AGAP7 (Table 1; Supplementary Table 8). MSMB and NCOA4
are only 6 Mbp apart and are both known cis-eQTL target genes
for rs10993994 (5). As this cis-eQTL rs10993994 has been previ-
ously proposed to mediate prostate cancer risk through both
MSMB and NCOA4 cis genes (5), this demonstrates how increas-
ing sample size and analysis of trans-eQTLs and mediation as
proposed here will build our understanding of the regulatory
networks underlying prostate cancer risk. A second SNP at the
MSMB locus, rs3123078, is also associated with SNHG11 and
mediated through MSMB (P < 0.01).

Colocalization analysis of trans-eQTLs

We hypothesized that for a true trans-eQTL, besides a significant
result from mediation analysis, we would observe colocaliza-
tion of the signals of the cis- and trans-eQTLs. While mediation
analysis took into consideration only one SNP at a time, colo-
calization allowed us to investigate all the SNPs in the region.
Colocalization further allowed the use of meta-analysis results
rather than a single dataset used for mediation analysis. A high

posterior probability for H3 indicates distinct causal variants,
whereas a high posterior probability for H4 indicates common
shared variants, in other words evidence for cis-mediation (see
section Materials and Methods).

Applying colocalization analysis to the cis- and trans-eQTLs
at the MSMB/NCOA4 locus we found strong evidence that the
same SNPs are driving the association with MSMB and SNHG11.
This is indicated by a high H4 posterior probability (H4 posterior
probability 91.4% in normal tissue and 66.6% in tumor tissue;
Fig. 3), along with similar patterns of association of the SNPs
between the cis-MSMB and trans-SNHG11, further supporting
the high H4 posterior probabilities (Fig. 4A, E, B and F). In the
normal tissue, none of the other trans-eQTLs showed evidence
for colocalization with MSMB or NCOA4, though there was some
evidence for colocalization of AGAP7 and SNHG11 eQTL signals
(Fig. 3A). In contrast, in the tumor tissue, the SNPs driving both
MSMB and NCOA4 expression colocalize with the SNPs driving
trans expression of SNHG11, NDRG1 and ACPP. As colocalization
analysis was designed for independent samples (28), we wanted
to ensure that our use of overlapping samples did not cause us
to substantially bias the results towards H4. We randomly split
each dataset into two halves, one half was used to test the cis-
eQTL and the other was used to test the trans-eQTL. Similar
results were observed (Supplementary Table 10), though with
less confidence that we attribute to the smaller sample size.

Surprisingly, the colocalization results at this locus showed
marked differences between the tumor and normal. To address
this further, we directly compared the eQTL signals between
tumor and normal samples at this locus. Striking differences are
observed through H3 and H4 posterior probabilities along with
the patterns of SNP associations, suggesting a clear difference
between the effects of specific variants in regulatory regions
for normal and tumor tissues (Fig. 4; Supplementary Table 9).
For both MSMB and NCOA4, colocalization analysis suggests that
SNPs at the locus are associated with expression changes in
both genes in tumor and normal tissues. However, different SNPs
are responsible for the signals in tumor and normal tissues as
indicated by the H3 posterior probability of 100% for both genes
when comparing tumor data to normal data (Supplementary
Table 9) and very different patterns of SNP associations (Fig. 4).
In the normal tissue, different SNPs appear to be associated
with expression of MSMB and NCOA4 (H3 posterior probabilities
of 100% for both, Fig. 4A and C), but not AGAP7 (H4 posterior
probability of 59.8%, Supplementary Table 9). In contrast, the
eQTL signals for MSMB and NCOA4 are observed to colocalize
in tumor tissue (H4 posterior probability of 84.5%, Fig. 4B and D;
Supplementary Table 9).

Validation using CRISPR/Cas9-mediated genome editing

To test if alteration of MSMB expression directly influences
SNHG11 levels, we took advantage of isogenic clones of LNCaP
cell lines we had previously generated, where one copy of the
heterozygous SNP rs10993994 was deleted by CRISPR/Cas9 edit-
ing (29). As we had previously shown, removing the T-allele
results in an over 100-fold increase in MSMB expression. We
also observed significant, but more modest, increases in SNHG11,
SPON2 and ACPP expression in this cell line (Fig. 5), consistent
with the colocalization results for tumor tissue (Fig. 3B).

Discussion
Here, we have conducted a comprehensive search of cis- and
trans-target genes whose expression is modified by known
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Figure 3. Colocalization results for SNPs at the MSMB/NCOA4/AGAP7 locus associated with cis and trans genes for (A) normal and (B) tumor. Posterior probabilities of

H0 (no causal variant), H1 (causal variant for cis only), H2 (causal variant for trans only), H3 (distinct causal variants) and H4 (common causal variants) are reported; the

highest probability for each gene pair is in bold.

prostate cancer risk SNPs using an integrative meta-analysis of
several prostate eQTL datasets. These findings demonstrate that
meta-analysis can be an efficient method to obtain the sample
size necessary in eQTL studies to identify weak trans-effects
after correcting for multiple testing.

Using this approach, the strongest evidence for trans-effects
mediated through a cis-effect was for rs10993994, a known cis-
eQTL for MSMB. MSMB codes for β-MSP, one of the three most
abundant proteins secreted by the prostate (30). Histopatholog-
ical studies suggest reduced levels of β-MSP are correlated with
prostate tumors and worse outcomes (31–33). It has been found
to exhibit tumor suppressive properties in vitro (5, 34, 35); other
studies have suggested a fungicidal activity for β-MSP (36).

Our mediation analysis suggests a trans-association of
SNHG11, NDRG1 and SPON2 expression with prostate cancer risk
SNP rs10993994 to be mediated by MSMB expression. A previous
study also found the same for NDRG1 and MSMB (18), further
supporting our mediation approach.

Of the trans effects of rs10993994 mediated through MSMB,
evidence was strongest for SNHG11, as it had the smallest aver-
age causal mediation effects (ACME) P-value (<0.01, Table 1),
including our finding that removing one copy of rs1099394 in
LNCaP results in changes in SNHG11 expression in an allele-
specific manner. SNHG11 is a small nucleolar RNA (snoRNA) host
gene. Transcripts from two introns from this gene are trimmed
down and processed into the H/ACA box snoRNA genes SNORA60

(also known as ACA60) and SNORA71E (also known as ACA39).
H/ACA snoRNA genes guide the pseudouridylation of specific
uredines in RNA; SNORA60 guides pseudouridylation of uridine
1004 in 18S ribosomal RNA, while the target of SNORA71E is
unknown (37).

It is also notable that the colocalization analysis of tumor
samples and the CRISPR/Cas9 experiment suggest rs10993994 is
a trans-eQTL for ACPP mediated through MSMB, while not such
effect is observed in the normal tissue through either mediation
or colocalization analysis. ACPP codes for prostatic acid phos-
phatase. Prostatic acid phosphatase, along with the prostate
specific antigen and β-microseminoprotein (coded for by MSMB),
is one of the three predominant proteins secreted by the prostate
(30). It is also the prostate antigen that the therapeutic prostate
cancer vaccine Sipuleucel-T targets (38). Whether rs10993994
correlates with levels of prostatic acid phosphatase in prostate
secretions or on the membrane of prostate cancer cells is not
known.

From our in-depth analysis of the MSMB/NCOA4 locus, we
observed that the variants driving MSMB expression differ in
tumor and normal cells. This raises the possibility that, at least
at this locus, the regulatory network was rewired during the
oncogenic transformation process. Notably, the locus remains a
cis-eQTL for both MSMB and NCOA4; it is the specific SNPs driving
the association that appear to change. Whether this is a general
phenomenon across eQTLs remains an open question.
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Figure 4. Association of SNPs at the MSMB/NCOA4 locus with MSMB (A and B), NCOA4 (C and D) and SNHG11 (E and F) in normal (benign) and tumor tissue. All P-values

are from the meta-analysis. The color of each SNP indicates the linkage disequilibrium with the most significant SNP in each plot, whose identity is printed.

It should be noted that for our analyses of both normal
and tumor samples, one study represented the majority of the
cases and could be driving our results. Furthermore, the normal
tissue analysis combined adjacent normal tissue from prostate
cancer patients with normal prostates from patients who under-
went surgery or were deceased from other causes. Besides using
an integrative meta-analysis approach, larger single studies of
prostate eQTLs will be needed to insure that one study is not
driving the analysis.

Our approach allows efficient and systematic dissection of
molecular phenotypes and their mediators in human disease.
To the best of our knowledge, this is the first meta-analysis
study of prostate eQTL data, as well as the first application
of colocalization analyses to cis- and trans-eQTLs. The meta-
analysis further identified numerous new cis- and trans-eQTLs
of interest that may play a role in prostate cancer. Combining
mediation analysis and colocalization analysis allows us to both
consider testing focused on one SNP and analysis of an entire
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Figure 5. mRNA expression changes when the C-allele of rs10993994 is present compared with the T-allele (reference). Results are reported as –��CT and are therefore

on the log scale for expression. The results for each gene are normalized to the result from the T-allele cell line; each measurement was performed in duplicate in two

qPCR wells. Error bars represent the standard error of measure. ∗∗∗P < 0.001 and ∗P < 0.05.

SNP set near the cis gene. These results suggest a generaliz-
able computational framework that can be applied to identify
additional cis-mediated trans-eQTLs.

The approaches presented here are generally applicable not
just to studies of gene expression but to additional data types
such as DNA methylation and histone marks as population
scale assays for these variables improve. By integrating meta-
analysis of eQTLs with mediation and colocalization analyses for
prostate cancer risk loci, we identified multiple plausible down-
stream effects mediated by prostate cancer risk genes MSMB and
SNHG11. Our work provides the foundation for novel hypotheses
for further investigation into the functional genetics of prostate
cancer susceptibility and tumor progression.

Materials and Methods
Study subjects and tissue samples

Prostate tissue samples were obtained from prostate can-
cer patients immediately after prostatectomy, as previously
described (39). A tissue sample wedge was obtained from the
suspected cancerous lobe and another from the presumed
control lobe minutes after the prostate was surgically removed.
Each tissue slice’s immediate adjacent tissue was subsequently
histologically examined by a highly experienced genito-urinary
trained pathologist and classified as either histological normal,
prostatic intraepithelial neoplasia (PIN) or cancerous with an
assigned Gleason grade between 2 and 5. All samples were
gathered under a study protocol approved by the local ethics
committee and written informed consent was obtained from
each participant. The study protocol is in accordance with the
Helsinki Declaration of 1975, as revised in 1996.

DNA extraction

DNA was extracted from prostate tissue samples with phe-
nol–chloroform as previously described (40). Briefly, tissue sam-
ples were lysed and treated with proteinase K and RNase A.

Phenol/chloroform/isoamyl alcohol was added and the aque-
ous phase extracted. Twice, chloroform/isoamyl was added and
the aqueous phase extracted. DNA was precipitated with iso-
propanol and washed with ethanol twice. Finally, samples were
dried and re-suspended in nuclease free water.

RNA extraction

Total RNA was extracted as previously described (41). A known
amount of a previously established internal RNA standard was
added to each sample after cell lysis (42). This RNA standard
derives from an artificial and mutant form of KLK3 known as
mmPSA and is inconsequential to the rest of the analysis.

Expression microarray processing

Quality control was performed on each RNA sample; low quality
samples were discarded for low RNA integrity, as measured
visually and by A260/280 and A230/260 ratios. For each sample
passing QC, 200 ng of RNA was prepared into cDNA and then
hybridized on Illumina Human HT-12 microarrays. Raw data
were analyzed in Illumina’s BeadStudio and exported into Partek
Genomic Suite format. Genes that were not expressed in our
samples (defined as <5% of samples expressed above negative
control probes) were removed. Gene-level microarray data were
quantile normalized before analysis.

Processing of genotype data

As each of these datasets generated germline SNP data using
a different platform, the direct overlap of SNPs between all
datasets is limited. Therefore, we took advantage of the linkage
disequilibrium structure of the genome and used established
tools to impute all common variants in all of the samples.
Specifically, we first performed standard quality check using
PLINK (43) on the genotype data in the discovery cohorts by
removing SNPs and individuals with excess missingness, excess
heterozygosity or deviation from Hardy–Weinberg equilibrium.
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Principal component analysis was used to evaluate presence of
batch effect and population substructure (44) in Finland dataset.
We then performed phasing and imputation with SHAPEIT (45)
and IMPUTE2 (46) from the 1000 genomes panel. We only con-
sidered SNPs with an imputation quality of r2 > 0.5 for further
analysis.

Selection of prostate cancer risk SNPs

Our approach to studying prostate cancer eQTLs has focused on
those SNPs previously identified as prostate cancer risk factors.
This primary set of prostate cancer risk SNPs to be analyzed
was derived from the published literature and the NHGRI/EBI
Catalog (47, 48), only considering SNPs for which the evidence
of association exceeds the genome-wide significance level of
5 × 10−7. We augmented this with several SNPs of interest to
our laboratory, including some that had only been previously
associated with levels of prostate-secreted proteins. This list
consisted of 117 SNPs, detailed in Supplementary Table 1 that
were manually curated and reduced by removing SNPs in linkage
disequilibrium.

Datasets and processing for meta-analysis

To perform the meta-analysis, we obtained genotype and
gene expression data from three additional datasets from
dbGaP: Functional Significance of Prostate Cancer Risk SNPs
(phs000985.v1.p1), TCGA (phs000178.v1.p1) and the GTEx Project
(phs000424.v6.p1). Genotype and gene expression data for GTEx
and phs000985 were downloaded from dbGaP; genotype and
gene expression data for TCGA were downloaded as previously
described (49). Reads Per Kilobase Million (RPKM) normalized
gene expression values were used for all datasets. Genes were
selected based on expression thresholds of >0.1 RPKM in at
least two individuals. For genotype data, QC and imputation
were performed as described above.

Meta-analysis of cis- and trans-eQTLs

Meta-analysis of eQTLs consisted of two steps; conducting the
initial eQTL analysis in each cohort independently and then
combining the results. Our eQTL pipeline consists of first adjust-
ing gene expression for known covariates that are available such
as principal components representing population structure (44)
and hidden confounders (50), as well as batch or other differ-
ences among samples, using a previously described approach
(19). Then, for each SNP/gene pair to be tested a simple linear
regression model is used and the significance estimated from
the T statistic. For each analysis, meta-analysis was applied
using METAL software in ‘Sample Size’ mode (51). P-values were
adjusted for multiple comparisons using the FDR method. eQTLs
at FDR of 10% were considered as significant. We define SNPs
that reside within 2 Mb of the transcription start site of an
associated gene to be a cis-eQTLs for that gene, and SNPs that are
at a distance >5 Mb from the transcriptional start site (TSS) of an
associated transcript on the same chromosome or on a different
chromosome to be trans-eQTLs.

Mediation testing of trans-eQTLs

Mediation testing was conducted using the ‘mediation’ package
in R (52). For the primary mediation analysis, we used the largest
single dataset representative of the tissue type (Mayo Clinic for
normal, TCGA for tumor), as the mediation software does not

work out of the box in the meta-analysis framework. Significant
mediation effects were defined at P < 0.05. A significant P-value
in ACME indicates an estimated average increase in the depen-
dent variable among the treatment group that arrives as a result
of the mediators, suggesting cis mediation of the trans-eQTL.

Colocalization analysis of trans-eQTLs

SNP selection was based upon the regions of the cis gene being
investigated. ‘coloc’ R package’s coloc. Abf function (53) was
used to perform colocalization analysis. Based on P-values and
SNP minor allele frequencies, this function calculates posterior
probabilities of different causal variant configurations under
the assumption of a single causal variant for each eQTL asso-
ciation. Posterior probabilities are calculated in terms of five
percentages denoted by H0, H1, H2, H3 and H4, where they rep-
resent no causal variant, causal variants for cis association only,
causal variants for trans association only, distinct causal variants
and common causal variants, respectively. Reported result is
the posterior probability H4 of the SNP being causal for the
shared signal.

Generation of LNCaP clones with isogenic allelic
deletion at the rs10993994 site

The details of targeting the rs10993994 site to engineer cells with
isogenic allelic deletion were mentioned in our previous work
(29). Briefly, PX458-rs10993994-g4a and PX459v2-rs10993994-g4b
plasmids were used to target the site. The prostate cancer cell
line LNCaP (CRL-1740, ATCC, Rockville, MD) was maintained in
Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco)
supplemented with 15% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (Gibco). At 30–70% confluency, 1 μg each
of PX458-rs10993994-g4a and PX459v2-rs10993994-g4b plasmids
was mixed at room temperature with 10 μL Lipofectmine 2000
and 250 μL Opti-MEM mix. Twenty minutes later, the mix was
gently and evenly added to cells cultured in six-well plate. Cells
were returned to incubator and changed to fresh medium 4–
6 h later. Forty-eight hours later, 2 μg/mL puromycin (Santa
Cruz Biotechnology) was added for selection which lasted for
3–7 days. Bulk transfected cells were then transferred to 96-well
plate by serial dilution and cultured in 0.22 μm Millex membrane
(Millipore) filtered LNCaP condition medium. Single clones
started to form in about 3 weeks and expanded for genotyping
and qPCR analysis. To identify clones with isogenic allelic
deletion, genomic DNA was extracted from each clone using
DNeasy kit (Qiagen) followed by PCR amplification with flanking
primers (29). Amplified products were run on 1.5% agarose
gel, clones with rs10993994 allelic deletion showed both 274
and 479 bp bands. All bands were then excised, purified and
sequenced by Sanger sequencing, only the clones with the least
non-specific editing in the region were used for further analysis.
In the end, LNCaP-rs10993994T and LNCaP-rs10993994C clones
were generated for the rs10993994 site.

Total RNA extraction and qPCR analysis

To compare the differential gene expression level of MSMB,
NCOA4, ACPP, SNHG11, SPON2 and NDRG1 from above generated
isogenic clones, total RNA samples were extracted with
RNeasy Mini kit (Qiagen, Germantown, MD), quantified by
Nanodrop spectrophotometer (ThermoScientific, Waltham,
MA, USA) and quality assessed using Agilent RNA 6000 Nano
kit (Agilent). cDNA were then generated using the High
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Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA) with 1 μg RNA for each clone. TaqMan
gene-specific primers (Life Technologies) were used for real-
time qPCR: MSMB (Hs00159303_m1), NCOA4 (Hs01033772_g1),
ACPP (Hs00173475_m1), SNHG11 (Hs00290821_m1), SPON2
(Hs00202813_m1), NDRG1 (Hs00608387_m1); GAPDH was used as
internal control. The reactions were setup in duplicate following
Taqman protocol and performed on a ViiA7 qPCR machine
(Applied Biosystems), then analyzed with the ��CT method
(Applied Biosystems, cms_042380).

Supplementary Material
Supplementary material is available at HMG online.
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