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ABSTRACT Reports of transmissible colistin resistance show the importance of
comprehensive colistin resistance surveillance. Recently, a new allele of the mobile
colistin resistance (mcr) gene family designated mcr-9, which shows variation in ge-
netic context and colistin susceptibility, was reported. We tested over 100 Salmo-
nella enterica and Escherichia coli isolates with mcr-9 from the National Antimicrobial
Resistance Monitoring System (NARMS) in the United States for their susceptibility to
colistin and found that every isolate was susceptible, with an MIC of =1 ug/ml.
Long-read sequencing of 12 isolates revealed mcr-9 on IncHI plasmids that were ei-
ther independent or integrated into the chromosome. Overall, these results demon-
strate that caution is necessary when determining the clinical relevance of new resis-
tance genes.
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olistin is an antimicrobial drug of last resort used to treat serious Gram-negative

bacterial infections. It is not used as a first-line antimicrobial agent due to its
toxicity, but it may be used to treat resistant infections (1). Colistin works by targeting
the negatively charged membrane of Gram-negative bacteria, resulting in membrane
disruption and cell death (2). Colistin has also been used as a growth promoter in food
animals in Europe and Asia (3), until recent governmental actions restricted or banned
these uses (4, 5). Colistin has not been used in food animals in the United States.

Colistin resistance has historically been rare, with known mechanisms being re-
stricted to certain mutations, such as those in pmrA and pmrB (6). In 2015, the mobile
colistin resistance gene mcr-1, conferring transmissible colistin resistance, was discov-
ered (7). This gene has been found worldwide in many bacterial species, including
Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica, among others (8-10). In
subsequent years, an additional eight mcr variants have been described and assigned
new numerical designations (11, 12). Despite these reports, mcr gene prevalence in the
United States has remained low, with most findings in human patients attributed to
infections acquired as part of international travel (13, 14). Prior to this study, the
National Antimicrobial Resistance Monitoring System (NARMS), a resistance surveillance
program in the United States, had not identified any retail meat isolates with any mcr
variant.

In 2019, the latest variant, mcr-9, was reported (15). This allele had only 64.5% amino
acid identity with mcr-3, the most closely related allele. In addition, it was most
commonly found in Salmonella, whereas other mcr genes were more common in E. coli
and Klebsiella. The first isolate identified with mcr-9 was susceptible to colistin, with an
MIC of 0.25 to 0.5 ug/ml, although mcr-9 did confer colistin MICs of >2.5 ug/ml when
cloned and overexpressed in the laboratory (15). Further work found that mcr-9
expression was inducible in the presence of colistin when located upstream of the
two-component system gseBC (16). A subsequent study with 30 mcr-9-positive isolates
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FIG 1 mcr-9 prevalence among ground turkey isolates over time.

from various Gram-negative organisms found that all were susceptible to colistin and
lacked the gseBC regulatory operon (17). Additional studies reported conflicting results
as to the phenotype associated with mcr-9 depending upon the isolate collection and
species, indicating uncertainty regarding when this gene confers elevated colistin MICs
(18, 19). The genomic structure of mcr-9-associated plasmids or chromosomes have not
been substantially characterized, although there has been some association with IncHI
plasmids (17, 20). To help determine whether mcr-9 conferred decreased susceptibility
to colistin and may have clinical relevance, we characterized 100 isolates with mcr-9
recovered from the NARMS retail meat program by whole-genome sequencing (WGS)
and colistin susceptibility testing.

RESULTS

Prevalence of mcr-9. After mcr-9 was first identified, we sought to determine
whether this gene was in any bacterial isolates collected as part of routine NARMS retail
meat surveillance. Unlike previous mcr genes, most isolates identified in the NCBI
Isolates Browser (1,052/1,862) were from Salmonella enterica. Upon additional analysis,
we found that many of these S. enterica isolates (301 [28.6%]) were from NARMS retail
meat sampling.

We further analyzed the assembled genomes and confirmed that each was indeed
positive for mcr-9 by BLAST analysis. An additional six E. coli isolates from NARMS retail
meat sampling also had mcr-9. Each isolate had mcr-9 with 100% identity and length to
the reference sequence. NARMS performs sampling of retail beef, pork, turkey, and
chicken products as part of its surveillance. However, 95.3% (287/301) of isolates with
mcr-9 were from retail turkey products. Despite the recent identification of mcr-9, we
found that its occurrence was not recent. In fact, it was found in all years of NARMS
retail meat testing, from 2002 to 2019, with its prevalence among turkey isolates
peaking at 35.2% in 2009 (Fig. 1). Further analysis showed the 301 mcr-9 isolates
comprised 12 different serotypes, with Salmonella enterica serovar Saintpaul represent-
ing 75.1% of all isolates (Table 1). Therefore, the mcr-9 prevalence in ground turkey
tracks closely with that of Salmonella Saintpaul (Fig. 1). All Saintpaul isolates were in the
same single nucleotide polymorphism (SNP) cluster, PDS000004383.101, in the NCBI
Isolates Browser, indicating that they were all within 50 SNPs of one another. For E. coli,
the six isolates with mcr-9 were all from 2018 and 2019 retail sampling, with one isolate
from ground turkey, four from retail chicken, and one from ground beef.

Additional analysis determined whether any isolates had the gseBC two-component
system, which is thought to induce mcr-9 expression (16). We found these genes in 10
isolates, including 4 E. coli and 6 Salmonella isolates (see Table S1 in the supplemental
material).
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TABLE 1 Salmonella enterica serotypes among NARMS retail isolates with mcr-9

No. of isolates in:

Serotype Ground turkey Retail chicken Pork chop Ground beef
| 4,[5],12:i:- 1 2
Agona 1
Albany 6
Heidelberg 30 1
Johannesburg 1
Kentucky 2 1
Litchfield 1
Mbandaka 2
Montevideo 1
Saintpaul 221 2 3
Schwarzengrund 23
Senftenberg 2 1
Total 287 6 4 4

Susceptibility testing. Broth microdilution testing was performed to determine the
relationship between MIC and the presence of the mcr gene. We included a variety of
different isolates, representing those isolated in each year from 2002 to 2019, and
included those from all retail meat sources in testing (Table S1). A total of 105 isolates
were tested, including 99 S. enterica and 6 E. coli isolates, and all were susceptible to
colistin, with MICs of =1 ug/ml (Fig. 2). These results were true for all isolates tested,
including all 10 isolates with gseBC (Table S1), which in some other studies had elevated
colistin MICs. Furthermore, all isolates had MICs of =2 ug/ml for polymyxin B (Table S1),
which had not previously been tested in other studies with mcr-9.

Genomic structure of mcr-9-associated plasmids and chromosomes. To further
characterize the genetic context of the mcr-9 genes, we performed long-read sequenc-
ing using Pacific Biosciences technology. We sought to sequence diverse isolates to
understand the various plasmids that carried this gene. Surprisingly, 6 of the 12 isolates
had mcr-9 on the chromosome, with the remaining isolates having it on IncHI plasmids
(Table S2).

The IncHI plasmids ranged from 269 to 340 kb, and all contained genes encoding
mercury, tellurium, and copper resistance (Fig. S1 to S3). The presence of additional
resistance genes varied among the plasmids; notably, the E. coli plasmid in isolate
N18EC0432 possessed blargp.q, blagyy 12, sull, sul2, ereA, and aac(6')-lic (Fig. S2). These
genes encode resistance to beta-lactams, sulfonamides, macrolides, and aminoglyco-
sides. Of importance is blas,,,.,, an extended-spectrum-beta-lactamase gene whose
presence could negatively impact treatment of associated infections. While most
sequences did not have significant homology to known plasmids, the plasmid from
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FIG 2 Colistin MICs of isolates with mcr-9.
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FIG 3 Genetic context of mcr-9 genes. The mcr-9 genes and their surrounding environments are shown. GenBank accession
numbers for these are as follows: GCA_900500325 (E. coli 68A), CP048303 (CVM 28945), CP048299 (N1566), CP048926
(N14748), CP049986 (N165133), CP049313 (N16S321), CP048293 (N18EC0432), CP049312 (N1852238), CP049983 (N40391),

CP049981 (N52030), CP049310 (N53023), CP049309 (N58011), and CP049307 (N58631).

isolate N53023 was highly related to an unknown plasmid in Enterobacter hormaechei
(GenBank accession no. CP027144), which has mcr-9 and has public data in GenBank
listing the colistin MIC as <0.25 ug/ml (Fig. S3). All chromosomal copies of mcr-9
appear to have been mobilized by integration of either entire or partial IncHI plasmids.
To better understand the genetic context of mcr-9 in our isolates, we compared the
sequences from our closed genomes to that from the colistin-resistant isolate E. coli 68A
(16). Two of the isolates had genetic structures identical to that of E. coli 68A, including
the regulatory genes gseBC, but still had colistin MICs of =0.5 wg/ml (Fig. 3). There was
only one SNP difference in our sequences compared to that of E. coli 68A in the entire
8.4-kb sequence, which was in the coding region of 1S903B and unlikely to affect the
function of mcr-9 or gseBC. The remaining 10 isolates with closed genomes had
identical mcr-9 genetic structures to one another, and all lacked the gseBC genes.
Conjugations. To further confirm the phenotype and transmissibility of plasmids
associated with mcr-9, we performed conjugation assays on four different isolates.
Conjugation was successful for one isolate, N53023, into the recipient strain DH5q,
indicating that the IncHI plasmid is transmissible. Conjugations may have been more
successful had they been conducted 26°C, as has been found optimal for IncHI plasmids
(21). The transconjugant remained susceptible to colistin and polymyxin B (Table S1)
but was resistant to other antimicrobials as predicted by the resistance genes encoded
by the mcr-9 IncHI plasmid. These results confirm the prior susceptibility testing results
that mcr-9 does not confer polymyxin resistance in our isolate collection. However, the
initial isolate and transconjugant both had MICs of =<0.25 ug/ml, so differences in MICs
below the level of detection would not have been found based on our testing.

DISCUSSION

Microbial WGS has greatly expanded the data set of presumptive coding regions
from which to infer function through gene relatedness surveys. The putative colistin
resistance gene mcr-9 was first identified by whole-genome sequencing by its 64.5%
amino acid identity to mcr-3. We examined our database of over 4,000 NARMS genomes
and found mcr-9 in hundreds of isolates. This discovery was concerning since other mcr
alleles had not previously been found in our isolate collection. However, our suscep-
tibility testing and conjugation assays show that the presence of mcr-9 was not
associated with resistance to colistin or polymyxin B.

With the rapidly growing body of genomic data, it is especially important to study
the genetic context and test large numbers of isolates to make firm assertions about
novel resistance alleles. By testing over 100 Salmonella and E. coli isolates with mcr-9
and closing the genomes of many of these, we have provided a basis to further
understand differences in resistance phenotypes of bacteria with mcr-9.

Based on our results, it appears that mcr-9 is not as concerning as other mcr alleles,
most of which consistently display colistin resistance. In the absence of a colistin
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resistance phenotype in our isolates, it is also unclear what function, if any, mcr-9 may
have. However, it is worth noting that not all isolates with mcr genes have been found
to be colistin resistant (22). These results also demonstrate the continued value of
antimicrobial susceptibility testing in certain contexts, where conclusions resulting
from whole-genome sequencing may not be clear. Although mcr-9 does not appear to
be an emerging public health threat for now, changes in genetic context or the
accumulation of mutations may affect its ability to impact colistin resistance. The
closest reported allele to mcr-9 is mcr-3, and some bacteria with this allele are also
colistin susceptible (23). It is important to note that all copies of mcr-9 in our collection
had 100% identity and length to one another, so it is possible that changes in sequence
could alter the effects of mcr-9 on colistin susceptibility. In addition, each isolate had
mcr-9 on an IncHI plasmid or integrated into the chromosome from an IncHI plasmid,
so a different genetic context could result in increased expression and a different
resistance phenotype. These findings of association with IncHI plasmids are consistent
with some previous findings (17, 20). Interestingly, the IncHI plasmids in our isolates
were diverse both in overall genomic structure and in genomic context around the
mcr-9 genes (Supplemental Fig. S1 to S3).

The two-component system gseBC was downstream of mcr-9 in several of our
isolates, including two with closed genomes (Fig. 3). It is unclear why the presence of
gseBC did not discernibly change the observed phenotypes, considering that the
genetic context around mcr-9 was identical to that of E. coli 68A from Kieffer et al. (16).
It is possible that the unusual O15:H6 serotype of E. coli 68A in some way contributed
to the observed phenotype, as serotype-dependent colistin susceptibility has also been
observed in Salmonella (24). Overexpression of mcr genes in E. coli TOP10 showed
increased MICs from 0.03 pwg/ml to 0.15 ug/ml for mcr-9, compared to 4 ug/ml for mer-1
(16). We did not perform induction experiments, but preinduction of mcr-9 in the
presence of colistin is not required to accurately measure MICs by broth microdilution
(16). These results indicate that the effectiveness of gseBC in inducing mcr-9 expression
may be context dependent and differ among isolates with different strain backgrounds.

Interestingly, since mcr-9 is frequently present on mobile genetic elements with
other resistance genes, it means that the use of these other antimicrobials has the
potential to coselect for the continued presence of mcr-9. In addition, various metal
resistance genes, encoding resistance to silver, mercury, arsenic, copper, tellurium, and
others, are present on these plasmids, providing another potential avenue for coselec-
tion for mcr-9.

NARMS will continue to detect colistin resistance genes as part of routine whole-
genome sequencing and recently added colistin as part of routine antimicrobial
susceptibility testing. Thus, ongoing work will determine whether colistin resistance
emerges among bacteria collected as part of NARMS sampling and, if so, what the
resulting mechanisms are.

MATERIALS AND METHODS

Data mining. Isolates with mcr-9 were identified using the NCBI Pathogen Detection Isolates
Browser, which annotates antimicrobial resistance genes using AMRFinderPlus (25). Initial results in-
cluded investigation of all sequences with mcr-9 among Salmonella enterica isolates present in the
browser, among a total of more than 200,000 total Salmonella enterica genomes. Further analysis focused
on NARMS isolates in BioProject PRINA292661, which contains sequencing data from more than 4,000
isolates. Search results were collected on 13 December 2019.

Colistin susceptibility testing. Isolates with mcr-9 were tested for susceptibility to colistin and
polymyxin B using standard broth microdilution techniques, following CLSI standards (36). The panels
GNX3F from Trek Diagnostics were used, which have colistin and polymyxin B concentrations of
0.25 ug/ml to 4 ug/ml. EUCAST epidemiological cutoffs (ECOFFs) and provisional ECOFFs were used to
identify isolates with elevated MICs (26). Quality control strains E. coli ATCC 25922 and Pseudomonas
aeruginosa ATCC 27853 were used, along with a colistin-resistant WHO reference strain with mcr-4
(Salmonella Kedougou WHO-S18-2) (27).

Whole-genome sequencing and analysis. Whole-genome sequencing was performed by short-
read sequencing on the Illlumina MiSeq using v3 chemistry, as previously described (28). Twelve isolates
were selected for long-read sequencing, with DNA libraries prepared using a 10-kb template preparation
protocol with SMRTbell template prep kit v1.0. Sequencing was performed using Pacific Biosciences
technology on the Sequel platform with sequencing kit 3.0, as previously described (29). The long reads
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were assembled to contigs by HGAP4, and contigs were circularized by Circlator (30, 31). Assembled
genomes were then polished with Illumina reads by Pilon (32). Even and continuous coverage was
assessed to determine that there were no misassemblies. Genes were annotated by Prokka in the
depicted figures (33), and BLASTn was used to compare plasmid sequences with each other and with
those in GenBank. PlasmidFinder was used to identify the plasmid types (34).

Conjugation. Conjugation assays were conducted as previously described (35). Briefly, recipient
DH5a E. coli cells were resistant to nalidixic acid, with donor N53023 resistant to gentamicin, as encoded
by aac(3)-Via on the mcr-9 IncHI plasmid. Mating occurred on blood agar plates at 37°C for 16 h. The
conjugated cells were resuspended in 500 ul of LB broth, and 50 ul of the resulting mixture was plated
onto doubly selective agars (nalidixic acid plus gentamicin). Individual isolates were confirmed not to
grow on these doubly selective agars. Any resulting colonies were screened by whole-genome sequenc-
ing for recipient genomes and the presence of mcr-9 plasmid sequence. Subsequent antimicrobial
susceptibility testing was performed to identify any changes in colistin resistance phenotypes.

Accession number(s). Whole-genome sequencing data were submitted to NCBI with accession
numbers for short-read sequences in Table S1 and long-read sequences in Table S2.
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