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ABSTRACT Depression is influenced by the structure, diversity, and composition of
the gut microbiome. Although depression has been described previously in human
immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a
lesser extent in HIV-HCV coinfection, research on the interplay between depression
and the gut microbiome in these disease states is limited. Here, we characterized
the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373
participants who underwent a comprehensive neuropsychiatric assessment and the gut
metabolome on a subset of these participants using untargeted metabolomics with liq-
uid chromatography-mass spectrometry. We observed that the gut microbiome and
metabolome were distinct between HIV-positive and -negative individuals. HCV infection
had a large association with the microbiome that was not confounded by drug
use. Therefore, we classified the participants by HIV and HCV infection status (HIV-
monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed
in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis
distances). Coinfected individuals also had lower alpha diversity. Within each of the
three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck
Depression Inventory-II. We found that the gut microbiome differed between depression
states only in coinfected individuals. Coinfected individuals with a lifetime history of
MDD were enriched in primary and secondary bile acids, as well as taxa previously iden-
tified in people with MDD. Collectively, we observe persistent signatures associated with
depression only in coinfected individuals, suggesting that HCV itself, or interactions be-
tween HCV and HIV, may drive HIV-related neuropsychiatric differences.

IMPORTANCE The human gut microbiome influences depression. Differences be-
tween the microbiomes of HIV-infected and uninfected individuals have been de-
scribed, but it is not known whether these are due to HIV itself, or to common HIV
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comorbidities such as HCV coinfection. Limited research has explored the influence
of the microbiome on depression within these groups. Here, we characterized the
microbial community and metabolome in the stools from 373 people, noting the
presence of current or lifetime depression as well as their HIV and HCV infection sta-
tus. Our findings provide additional evidence that individuals with HIV have different
microbiomes which are further altered by HCV coinfection. In individuals coinfected
with both HIV and HCV, we identified microbes and molecules that were associated
with depression. These results suggest that the interplay of HIV and HCV and the
gut microbiome may contribute to the HIV-associated neuropsychiatric problems.

KEYWORDS HIV, hepatitis C, microbiome, depression, gut microbiome, hepatitis C
virus, human immunodeficiency virus

Disturbances in gut microbial communities may contribute to depression and
neuropsychiatric disorders in human immunodeficiency virus (HIV) infection (1–3).

Depletion of CD4� T cells in gut lymphoid tissue occurs very early in HIV infection and
is associated with dysbiosis and gut barrier dysfunction (“leaky gut”) (4, 5), which are
not normalized by virologic suppression on antiretroviral therapy (ART) (6). Leaky gut
in HIV infection is associated with increased apoptosis, chronic inflammatory signals,
and reduced proliferation and repair of epithelial cells (4, 5, 7, 8) which may further
introduce microbial metabolites known to impact brain activity (1, 9–11). Gut dysbiosis
patterns in HIV monoinfection may include greater proportions of Gram-negative
bacteria, order Enterobacteriales (12), enrichment of Proteobacteria (13), depletion of
Bacteroidia (14) and increased abundances of Prevotellaceae and Erysipelotrichaceae
(15). Some of these alterations involve proinflammatory species (e.g., Prevotella) (16–
18). Together dysbiosis and leaky gut render HIV-infected individuals more vulnerable
to microbial antigen-driven effects on the central nervous system (CNS) via proinflam-
matory bacterial antigens such as lipopolysaccharide (LPS) and flagellin (19, 20).

Dysbiosis-driven inflammation also may lead to depression, as suggested by existing
literature (21, 22). The gut microbiome may affect blood-brain barrier (BBB) integrity as
well (23), and this may potentiate depression (24–26). For example, germfree mice have
reduced expression of tight junction proteins on brain microvascular endothelial cells.
BBB integrity was restored after gut colonization or by administration of butyrate (27).
BBB compromise may amplify entry of HIV and associated neurotoxins into the CNS
(28). These findings are of clinical importance, since interventions exist to restore
normal gut microbes and barrier integrity (such as Bacteroides fragilis or Bacteroides
thetaiotaomicron polysaccharide A [PSA] [29], butyrate [30], and tryptophan metabo-
lites [31]) with the potential to improve CNS function.

While no systematic research has been reported on the impact of HIV-HCV coinfec-
tion on the gut microbiome, a number of reports examining very different cohorts of
patients with HCV monoinfection have evaluated alterations in the gut microbiome. A
study of HCV patients with advanced liver disease showed that they exhibited in-
creased abundance of Bacteroidetes and Firmicutes compared to healthy subjects (32).
The HCV patients had increased Prevotella, Acinetobacter, Veillonella, Phascolarctobac-
terium, and Faecalibacterium and reduced Ruminococcus, Clostridium, and Bifidobacte-
rium genus. Interpreting these findings is difficult, as these patients were likely treated
with luminal antibiotics as prophylaxis against hepatic encephalopathy (32). In another
study of persons with HCV, bacterial diversity was lower compared with healthy
individuals, with reduced Clostridiales and increased Streptococcus and Lactobacillus.
Dysbiosis appeared very early, before cirrhotic changes (33). In another report, gut
microbiome alpha diversity was reduced in cirrhotic patients, but dysbiosis was signif-
icantly improved along with a reduction in serum cytokines and chemokines by curing
HCV infection after treatment with direct-acting agents (34). However, another study
showed that cirrhotic outpatients with HCV had similar microbiome and proinflamma-
tory changes before and 1 year after HCV cure (35). Thus, there is no consensus
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concerning changes in the gut microbiome associated with HCV, likely due to marked
differences in the cohorts studied.

Abundant human and animal evidence link the gut microbiome to neuroinflamma-
tion and depressed mood. In rats treated with microbiota from rats vulnerable to social
stress, there was higher microglial density and interleukin-1� (IL-1�) expression in the
ventral hippocampus and higher depression-like behaviors relative to rats receiving
microbiota from rats resistant to social stress, suggesting that the gut microbiome
contributes to the depression-like behavior and inflammatory processes in the brain
(36). In HIV-positive individuals, an abnormal microbiome in combination with leaky gut
leads to high circulating levels of microbial antigens that provoke inflammation. This
inflammation induces expression of indoleamine dioxygenase, which promotes de-
pressed mood by shunting tryptophan away from serotonin synthesis (37).

Similarly, in humans without these infections, the gut microbiome can influence
neuroinflammation and neuropsychiatric disorders through the gut-brain axis (38). For
example, patients with major depressive disorder (MDD) showed increased Bacte-
roidetes, Proteobacteria, and Actinobacteria and reduced Firmicutes (39). Interventions
that affect the gut microbiome can be beneficial for neuropsychiatric dysfunction. For
example, probiotics and prebiotics attenuated the physiological stress response: colo-
nizing germfree male mice with Bifidobacterium infantis normalized their previously
overreactive hypothalamic-pituitary-adrenal axis in response to restraint stress (40).
Also, treatment with prebiotic fructo- and galacto-oligosaccharides (FOS/GOS) lowered
proinflammatory cytokine levels in mice exposed to chronic psychosocial stress (41).

To address gaps in knowledge about the impact of coinfection with HIV and HCV on
the gut microbiome, we performed 16S rRNA sequencing and metabolomics analyses
on fecal samples from coinfected individuals and compared them to HIV-monoinfected
and HIV uninfected subjects. Despite the evident interplay between HIV infection and
associated neurocognitive disorders, and between each of these and gut microbiome
dysbiosis, prior work suggests that HIV infection and neurocognitive disorders are not
associated with gut microbiome dysbiosis (42). Here, we observe associations between
gut microbiome dysbiosis and depression, a form of neurobehavioral disorder, only
in HIV-HCV coinfected individuals. These results suggest that HIV, HCV, and the gut
microbiome may work together to cause neuropsychiatric problems associated with
HIV.

RESULTS AND DISCUSSION
The gut microbiome and metabolome differ with HIV and HCV infection. We

first evaluated the gut microbiome and metabolome in the context of HIV infection
status. As in previous studies (43–51), we found that beta diversity (i.e., between
subject) differed between HIV-positive (n � 267) and -negative individuals (n � 106)
(unweighted UniFrac distances [52–54]: permutational multivariate analysis of variance
[PERMANOVA] pseudo-F-statistic [pseudo-F] � 4.24, Benjamini-Hochberg-corrected
[BH] P � 0.001). However, we found that alpha diversity (i.e., within subject) did not
differ between HIV-positive and -negative individuals. There was also a significant
difference in the gut metabolome between HIV-positive and -negative individuals
(Bray-Curtis, pseudo-F � 5.82, BH P � 0.001).

To characterize the impact of covariates on the microbiome, we performed regu-
larized discriminant analysis (RDA) (55) to calculate the relative effect size of several
covariates: sexual orientation, biological sex, HCV status, HIV status, Beck Depression
Inventory-II (BDI-II) group, lifetime alcohol use disorders, lifetime MDD, and lifetime
drug use disorders (including lifetime history of cocaine, methamphetamine, heroin,
and sedative use disorders) in the unweighted UniFrac beta diversity principal coordi-
nate analysis (PCoA). The lifetime drug use disorder categories were colinear with each
other in the PCoA, but no drug use disorder category was colinear with HCV infection
status. This suggests that a history of drug use disorders does not confound HCV status.
After merging colinear drug use disorder covariates, we found that sexual orientation,
HCV infection status, BDI group (mild � 13, 13 to 19, mild; 20 to 28, moderate; or � 28
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severely depressed current mood), and biological sex resulted in a significant RDA
model (Fig. 1a).

Due to the large relative effect size of HCV status, we classified the participants by
the presence or absence of both HIV and HCV infection (HIV monoinfected, HIV-HCV
coinfected, or uninfected (Table 1, MSM subset). In the coinfected group, only 26% had
any one or more laboratory values, suggesting active HCV infection (serum alanine
transaminase [ALT] � 55, aspartate aminotransferase [AST] � 40, total bilirubin � 1.2,
direct bilirubin � 0.3, or APRI [AST-to-platelet ratio index] � 1.0), compared to 18.2% of
HIV-monoinfected and 10% of uninfected individuals. Only one HCV seropositive
individual had been treated with an anti-HCV direct-acting antiviral, consistent with a
treatment era in which all HCV seropositive individuals with active disease are offered
curative anti-HCV treatment. Thus, the proportion of coinfected participants with active
HCV disease was likely to be negligible.

Demographic and lifestyle comparisons between coinfected, HIV-monoinfected,
and uninfected individuals. To explore the relationship between the gut microbiome
and depression in people with HIV monoinfection, HIV and HCV coinfection, or neither,
we analyzed 16S rRNA gene amplicon sequencing data from a total of 571 fecal
samples (Fig. 1b), 398 of which were from unique individuals. After filtering (see
Materials and Methods), 373 samples from unique subjects (described in Table 1, full
cohort) were retained for analysis. Participants were grouped according to their HIV and
HCV infection state: “coinfected” individuals (n � 48) with both HIV and HCV, “HIV
monoinfected” (n � 219) with HIV but not HCV, and “uninfected” individuals (n � 106)
with neither virus. A subset of these participants (coinfected, n � 27; HIV monoinfected,
n � 82; uninfected, n � 32) were additionally assessed using untargeted metabolomics
by liquid chromatography-mass spectrometry.

Sample characteristics of each infection group are included in Table 1. Biological sex,
anal receptive intercourse, and age have been associated with differences in microbial
communities (56–66). The uninfected group had more women and significantly fewer
bisexual and homosexual men (�2 � 76.9, P � 0.0001) than the other infection groups,
but the three groups were similar in terms of age. The uninfected group had a higher
estimated verbal IQ than the coinfected group. The uninfected group also had lower
current depressive symptoms and fewer problems with activities of daily living than the
HIV-monoinfected and coinfected groups and a higher rate of employment than the
coinfected group. Lifetime substance use disorders were lower in the uninfected group,
while lifetime major depression showed a stair step pattern with the uninfected group
at 33%, the HIV-monoinfected group at 52%, and the coinfected group at 71% (all P
values � 0.05). In terms of HIV disease, the HIV-monoinfected and coinfected groups

FIG 1 Cohort characteristics. (a) Unweighted UniFrac relative effect sizes assessed using RDA in the full data set. (b) Sample selection pipeline.
Coinfected groups (red), HIV-monoinfected groups (orange), and uninfected groups (green) are indicated. Lighter colors represent MSM
subgroups.
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did not differ by AIDS status, current or nadir CD4, or plasma viral load detectability.
While the coinfected group had been HIV positive an average of 4 years longer than the
HIV-monoinfected group, they were less likely to be on ART at their study visit (85%
versus 96%, respectively; P � 0.01). The coinfected group was also more likely to be
composed of minorities (specifically, African-Americans), but in all other respects
(including history of substance use disorders), the individuals in the coinfected group
were comparable to the individuals in the HIV-monoinfected group.

A subset of participants with a history of MDD were taking antidepressants at the
time of evaluation, which may have the capacity to alter gut microbiome and metabo-
lome composition. Of the participants with a lifetime history of MDD, 26% of the
coinfected, 34% of the HIV monoinfected, and 15% of the uninfected were taking
antidepressants, which included selective serotonin reuptake inhibitors (SSRIs) or
serotonin-norepinephrine reuptake inhibitors (SNRIs) (Table 1). In addition, because
diet can directly affect the gut microbiome, a subset of the participants in the full
cohort (coinfected, n � 7; HIV monoinfected, n � 39; uninfected, n � 34) completed a
dietary intake survey (see Table S1 in the supplemental material). Of the 22 food
categories surveyed, there was only a significant difference in consumption of “home-
cooked meals” between the three infection groups, such that the coinfected group was
less likely to report regular to daily consumption (3 to 7 days/week) of home-cooked
meals than both the uninfected and HIV-monoinfected groups (�2 � 20.15, P � 0.05).

Men who have sex with men (MSM) are known to have Prevotella-rich gut micro-
biomes, which is also a hallmark in HIV infection (59–66). To account for this potentially
confounding factor, we performed concerted microbiome analyses on (i) the full groups
(coinfected, HIV monoinfected, uninfected) and (ii) the subgroups composed only of
MSM (coinfected, n � 34; HIV monoinfected, n � 167; uninfected, n � 25; Fig. 1).

When limited to MSMs, the uninfected group had somewhat higher education levels
than the coinfected group, and higher premorbid IQ estimates than both infected
groups; otherwise, demographic characteristics did not differ between the three sub-
groups (Table 1, MSM subset). The three groups differed in sexual behavior (�2 � 7.7,
P � 0.02): in the coinfected subgroup, 24% reported sex with men and women and 76%
reported sex with only men; for the HIV-monoinfected subgroup, 10% reported sex
with men and women and 90% reported sex with only men. In the uninfected
subgroup, 20% reported sex with men and women and 80% reported sex with only
men. As in the full group, the coinfected individuals in the MSM subgroup had longer
estimated duration of HIV infection and a smaller percentage were on antiretroviral
therapy (ART) in comparison to the HIV-monoinfected MSM subgroup. Additional
cohort descriptors are included in Table 1. Of the MSM data set, 20 coinfected, 67
HIV-monoinfected, and 8 uninfected individuals were assessed using untargeted mass
spectrometry.

The gut microbiome and metabolome are significantly different between
coinfected, HIV-monoinfected, and uninfected individuals. To understand how the
gut microbiome and metabolome of the three infection groups differed from each
other, we compared alpha and beta diversity between coinfected, HIV-monoinfected,
and uninfected groups. After examining results with the full cohort, we then performed
the same analyses on the MSM subgroups.

First, we compared coinfected to uninfected groups. In the full cohort, we observed
a statistically significant difference in the overall gut microbial communities in un-
weighted UniFrac beta diversity distances between coinfected and uninfected individ-
uals (Fig. 2a, PERMANOVA pseudo-F � 3.05, BH P � 0.001). Coinfected individuals also
had lower alpha diversity than uninfected individuals (Fig. 2b, Shannon index [67],
Kruskal-Wallis H [KW-H] � 14.0, BH P � 0.0006). Coinfected and uninfected individuals
were also significantly different in their overall gut metabolome (Fig. 2c, beta diversity
Bray-Curtis PERMANOVA pseudo-F � 7.57, BH P � 0.002). However, between coinfected
and uninfected MSM subgroups, there were no differences in the overall composition of
the gut microbiome and metabolome (unweighted UniFrac beta diversity PERMANOVA
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pseudo-F � 1.28, BH P � 0.20; Shannon index, KW-H � 2.85, BH P � 0.14; metabolomics
beta diversity Bray-Curtis PERMANOVA pseudo-F � 0.98, BH P � 0.47).

Next, we compared HIV-monoinfected to uninfected groups. HIV-monoinfected
individuals were also significantly different from uninfected individuals in unweighted
UniFrac beta diversity distances (Fig. 2a, PERMANOVA pseudo-F � 4.4, BH P � 0.001),
and in their overall gut metabolome (Fig. 2c, beta diversity Bray-Curtis PERMANOVA
pseudo-F � 4.53, BH P � 0.002). Unlike coinfected individuals, however, there was no
difference in alpha diversity between the HIV-monoinfected and uninfected groups
(Shannon index, KW-H � 0.37, BH P � 0.55). Between the MSM subgroups of HIV-
monoinfected and uninfected groups, there were no differences in the overall compo-
sition of the gut microbiome and metabolome (unweighted UniFrac beta diversity
PERMANOVA pseudo-F � 1.18, BH P � 0.21; Shannon index, KW-H � 0.0006, BH P �

0.98; metabolomics beta diversity Bray Curtis PERMANOVA pseudo-F � 0.92, BH P �

0.47).
Finally, we compared coinfected to HIV-monoinfected groups. In the full cohorts, we

observed a statistically significant difference in unweighted UniFrac beta diversity
distances between coinfected and HIV-monoinfected individuals (Fig. 2a, PERMANOVA
pseudo-F � 2.56, BH P � 0.001). Coinfected individuals also had lower alpha diversity
than HIV-monoinfected individuals (Fig. 2b, Shannon index, KW-H � 12.5, BH P �

0.0006). Furthermore, coinfected and HIV-monoinfected individuals were significantly

FIG 2 Comparison between coinfected (red), HIV-monoinfected (orange), and uninfected (green) groups. (a to c) Full groups. (d to
f) MSM subgroups. (a and d) Between-group alpha (Shannon index) diversity compared to the uninfected group, compared using
Kruskal-Wallis test; (b and e) between-group unweighted UniFrac distances of microbiome profiles, compared to the uninfected
group, compared using pairwise PERMANOVA; (C and f) between-group Bray-Curtis distances of metabolomic profiles compared to
the uninfected group, compared using pairwise PERMANOVA. The false discovery rate (FDR) was controlled using the Benjamini-
Hochberg procedure.
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different in their overall gut metabolome (Fig. 2c, beta diversity Bray-Curtis PER-
MANOVA pseudo-F � 3.416891, BH P � 0.004). In the MSM subgroups, the unweighted
UniFrac beta diversity distances between the coinfected and HIV-monoinfected
subgroups remained statistically significantly different (Fig. 2d, PERMANOVA
pseudo-F � 1.73, BH P � 0.05). Again, the coinfected individuals had a lower alpha
diversity than HIV-monoinfected individuals (Fig. 2e, Shannon index, KW-H � 6.38, BH
P � 0.04). The differences in the overall gut metabolomes of the coinfected and
HIV-monoinfected individuals also remained significant in the MSM cohort (Fig. 2f, beta
diversity, Bray-Curtis PERMANOVA pseudo-F � 3.15, BH p � 0.03).

Alpha diversity does not correlate with immune biomarkers of disease pro-
gression in each cohort. Progression of untreated HIV infection is associated with
worsening immune suppression, which is characterized by lower CD4� T-cell counts
and higher CD8� T-cell counts (68), resulting in a low CD4/CD8 ratio. We did not
observe any correlation between percent CD4�, nadir CD4�, or absolute CD4� T cells,
and alpha diversity (Shannon) in any of the infection groups (Table S2). Likewise, there
was no correlation between CD4/CD8 ratio and alpha diversity (Shannon index) (Ta-
ble S2).

Elevated levels of the proinflammatory cytokine interleukin-6 (IL-6), even in the
context of viral suppression on ART, are associated with adverse outcomes such as
myocardial infarction and death (69–72). There were no correlations between plasma
IL-6 and alpha diversity (Shannon) in any of the infection groups or subgroups
(Table S2).

Associations of gut microbiome and metabolome composition with current
and lifetime depression within the coinfected, HIV-monoinfected, and uninfected
cohorts. We next evaluated each of the three infection groups separately to assess
associations between the gut microbiome and depression. Participants underwent
standardized assessments of lifetime major depressive disorder (MDD) using Diagnostic
and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) (73) criteria (and current
depressive symptoms using the Beck Depression Inventory-II) as described in Materials
and Methods. Here, we evaluated the groups according to two assessments: occurrence
of lifetime MDD and current depressive symptoms of at least mild severity based on the
Beck Depression Inventory (BDI-II � 14).

The gut microbiome and metabolome are altered in coinfected individuals
with depression. We first tested for association between the gut microbiome and
BDI-II in any of the three groups. Individuals were considered currently depressed if
they reported at least mild depressive symptoms; otherwise they were considered not
depressed. In no infection cohort was there a significant difference in alpha or beta
diversity between individuals stratified by current depressive symptoms (Table S3).
Consistent with prior research (74, 75), there also was no significant correlation be-
tween alpha diversity and continuous BDI-II severity in any of the cohorts (Table S2).

We were also interested in determining whether having MDD at any point (or
multiple points) in an individual’s life would be associated with gut microbiome
differences, separately within the three infection groups. Only in the full coinfected
group did we observe a statistically significant difference between those who met
lifetime diagnostic criteria for MDD versus those who did not (Table S3, unweighted
UniFrac PERMANOVA, pseudo-F � 1.6, BH P � 0.044). We found no significant differ-
ences in the HIV-monoinfected full group or MSM subgroup in unweighted UniFrac
distances or Shannon diversity between MDD states (Table S3). Prior research also
suggests that neurobehavioral disorders are not independently associated with gut
microbiome dysbiosis in HIV infection (42). We also found no significant differences
between lifetime MDD status in the uninfected groups (Table S3).

In the metabolomics data, a random forest analysis was used to identify features of
interest between lifetime MDD status within each infection group. The top 50 features
of importance found in each infection group using this machine learning analysis can
be found in Tables S4, S5, and S6. These features and their spectral matches (if present)
can be found in the Global Natural Products Social Molecular Networking (GNPS)
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feature-based molecular networking job (https://gnps.ucsd.edu/ProteoSAFe/status.jsp
?task�350392e8e24c41f2b84fde04f9183fc4). Multiple compounds of interest were
found to be annotated as bile acids. Further analysis of all annotated bile acids revealed
that in both the full coinfected group and the coinfected MSM subgroup, a cluster of
primary and secondary bile acids were significantly increased (Dunn’s test, P � 0.05) in
individuals with a lifetime history of MDD (Fig. 3a and b; annotations in Table S7). This
difference was not observed in the HIV-monoinfected or uninfected group (Fig. 3c).

Bile acids and the gut microbiome exist in a dynamic equilibrium (76). Primary bile
acids are produced and conjugated in the liver, released in the biliary tract, and
maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the
gut and liver (77). Bile acids mediate anti-inflammatory immune responses by binding
to receptors such as Takeda G-protein-coupled receptor 5 (78, 79). Primary bile acids are
metabolized by gut microbes into secondary bile acids and passively absorbed into the
portal circulation (80). Secondary bile acids affect host physiology by binding and
activating host nuclear receptors to a greater extent than primary bile acids (76). Here,
seven annotations of secondary bile acids were significantly increased in the full cohort
of coinfected individuals with a lifetime history of MDD, and six were significantly
increased in the MSM subgroup (Fig. 3a and b). This finding suggests increased

FIG 3 The gut microbiome and metabolome differ in coinfected individuals with a lifetime history of MDD. (a to c) Bile acid networks. Red indicates that the
bile acid was significantly higher (Dunn’s test, P � 0.05) in individuals who had a lifetime history of MDD versus those who never had MDD. The list of GNPS
annotations for this network are available in Table S7 in the supplemental material. (a) Full coinfected cohort; primary and secondary bile acid annotation of
the network. (b) Coinfected MSM subgroup. (c) All other cohorts. (d) Individuals who had lifetime MDD had a significantly higher log ratio of set 1 to set 2 (t
test, P � 9.1e�06, t � �5.21, df � 34.18, Cohen’s D � 1.43). The list of microbes in each set are available in Table S8.
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metabolism of primary to secondary bile acids by gut microbes in individuals coin-
fected with both HIV and HCV.

Bile acid imbalances are known to be associated with pathological states such as
liver disease, gastrointestinal cancers, and gallstones (76). Shifts in bile acid homeostasis
are associated with HCV infection (81) and chronic liver disease. Bile acid abundance
and composition are also dysregulated in MDD (82). Our observation of increased
primary and secondary bile acids in coinfected individuals with a lifetime history of
MDD compared to coinfected individuals without a lifetime history of MDD suggests
that dysregulated bile acid metabolism by gut bacteria may be a mechanism that links
HIV-HCV coinfection and MDD.

Due to our observation that overall microbiome composition, as measured by
unweighted UniFrac distances, differed between coinfected individuals with or without
lifetime MDD, we were also interested in determining whether specific groups of taxa
may be driving the bile acid differences we observed in the gut metabolome. We used
Songbird (83) to identify microbes that were associated with lifetime MDD in the full
cohort of coinfected individuals. Songbird is a compositionally aware differential abun-
dance method which provides rankings of features (suboperational taxonomic units
[sOTUs]) based on their log fold change with respect to covariates of interest. In this
case, the formula we used described whether the individual had lifetime MDD or not.
We selected the highest 10% (“set 1” in Table S8) and lowest 10% (“set 2” in Table S8)
of the ranked sOTUs associated with lifetime MDD and used Qurro (84) to compute the
log ratio of these sets of taxa (Fig. 3d). Comparing the ratios of taxa in this way
mitigates bias from the unknown total microbial load in each sample, and taking the
log of this ratio gives equal weight to relative increases and decreases of taxa (83).
Evaluation of the Songbird model against a baseline model obtained a pseudo-Q2
value of �0, suggesting that the model was not overfit. We found that coinfected
individuals who had lifetime MDD had a significantly higher log ratio of set 1 to set 2
sOTUs than those who never had MDD (t test, P � 9.055e�06, t � �5.210, df � 34.183,
Cohen’s D � 1.434), suggesting that they were associated with set 1. Several microbes
that were associated with coinfected individuals with a lifetime history of MDD (set 1
microbes in Table S8) have also been previously identified as enriched in MDD,
including Enterobacteriaceae (39) and Alistepes species (here, Alistepes onderdonkii) (2,
39, 85, 86), Bacteroides (39, 85), and Parabacteroides (here, Parabacteroides distasonis)
(39). Likewise, coinfected individuals without lifetime MDD were enriched in several
microbes (set 2 in Table S8) that were previously identified as being decreased in
uninfected individuals with MDD, including Dialister spp. (39, 87), Lachnospiraceae (85),
and Ruminococcus spp. (39).

Conclusions. This is to our knowledge the first study of the association between
infection with HIV and HCV, depression, and the gut microbiome and metabolome. We
performed 16S rRNA sequencing and liquid chromatography-mass spectrometry using
stool samples from nearly 400 individuals and evaluated the data with state-of-the-art
tools. We observed that although the gut microbiome of HIV-positive and -negative
individuals differed, HCV had a large effect on the microbiome which warranted
consideration in our study. The infection groups differed from each other in terms of
both alpha and beta diversity in the full cohort as well as the MSM subgroups.
Furthermore, we found that depression was associated with differences in the gut
microbiome and metabolome only in HIV-HCV coinfected individuals. Coinfected indi-
viduals with a lifetime history of MDD were enriched in primary and secondary bile
acids, as well as particular depression-related taxa. Importantly, our results suggest that
microbiome and metabolome investigations in HIV-infected cohorts should carefully
consider possible effects of HCV coinfections, which are not uncommon among people
living with HIV.

People living with HIV and/or HCV are often burdened by a number of pharmaceu-
tical interventions for treatment and management of their disease. Understanding the
connection between the gut microbiome/metabolome and depression in patients with
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these comorbidities paves the way for microbiome-based interventions to treat de-
pressive disorders (e.g., administration of probiotics or prebiotics, fecal transplants, or
dietary interventions). Bacteroides, which we found to be associated with coinfected
individuals with a history of MDD, can be decreased in the human gut by reducing
consumption of animal protein and/or increasing carbohydrate intake (88). We also
found that Lachnospiraceae are associated with non-MDD coinfected individuals. Our
previous work suggests that Lachnospiraceae are present in people who consume
fermented foods (89), again suggesting that dietary changes may be able to prevent or
treat microbiome-based depressive disorders in these populations. While this study
provides the foundation for more directed research, it has some limitations—particu-
larly the lack of an HCV-monoinfected group, the small number of women, and the
reduced sample sizes after forming MSM subsets. In future studies, it would also be of
great interest to consider current MDD and other neurobehavioral or neuropsychiatric
metrics in coinfected and monoinfected cohorts.

MATERIALS AND METHODS
Participant recruitment, sample processing, and sample selection. This was a cross-sectional

prospective observational cohort study of persons with or without HIV infection recruited from com-
munity sources, who agreed to undergo comprehensive neuromedical and neurobehavioral evaluations
for NIH-funded studies at the HIV Neurobehavioral Research Program (HNRP; https://hnrp.hivresearch
.ucsd.edu/) including the HIV Neurobehavioral Research Center (HNRC) at the University of California San
Diego (UCSD). Study details can be found in references 90 and 91. Those who also agreed to submit stool
samples for microbiome studies were included in the current analyses. A subset of participants also had
positive serology for hepatitis C virus. The UCSD’s Human Research Protections Program (irb.ucsd.edu)
approved all study procedures, and all participants provided written informed consent.

Exclusions were diagnoses of active substance use disorders and presence of an active, major
psychiatric condition with current psychotic features or neurological conditions such as schizophrenia or
epilepsy. If multiple stool samples were collected from participants, only the first time point was analyzed
by 16S rRNA sequencing. A single time point per subject was additionally analyzed by high-performance
liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). HIV and HCV infections
were confirmed by a point-of-care vertical flow test (MedMira, Halifax, Nova Scotia, Canada). Participants
were designated as follows: (i) “HIV monoinfected” if they tested positive for HIV but not HCV, (ii)
“coinfected” if they tested positive for both HIV and HCV, or (iii) “uninfected” if they tested positive for
neither HIV or HCV. Group characteristics were compared using t tests for all normally distributed
continuous variables, Wilcoxon tests for nadir and current CD4, and chi-square tests for all nominal
variables.

Neuromedical and laboratory assessment. All participants underwent a comprehensive neuro-
medical assessment, including a medical history that collected antiretroviral therapy (ART) and other
medications, data to determine Centers for Disease Control (CDC) HIV disease staging, and specimen
collection (blood, stool). Routine clinical chemistry panels, complete blood counts, rapid plasma reagin,
and CD4� T cells (flow cytometry) were performed at a Clinical Laboratory Improvement Amendments
(CLIA)-certified medical center laboratory. HIV RNA was measured in plasma using reverse transcriptase
PCR (Amplicor; Roche Diagnostics, Indianapolis, IN) with a lower limit of quantitation of 40 copies/ml.

Evaluation of depression. DSM-IV diagnosis of lifetime major depressive disorder was evaluated
using the computer-assisted Composite International Diagnostic Interview (CIDI) (92), a structured
instrument widely used in psychiatric research. Current self-reported depressed mood was assessed
using the Beck Depression Inventory-II (BDI-II) (93). The BDI-II consists of 21 items that assess the severity
of depression symptoms over the 2 weeks prior to assessment. The BDI-II total score ranges from 0 to 63
with higher scores denoting more severe depression symptoms. For analyses, we used the published
cutoff of at least mild severity to define current self-reported depression (93).

16S rRNA gene sequencing. DNA extraction and 16S rRNA amplicon sequencing were done using
Earth Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and
-standards/16s). DNA was extracted with the Qiagen MagAttract PowerSoil DNA kit as previously
described (94). Amplicon PCR was performed on the V4 region of the 16S rRNA gene using the primer
pair 515f to 806r with Golay error-correcting barcodes on the reverse primer. Amplicons were barcoded
and pooled in equal concentrations for sequencing. The amplicon pool was purified with the MO BIO
UltraClean PCR cleanup kit and sequenced on the Illumina MiSeq sequencing platform. Sequence data
were demultiplexed and minimally quality filtered using the Qiita defaults.

16S marker gene data analysis. QIIME 2 v2020.2 (95) was used to rarefy to 2,500 sequences/sample
and to generate pairwise unweighted UniFrac distances (52, 54, 96). Between group differences based on
these distances were tested using PERMANOVA (97) and permuted t tests in QIIME 2. Alpha diversity
(Shannon diversity [67]) was compared with a Kruskal-Wallis test.

Songbird v1.0.1 (83) in QIIME 2 version 2020.2 was used to identify feature ranks (parameters,
–p-epochs, 10000; – batch-size, 5; –learning-rate, 1e�4; –min-sample-count, 1000; –min-feature-count, 0;
–num-random-test-examples, 10), and Qurro v0.4.0 (84) was used to compute the log ratios of these
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ranked features. t tests and Cohen’s D were calculated to assess the significance (alpha � 0.05) and effect
size of the log ratios.

LC-MS/MS data acquisition. Metabolomics sample processing and data acquisition protocols
followed the standard Center for Microbiome Innovation’s seed grant project protocol to allow for
comparison of this data set to many reference data sets and standards. Human fecal samples were
transferred to clean 2-ml sample tubes (Qiagen catalog no. 990381), and the weights were recorded. The
samples were then extracted in a solution of 1:1 methanol to water spiked with an internal standard of
1 �M sulfamethazine, using a 1:10 sample weight (in milligrams) to solvent volume (microliter) ratio.
Using a Tissuelyser II (Qiagen), the samples were homogenized for 5 min at 25 Hz. This was followed by
a 15-min centrifugation at 14,000 rpm. From the supernatant, 400 �l was transferred to a prelabeled
96-Well DeepWell plate, and the plates were concentrated using a CentriVap Benchtop Vacuum Con-
centrator (Labconco) for approximately 4 h. The dry plates were placed into a �80°C freezer until time
for analysis.

The plates were resuspended in 150 �l of a 1:1 methanol-to-water solution with a 1 �M sulfadime-
thoxine internal standard solution. For metabolomics analysis, an ultrahigh performance liquid chroma-
tography system (Thermo Dionex Ultimate 3000 UHPLC) coupled to an ultrahigh resolution quadrupole
time of flight (qToF) mass spectrometer (Bruker Daltonics MaXis HD). For chromatographic separation, a
Phenomenex Kinetex column (C18; 1.7 �m, 2.1 mm � 50 mm) was used, as this column has demonstrated
robust separation of a large variety of the compounds within the parameters used. The mobile phase
consisted of solvent A (100% LC-MS grade water with 0.1% formic acid) and solvent B (100% acetonitrile
with 0.1% formic acid). Each sample was injected at a volume of 5 �l into a flow rate of 0.5 ml for the
entire analysis. The 12-min chromatographic gradient began at 5% solvent B for the first minute, an
increase to 100% solvent B from min 1 to min 11, a hold at 100% B until min 11.5, and back down to 5%
solvent B reached at min 11.5. All data were collected using electrospray ionization in positive mode.
Positive mode was selected in order to allow for spectral matches to be found using the GNPS spectral
libraries, a majority of which were collected in positive ionization mode. Data-dependent acquisition was
set to a scan range of 100 to 2,000 m/z.

LC-MS/MS data analysis. The raw data in Bruker (.d) format were lock mass corrected using hexakis
(1H, 1H, 2H-difluoroethoxy)phosphazene (Synquest Laboratories, Alachua, FL) and were exported as
.mzXML files using the Bruker Data Analysis software. Both the raw.d and the.mzXML files were uploaded
to the UC San Diego mass spectrometry data repository MassIVE (https://massive.ucsd.edu/ProteoSAFe/
static/massive.jsp). Feature detection was completed using MZmine version 2.37 software (98). Param-
eters can be found in Table S9 in the supplemental material. The resulting feature tables were exported
as both a quantification file (.csv) and a spectral information file (.mgf) for analysis using the Global
Natural Products Social Molecular Networking (GNPS) platform (99). All annotations obtained by GNPS
fall under the Metabolomics Standards Initiative (MSI) (100) level 1, 2, or 3. The bile acids analyzed in
Fig. 3a to c and Table S7 are MSI level 1 and 3. The level 1 annotations match the retention time of the
bile acid standard run on the same gradient. The level 3 annotations do not have a retention time match
to a standard and indicate a spectral match to that family of compounds. The annotation name listed
represents the closest spectral match available in the GNPS libraries.

The quantification table and spectral information were analyzed using the GNPS feature-based
molecular networking workflow (101). Parameters can be viewed via the job results page. For this data
set, there were 1,911 unique MS/MS spectra of which 313 have spectral matches again the GNPS
reference libraries (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp) including matches to drug and drug
metabolite standards, bile acids, food-related compounds, and dipeptide molecules. The results reflect
MSI level 2 or 3 annotations (100). For the statistical analyses, the MZmine-produced feature abundance
table containing peak areas was inputted into the web-based MetaboAnalyst software (102). The data
were normalized following the metabolomics data analysis protocols outlined in the previous metabo-
lomics project (89), a normalization by quantile normalization and an auto scale. The normalized data
were used to calculate a squareform matrix based on the Bray-Curtis distance metric which was inputted
into a.qza format for use in QIIME2. All PERMANOVAs were run using the QIIME2 beta group significance
command (95). The QIIME2 sample classifier command (default parameters) was used to assess the
classification of lifetime MDD status in each infection group from the metabolomics data. The resulting
features of importance and their GNPS annotations per group can be found in Tables S4, S5, and S6. The
Cytoscape v3.7.2 software was used for all molecular networking visualizations (103). Individual feature
level comparisons were completed using a Dunn’s test.

Data availability. The data generated in this study are available publicly in Qiita under the study ID
11135 (https://qiita.ucsd.edu/study/description/11135), and sequence data associated with this study
have been deposited at EBI/ENA under accession number ERP122366. The raw experimental data are
available at MassIVE (https://massive.ucsd.edu/), data set MSV000083664.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, CSV file, 0 MB.
TABLE S2, CSV file, 0 MB.
TABLE S3, CSV file, 0 MB.
TABLE S4, CSV file, 0 MB.
TABLE S5, CSV file, 0 MB.
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TABLE S6, CSV file, 0 MB.
TABLE S7, CSV file, 0 MB.
TABLE S8, CSV file, 0 MB.
TABLE S9, CSV file, 0 MB.
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