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Abstract

Although blood flow in the placental vasculature is governed by the same physiological forces of 

shear, pressure and resistance as in other organs, it is also uniquely specialized on the maternal and 

fetal sides. At the materno-fetal interface, the independent uteroplacental and umbilicoplacental 

circulations must coordinate sufficiently to supply the fetus with the nutrients and substrates it 

needs to grow and develop. Uterine arterial flow must increase dramatically to accommodate the 

growing fetus. Recent evidence delineates the hormonal and endothelial mechanisms by which 

maternal vessels dilate and remodel during pregnancy. The umbilical circulation is established de 

novo during embryonic development but blood does not flow through the placenta until late in the 

first trimester. The umbilical circulation operates in the interest of maintaining fetal oxygenation 

over the course of pregnancy, and is affected differently by mechanical and chemical regulators of 

vascular tone compared to other organs. The processes that match placental vascular growth and 

fetal tissue growth are not understood, but studies of compromised pregnancies provide clues. The 

subtle changes that cause the failure of the normally regulated vascular processes during 

pregnancy have not been thoroughly identified. Likewise, practical and effective therapeutic 

strategies to reverse detrimental placental perfusion patterns have yet to be investigated.
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INTRODUCTION

By the time a baby is born, it will have transformed from a 1 cell diploid zygote to a trillion-

cell individual capable of existence outside the womb. This enormous feat requires the de 

novo formation and expansion of a cardiovascular system that circulates blood in the embryo 

and the fetus. The nutrient flow for the growing fetal body is delivered to the placenta via a 

newly remodeled maternal cardiovascular system. The growth, development and function of 
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the nascent vascular system in the embryo/fetus is a fascinating field of study that has 

become specialized by anatomical region. However, there are a few basic physiological 

principles that are foundational to all vascular beds.

The physical principles that regulate blood flow through an organ are simple enough in their 

basic form and are explained in any basic physiology text or website [1]. The difference 

between arterial (Pa) and venous (Pv) pressures drives blood through an organ. The 

magnitude of the resulting flow (Qo) depends on the energy required to overcome the 

vascular resistance within the organ (Ro) and can be expressed in a form analogous to Ohm’s 

Law:

Qo= Pa−Pv /Ro

This convective flow equation holds true under the following conditions: 1) steady flow and 

2) Newtonian fluid. While these two requirements that are not technically met for blood in 

the mammalian circulatory system, the equation, nevertheless, reasonably approximates 

most normal blood flow conditions. The resistance to the flow of blood is determined by 

well described physical principles (Poiseuille’s law) where the resistance Ro is defined as

Ro= 8ηL /πr4

where η is viscosity, L is length and r is radius. When a more sophisticated understanding of 

flow in an organ is needed, there are well conceived mathematical equations that describe 

pulsatile pressure-flow relationships with corrections for changing viscosity with vessel 

diameter and equations that estimate organ impedance have been derived. Most all 

considerations of pulsatile hemodynamics are derived from McDonald’s original treatise [2] 

on the topic.

It has become increasingly clear that shear and wall forces provide remodeling signals that 

regulate vessel endothelial function as well as the structural integrity of the vessel wall. 

These forces are especially important in pregnancy. In a vessel, the frictional shear force that 

is sensed by the endothelium lining the vessel wall can also be expressed in the form of the 

Poiseuille’s relationship,

τs= 4ηQ / πr3

Thus the shear stress, τs, is related to the ratio of viscous flow and shear rate, where η is the 

viscosity and Q the flow, to vessel radius to the 3rd power [3, 4].

A successful pregnancy requires adaptations of the maternal cardiovascular system, the 

establishment of a placenta with its two sided vasculature and a well constructed fetal 

vascular tree. While in most organs the resistance to flow is found at the level of the arteriole 

which is innervated, the placenta is not innervated. The vascular smooth muscle tone, 

however, is sensitive to local transmural pressure conditions (myogenic tone) and to 

vasoactive substances. The local substances that regulate arteriolar function include those 
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that are carried to the organ in the blood (e.g. angiotensin II, arginine vasopressin, atrial 

natriuretic peptide), those released from nerve endings (e.g. norepinephrine, acetylcholine), 

those derived from endothelium (e.g. nitric oxide, NO, prostaglandins), those released from 

endocrine tissue (e.g. steroid hormones such as estrogens, progestins and glucocorticoids) 

and those released from various cells in the vessel milieu. The maternal hormonal 

environment changes dramatically over the course of pregnancy and many maternal vascular 

structures are sensitive to these changes. For example, human chorionic gonadotropin peaks 

early in pregnancy and plateaus at about 24 weeks [5, 6] and estrogens and progestins rise 

over the course of pregnancy [5, 6].

MATERNAL ADAPTATIONS TO PREGNANCY

In mammals, the normal adaptation to pregnancy requires enormous changes in the structure 

and function of the maternal circulatory system [7, 8], largely under the influence of sex 

steroid hormones [9]. Uterine blood flow increases by 2 to 3 times over the last half of 

pregnancy in women and ewes (Reviewed by [10]). During pregnancy, maternal oxygen 

consumption increases about 33%, body weight normally increases by 20% [11] while blood 

volume increases by 40%. Red cell mass increases by only 30%; thus, the concentration of 

red blood cells is reduced in the maternal circulation. The structure of the maternal heart 

also is remodeled. The term “cardiac remodeling” often refers to a pathological process that 

leads to cardiac restructuring and consequent dysfunction. In the case of pregnancy, non-

pathological cardiac structural changes lead to an increase in end diastolic volume over the 

first half of pregnancy so that stroke volume is augmented about 30%. This increase in end 

diastolic volume is profound because the chambers of the ventricles actually enlarge- the 

whole heart gets bigger [11]. Because ejection fraction is maintained during pregnancy, the 

larger heart ejects a larger volume each beat. This is accomplished without an undue load on 

the myocardial wall because vascular impedance is simultaneously decreased through the 

remodeling of the arterial tree, making it possible to eject a stroke volume without large 

increases in wall stress. Aortic diameter and aortic compliance are increased as are venous 

capacitance and venous blood volume.

There are racial differences in uterine arterial adaptation to pregnancy. In comparing uterine 

arterial Doppler flow in Andean and European residents of La Paz, Bolivia (3600 m) at 

weeks 20, 30, 36 of pregnancy, Andean women had greater uterine cross sectional areas and 

blood flows by 36 weeks and 1.6 times greater uteroplacental oxygen delivery [12]. With 

adjustments for gestational age, maternal height, and parity, Andean babies were 

consistently heavier than European babies. While there are undoubtedly genetic 

underpinnings explaining these differences, it is becoming increasingly clear that there are 

transgenerational influences of maternal diet, fetal nutrition and structural features of 

reproductive organs that are passed on via epigenetic and nonepigenetic mechanisms. Which 

of these is most important across races in the adaptation to altitude is not known.

Recent studies in non-human primates show that maternal diet affects uteroplacental blood 

flow. In this model, pregnant macaques are fed a high fat diet – some become obese (high fat 

diet sensitive) whereas a subset does not become obese (high fat diet resistant). Using 

Doppler ultrasonography in early third trimester pregnancies (gestational day 120), Frias et 
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al. [13] showed that calculated volume flow in the uterine artery, normalized to maternal 

weight, was decreased significantly even in maternal animals that were resistant to gaining 

weight on the high fat diet and in monkeys that were sensitive and gained weight (Fig. 1). 

Uterine arterial flow was reduced by an average of 38% in the former group and 56% in the 

latter compared to controls. Both of the experimental groups had a significant increase in the 

pulsatility index of the uterine artery (Fig. 1). In contrast, umbilical vein flow was decreased 

by 32% but only in the high fat diet sensitive group (Fig. 1). The pulsatility index in the 

umbilical artery was not changed in either diet group. The role of diet in regulating utero-

placental blood flow in the human has not been explored in depth and is ripe for mechanistic 

investigation.

As mentioned above, the rate at which oxygen is delivered to the uteroplacental bed depends 

upon the driving pressure across the uterine and umbilical beds, the resistance to flow in 

these beds, as well as the maternal hemoglobin concentration and oxyhemoglobin saturation. 

Failure of maternal adaptations can lead to maternal hypertension and subsequent stunting of 

fetal growth. The reasons that fetal well being suffers from this maternal condition are not 

entirely clear. However, it is clear that the increase in uterine arterial flow capacity must 

increase dramatically to accommodate the large increases in flow. There are really only two 

mechanisms by which vessel dimension could be increased enough to accommodate flow 

adequate to care for fetal growth needs- dilation and structural remodeling. If the vessel 

could dilate adequately, then simple dilation would be the only mechanism required. If, on 

the other hand, flow is needed beyond maximal vasodilatory capacity, then one must also 

postulate vessel structural remodeling. Thus, in a manner similar to the maternal heart, the 

structural capacity and material properties of the vessel are likely to be profoundly altered.

UTERINE BLOOD FLOW AND ITS REGULATION

The remodeling of the human cardiovascular system accommodates needed increases in 

blood flow to the breast, kidney and uterus such that breast flow increases by 2.5×, renal 

flow by 1.7× and uterine blood flow by 10× or greater (Fig. 2). Uterine blood flow has been 

measured during pregnancy in a number of experimental animals including guinea pig [14, 

15], rat [16, 17], pig [18, 19], cow [20], sheep [21, 22] and rabbits [23]. Among these 

animals there is considerable variability in the degree of increase in uterine blood flow in 

pregnancy, ranging from 10- to 100-fold [24]. However, in no mammal thus far studied is the 

resting level of uterine blood delivery adequate to accommodate the increases in oxygen and 

nutrient flow required for a successful pregnancy. Thus, there must be profound local 

changes in the delivery system to accommodate the pregnancy in all mammals even though 

different species may use a variety of mechanisms to accomplish the adaptation.

Presumably the primary physiological changes that accompany pregnancy are under the 

control of changing hormone levels. The roles of hormones in regulating uterine blood flow 

have been recently reviewed [25]. While estradiol 17β (E2β) is believed to be the most 

potent and physiologically dominant in regulating maternal adaptations [26, 27], other 

important hormones include other estrogens, progesterone, human chorionic gonadotropin, 

cortisol, and androgens. Infused E2β leads to increased cardiac output and heart rate in 

ovariectomized nonpregnant ewes and decreases in their systemic vascular resistance [27]. 
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E2β also causes an increase in uterine blood flow. It is becoming increasingly clear, 

however, that pharmacological levels of hormone may have different effects than those 

within the physiological range; thus experimental data need to be judged according to the 

concentration ranges used. The question remains: how does E2β increase uterine arterial 

flow? As described above, blood flow increases will necessarily be a result of a combination 

of increased driving pressure and decreased uterine vascular resistance through dilation 

and/or remodeling.

Estradiol ordinarily signals through its two primary soluble receptors, estrogen receptor 

alpha and beta (ERα & ERβ). These receptors are ligand-activated enhancer proteins that 

are members of the steroid/nuclear receptor superfamily. Once bound to ligand these 

receptors become transcription factors that bind with high affinity to estrogen response 

sequences found in the regulatory regions of specific genes and activate gene expression 

[28]. In addition, there are so called “non-genomic” often membrane associated signaling 

pathways that are stimulated by estrogens, one of which is a G-protein receptor mediated 

process via GPR30 [29]. ER associations with Gi proteins in the plasma membrane have 

been reported to mediate NO production [30] and cAMP inhibition [31]. The roles of these 

differing signaling pathways need to be investigated in the uterine circulation.

A role for endothelium derived nitric oxide (eNO) in regulating changes in muscular tone in 

the uterine artery has been appreciated for some time, and it has also been known that 

endothelial NO production is influenced by circulating estrogen levels [32]. E2β is a 

powerful regulator of uterine blood flow and its effect is reduced by some 70% if the 

catalytic enzyme, nitric oxide synthase (NOS) is inhibited [33]. E2β is known to activate 

endothelial NO synthase (eNOS) through the phosphoinositol-3 kinase cascade [34]. The 

rate of NO production by eNOS is determined by several features including the capacity of 

the cell (eNOS expression levels), the phosphorylation state of eNOS, and the intracellular 

[Ca2+]i concentration [35]. While many scientists have assumed that pregnancy-associated 

changes in eNOS regulation are responsible for NO-induced increases in the uterine artery 

during pregnancy, evidence over the past decade suggests an adaptation of sustained [Ca2+]i 

signaling responses may supersede in importance any changes in eNOS expression and 

phosphorylation. Thus, the regulation of local NO output in a vessel may occur at the level 

of the ‘capacitative entry’ [Ca2+]i response which is in turn regulated by gap junction 

function [36]. Likewise NO output may be reduced by any inhibitor of gap junction function 

or capacitive entry of Ca2+ via transient receptor potential cation (TRPC) channels. Thus the 

degree to which estrogens affect these NO regulating processes is complex and not yet 

thoroughly clarified.

Many other endothelium specific mechanisms are likely to hold high importance in 

regulating vascular tone in the uterine artery [24, 37]. Some are important in the elevated 

resistance to vasoconstrictors during pregnancy [38], some are important for vessel 

remodeling [39], and others may participate as but one of a host of redundant mechanisms 

that underlie the changes in the chemical regulation of vasodilatory capacity. There is keen 

interest in the roles of large conductance Ca2+-activated K+ channels [40], release of 

vasodilator prostaglandins [41], endothelial hyperpolarizing factor [42], atrial natriuretic 

factor [43] among others. The coordinated roles of these factors have yet to be determined.

Thornburg and Louey Page 5

Curr Vasc Pharmacol. Author manuscript; available in PMC 2020 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



THE FETAL PLACENTA

The circulatory system in the fetus is characterized by four shunts, the ductus venosus, the 

foramen ovale, the ductus arteriosus and the placenta. During the transition from fetus to 

neonate, these shunts begin to close, and under normal conditions are anatomically sealed 

within weeks. Each of these shunts is physiologically unique in both its importance in the 

fetal circulation, but also in the regulation of its closure at birth [44–46]. Increasing evidence 

suggests that these shunts influence the fetal circulation and organ growth in ways that affect 

the long-term health of the offspring.

The umbilical circulation derives from the allantois in early embryonic development and is 

the obvious life line for delivering oxygen and nutrients for the developing fetus. Special 

features of the fetal placental circulation ensure an uninterrupted blood flow of oxygen 

during fetal life and a secure cessation of flow after birth to prevent post-partum 

hemorrhage. Umbilical blood flow increases to keep pace with fetal growth [10]. There is a 

delicate balance between fetal growth rate and nutrient acquisition and in cases of placental 

insufficiency, whether natural or experimental, fetal growth is restricted. Roberts et al. [47] 

showed in Rhesus macaques that disruption of the growth of the placenta and the fetus was 

dependent upon the timing of experimental reduction in placental exchange area following 

the ligation of the vessels that bridge the two placental lobes. The growth of the fetus was 

more depressed when placental tissue loss occurred at 0.7 gestation (110d GA) compared to 

0.5 gestation (80d GA) because the earlier placenta as able to gain more mass and thickness 

than those placentas ligated at a later gestational age. Following the 80 dGA ligation the 

primary placental lobe increased by 2.2 g/day, a 30% increase above normal, whereas 

growth at the later gestational age decreased to 0.8 g/day, about half normal. These findings 

suggest that primate placentas are highly plastic, but have a diminished capacity for adaptive 

growth as gestation proceeds.

While the umbilical artery has gained notoriety among placentologists for being inert to the 

usual mechanical and chemical forces that regulate systemic arterial vasomotor activity, this 

pristine reputation is not wholly deserved. In sheep, umbilical blood flow is generally 

determined by its driving pressure, estimated by the difference between mean pressures in 

the umbilical artery and umbilical vein without an intervening surrounding pressure as found 

in the lung [48]. Placental vascular resistance is increased in response to chronic increases in 

fetal arterial pressure [49] an indication of autoregulatory capability. However this capacity 

is limited because placental vascular resistance is not decreased in response to hypotension 

[50, 51]. The lack of a relaxation response when driving pressure is decreased suggests that 

the placental resistance bed is normally in a state of maximal relaxation, at least from an 

autoregulatory point of view. This explanation is reasonable, but further experiments could 

test whether further relaxation under chemical control would be possible.

The development of the placental circulation is too complex to present in detail here. 

However, it is nevertheless important to note that the complexities of the inner workings of 

the vascular tree within the mature placenta proper are the result of early chemical 

interactions between maternal and fetoplacental tissues. The subject was summarized by 

Burton et al. [52]. The development of a proper vascular tree in the early placenta is 
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important not only because of the need for optimal placental transport function but because 

the vascular elements of the placenta offer a continuous loading resistance to the developing 

heart. In the embryo, pressure loading leads to heart defects [53, 54] while in the fetus it 

leads to abnormal cardiomyocyte development [55, 56]. Hemangioblastic cords arise from 

mesenchymal cells deep within the extracellular matrix of the primitive villous cores of the 

nascent placenta. Under the guidance of vascular endothelial growth factors (VEGFA in 

particular) primitive vascular elements connect the larger placental stem vessels forming up- 

and down-stream [57, 58]. VEGF signals through its FLT-1 and KDR receptors, but does not 

act alone. Placental growth factor, which also signals via the FLT-1 receptor, is a key player 

in the development of the placental vascular system. Angiopoietin-1 and −2 are both ligands 

for the tyrosine kinase receptor, TIE2. Activation of TIE2 promotes endothelial cell survival 

and stabilization of newly formed capillaries while ANG2 may inhibit ANG1 rendering the 

developing capillaries to be more sensitive to the angiogenic stimulus of other growth factors 

[52, 59].

The maternal chemical environment is part of the chemical “conversation” with the 

developing placenta. The trophoblast releases a number of soluble receptors into the 

maternal circulation [52]. These molecules bind maternal growth factors and affect their 

availability to act locally in the placenta. In addition, there are a host of molecules including 

cytokines and chemokines that can interfere with proper placental vasculogenesis and result 

in abnormal placental function. These molecules may be the basis for diseases ranging from 

preeclampsia to obesity-related placental inflammation [60, 61]. Maternal estrogen is also a 

regulator of placental growth in the early period and is thus important in degree of 

implantation and the establishment of the placental vascular tree. For example, in the baboon 

exogenous estrogen given at 6 weeks gestation inhibits spiral artery invasion [62].

In addition to the factors mentioned above, oxygen is a powerful regulator of vascular 

growth and development. The once controversial idea that the placenta develops in a very 

low oxygen environment during most of the first trimester is now mainstream thinking 

among placentologists. The relative hypoxia is the result of a lack of maternal blood flow 

through blocked spiral arteries during early pregnancy. Current evidence suggests that this 

hypoxic environment is crucial to the proper development of the placenta through the 

appropriate expression of VEGF, PlGF, ANG1, ANG2 and their receptors each of which is 

adversely affected by higher levels of oxygen [63]. Eventually, the spiral arteries open up 

beginning at the periphery and moving in a central direction [64]. Consequently, higher 

oxygen concentrations and increased levels of oxidative stress are found in the periphery 

compared to the central areas, as shown in villi sampled from these sites [64].

Several substances are known to affect placental vascular resistance and/or the contractile 

properties of umbilical vessels. Table 1 shows chemicals that are known or suspected to alter 

placental vascular resistance in sheep and in humans. The take home message is clear: the 

placental vascular bed is not inert but interestingly affected by several chemical agents. 

However, some agents that would alter the resistance of other fetal organs have little effect 

on the placenta at least in most experimental settings. The powerful vasodilator, adenosine, 

is an example.
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MODELS OF COMPROMISED PREGNANCY

A number of models of compromised pregnancy have been developed in several species. 

These models have been an enormous benefit to the current understanding of the biology of 

pregnancy and the mechanisms that regulate fetal growth. The effects on uterine and 

umbilical flow have been nicely reviewed by Reynolds et al. [10] for many of these models 

in the sheep. In addition to those reviewed, there are studies of the umbilical circulation in 

fetuses with inadequate placental gas exchange. These include carunclectomy [65–67] and 

umbilicoplacental embolization [68–70]. The latter model has been used widely and has 

brought new insight to the adaptations of specific organs that respond to low oxygen and 

nutrient transport.

In sheep, placental embolization allows the study of changes in placental blood flow that can 

occur in late gestation placental insufficiency. Repeated injections of insoluble microspheres 

(15–50 μm diameter) into the umbilicoplacental circulation increases placental vascular 

resistance and decreases umbilical flow [68–70], and in severe cases can acutely modify the 

umbilical artery flow velocity waveform to demonstrate zero or reversed diastolic flow (Fig. 

3) [71]. These changes are characteristic of placental insufficiency and intrauterine growth 

restriction in human fetuses [72]. In humans, the increase in blood flow resistance is 

correlated more closely with loss of small arteries (<90μm) in the placenta rather than other 

complications of pregnancy such as maternal hypertension [73]. This is supported by studies 

in sheep that demonstrate that in non-embolizing models of fetal stress, there are no changes 

in placental resistance despite decreased placental weight and size, fetal hypoxia, acidemia, 

blood hyperviscosity, or maternal hypertension [65, 74, 75].

Thus it is possible to isolate experimentally the effects of placental insufficiency stemming 

from umbilicoplacental embolization where uterine artery or uteroplacental flows are not 

altered [68]. In contrast, a subset of small-for-gestational age cases in humans include a 

maternal component in which uterine artery blood flow is impaired [76]. Similarly, utero-

placental embolization in sheep can be used to limit nutrient availability to the fetus by 

injecting microspheres into the maternal uterine artery. Resistance in the uterine vascular 

bed is increased [77], but in contrast to umbilicoplacental embolization, fetal placental 

vascular resistance as estimated by umbilical artery pulsatility index is not altered, even 

under conditions of severe fetal distress [78].

Additionally, umbilicoplacental embolization (UPE) in sheep has been used to study the 

effects of placental insufficiency on growth and development, and mimics many clinical 

signs of intrauterine growth retardation (IUGR) including fetal hypoxemia, hypoglycemia 

and hypercortisolemia. The severity of the embolization is controllable and thus can be used 

to study different degrees of stress on fetoplacental physiological parameters, as well as the 

effects on specific tissues. In its most severe form, frequent injections of microspheres in a 

relatively brief period of time will induce severe fetal hypoxemia and acidemia, hypertension 

(+15mmHg), bradycardia, a 50% increase umbilical perfusion pressure, a 70% reduction in 

umbilical blood flow, a three- to five-fold increase in umbilical vascular resistance and 

umbilical artery pulsatility index, reversed umbilical artery diastolic flow and fetal demise 

within hours of embolization [71, 79].
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More moderate and controlled UPE that allows for the study of fetoplacental adaptations to 

placental insufficiency can induce a 30–50% decrease in fetal oxygenation and blood 

glucose, as well as premature activation of the hypothalamic-pituitary-adrenal axis [69, 80, 

81]. Consequent to the occlusion of the villous arteries [82] and increased placental 

resistance, fetal arterial pressure is transiently elevated [80, 83]. Given some placental 

vascular reserve, fetal oxygen levels can return to normal within a day of embolization, thus 

requiring daily microsphere administration. Prolonged embolization (days to weeks) 

diminishes this reserve, and the need for daily injections is reduced (Fig. 4) [69, 80, 83].

As the fetus adapts to this placental insufficiency, vascular and tissue remodeling occurs 

over days to weeks. These adaptations permit fetal survival in a reduced nutrient 

environment, but with consequences to the developing tissues. Although most organ sizes 

remain proportionate to the body, even those traditionally thought to be somewhat 

“protected” from prenatal hypoxic stress (brain, heart) show modifications to their cellular 

makeup [80, 84, 85]. Most notable is the consistent finding that maturation is delayed: the 

heart [80], lungs [81], kidney [86], retina [87] all show signs of structural immaturity. 

Cellular proliferation is also affected with fewer hematopoietic cell clusters in the liver [82] 

and fewer myocytes in the heart [80]. At least some of these fetal (mal)adaptations have 

been reported to persist into the postnatal period, notably in the brain and retina [85], 

adipose [88] and lungs [89], and have implications for long term health.

SUMMARY

Utero- and umbilico-placental bloods flow independently in separate circulatory units that 

interface at the placental membrane where they are separated by a few micrometers. The 

entire transplacental flow of nutrients and oxygen into the fetus over its life time is 

determined by a highly regulated chemical and mechanical regulation of matching vascular 

elements. Interestingly, the two circuits have enough autonomy and differences in chemical 

sensitivity that they grow under highly unique environments. What is not known is how the 

placenta is able to regulate its vascular growth and how tissue growth and vascular growth 

are matched. In some cases the placenta enlarges in response to apparent nutritional and 

oxygenation needs. In other cases it seems unable to mount a response and the normal 

development of the fetus is hindered. At present we do not know how to identify a poorly 

perfused placenta in its early stages nor do we know what therapeutic strategies might be 

helpful. These mysteries need to be solved because the lifelong health of the embryo and 

fetus is determined by the subtleties of the nutritional flow, about which we know little.
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ABBREVIATIONS

CTR Control

dGA Days gestational age

eNO Endothelium derived nitric oxide

eNOS Endothelial nitric oxide synthase

HFD High fat diet

HFD-R High fat diet resistant

HFD-S High fat diet sensitive

IUGR Intrauterine growth retardation

L Length

NO Nitric oxide

NOS Nitric oxide synthase

Pa Arterial pressure

Pv Venous pressure

PI Pulsatility index

Q Blood flow

Qo Blood flow within an organ

Ro Vascular resistance within an organ

r Radius

TPRC Transient receptor potential cation

UA Umbilical artery

UPE Umbilicoplacental embolization

Uta Uterine artery

VEGF Vascular endothelial growth factor

η Viscosity

τs Shear stress
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Fig. 1. 
Decreased uteroplacental perfusion in Japanese macaques fed a high fat diet (HFD). 

Maternal HFD leads to increased uterine artery pulsitility index (PI). A: Uterine artery (Uta) 

PI is 0.74 in a representative control (CTR) animal. B: The Uta PI is 1.17 in a representative 

HFD-Sensitive (HFD-S) animal with a Doppler waveform that demonstrates decreased 

diastolic flow consistent with increased vascular impedance when compared with A. C: The 

cQUta normalized to maternal weight was significantly reduced in HFD-Resistant (HFD-R) 

and HFD-S animals when compared with CTR. D: Uta PI is increased in HFD-S animals 

when compared with CTR. As a group, HFD (HFD-R + HFD-S) had a significant increase 

in Uta PI when compared with CTR. E: The cQUV normalized to fetal abdominal 

circumference was reduced in HFD-S animals when compared with controls. There was no 

difference in HFD-R animals when compared with controls. F: The umbilical artery (UA) PI 
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was unaffected by diet group. * P < 0.05; CTR, n = 9; HFD-R, n = 6; HFD-S, n = 9. 

Reproduced, with permission [13].
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Fig. 2. 
Increases in peak resting oxygen consumption in pregnancy compared to pre-pregnancy 

values. Data from Metcalfe et al. [11].
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Fig. 3. 
Umbilical artery flow (cm/sec) changes in response to severe umbilicoplacental 

embolization in sheep. Rapid, repeated injections of microspheres into the umbilicoplacental 

circulation will induce fetal distress and umbilical artery flow patterns that parallel those 

seen in human IUGR. In this experiment, diastolic flow became absent 45 minutes after 

embolization, and reversed flow was evident 2 hours after embolization. Louey & 
Thornburg, unpublished data.
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Fig. 4. 
Fetal partial pressure of arterial oxygen during umbilicoplacental embolization (UPE) in 

sheep. Mean data for the control group (n=5) are shown by the continuous line ± SEM 

(shaded area). Mean ± SEM data for the UPE fetuses (n=5) are shown for the daily pre- 

(black circle, ●) and post-UPE periods (open circle, ○). Data modified from Louey et al. 
[80].
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