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Abstract

Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated 

polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to 

various biological or pathological manifestations. Self-perpetuating amyloid-based protein 

conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, 

termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are 

associated with a variety of devastating mammalian and human diseases, such as Alzheimer’s, 

Parkinson’s and Huntington’s diseases, transmissible spongiform encephalopathies (TSEs), 

amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based 

prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and 

availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent 

model system for studying molecular and cellular mechanisms governing amyloid formation and 

propagation. Genetic techniques allowing for the expression of mammalian or human 

amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast 

advantages for characterization of the properties of disease-related proteins. Chimeric constructs 

employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores 

or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related 

protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for 

antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date 

achievements of yeast assays in application to studying mammalian and human disease-related 

aggregating proteins, and discusses both limitations and further perspectives of yeast-based 

strategies.
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1. Introduction

Protein misfolding in humans and animals have been linked to more than 40 diseases (see 

Table 1 for examples), including fatal and incurable neurodegenerative disorders such as 

Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases, as well as diseases 

affecting other tissues, such as systemic amyloidosis (Knowles, Vendruscolo, & Dobson, 

2014). These diseases are typically associated with at least one protein or peptide that 

misfolds to acquire a so-called amyloid state, in which identical protein molecules are 

assembled into non-covalent cross-β fibrous polymers, that are typically accumulated in 

tissues or organs, where the disease-specific damage occurs. Some diseases that were not 

previously considered as amyloid diseases are now shown to be associated with an amyloid 

deposition, although it is not always clear if amyloids represent a cause or a consequence of 

the disease in such cases. Examples of such diseases include type II diabetes, pre-eclampsia 

and even some forms of cancer (Antony et al., 2012; Buhimschi et al., 2014; Hull, 

Westermark, Westermark, & Kahn, 2004; Silva, Cino, Soares, Ferreira, & AP de Oliveira, 

2018). There are also diseases, such as some forms of Amyotrophic lateral sclerosis (ALS), 

that are associated with protein misfolding and aggregation but do not necessarily exhibit the 

formation of “classic” amyloid fibrils (Ayers & Cashman, 2018).

Among protein misfolding diseases, transmissible spongiform encephalopathies (TSEs) or 

prion diseases were thought to be unique in their ability to be infectious, or in other words, 

transmissible between organisms (Aguzzi & Lakkaraju, 2015; Colby & Prusiner, 2011; 

Prusiner, 1998, 2013). TSEs are relatively rare in humans; however, the epidemics of “mad 

cow,” or bovine spongiform encephalopathy (BSE) disease, that is transmissible to humans, 

demonstrated their importance for public health. The infectious TSE agent is composed of a 

protein (termed prion protein, or PrP), that is present in a misfolded form, and can initiate 

and spread the misfolding of an identical substrate protein in the infected organism. The 

nucleated polymerization of an amyloid explains the infectious capabilities of prions, as the 

molecules, immobilized into an amyloid fibril, acquire the same conformation as those 

already included in the fibril, due to the formation of β-strands in the exact same positions 

(see Fig. 1). This templated mechanism of amyloid polymerization makes any amyloid 

conformer potentially capable of spreading. Indeed, many amyloids can spread between 

cells or brain regions within an organism, and intercellular or even inter-organismal 

transmission of amyloids associated with AD, PD and other synucleinopathies, or HD has 

been demonstrated in experimental models, thus suggesting a broader use of the term 

“prion” (Erana, 2019; Jucker & Walker, 2018; Kane et al., 2000; Prusiner, 2012; Prusiner et 

al., 2015; Ren et al., 2009; Tarutani & Hasegawa, 2019; Walker, 2018; Watts et al., 2013).

The templated mechanism of amyloid reproduction serves as a molecular basis for the 

inheritance of traits, encoded in the protein structure rather than directly in DNA sequence 

(Chernoff, 2001; Wickner et al., 2014). Indeed, some endogenous amyloids of yeast and 

other fungi manifest themselves as heritable non-Mendelian factors transmitted via the 

cytoplasm (Chernova, Wilkinson, & Chernoff, 2017; Liebman & Chernoff, 2012; Wickner, 

Edskes, Gorkovskiy, Bezsonov, & Stroobant, 2016). The high resolution power of genetic 

tools that are available in yeast significantly aids in amyloid characterization, while the 

ability of yeast prions to cause detectable phenotypic traits (typically associated with a 
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decrease in cellular function of a protein in an amyloid form) simplifies monitoring of 

amyloids. Some yeast prions control easily detectable phenotypic traits, typically resulting 

from a partial loss of the cellular function of a protein because of its incorporation into 

amyloid polymers.

Some yeast prions are shown to be pathogenic to yeast cells (McGlinchey, Kryndushkin, & 

Wickner, 2011; Wickner, 2019; Wickner et al., 2011), although the evidence in favor of the 

adaptive functions of some prions (such as [Het-s] prion of the mycelial fungus Podospora 
anserina) has also been provided (Saupe, 2011; Saupe, Jarosz, & True, 2016). In other 

organisms, certain amyloids have been implicated in biologically positive functions as 

reviewed in Fowler and Kelly (2012) and Otzen and Riek (2019). Examples include: 

attachment to substrate or cell-to-cell interactions in bacteria and fungi (Barnhart & 

Chapman, 2006; Blanco, Evans, Smith, Badtke, & Chapman, 2012; Lipke, Klotz, Dufrene, 

Jackson, & Garcia-Sherman, 2018), scaffolding of the synthesis of covalent polymers, such 

as melanin (Fowler et al., 2006), and storage of peptide hormones in animals (Maji et al., 

2009). Amyloid-like oligomerization of the CPEB protein has been linked to long-term 

potentiation and memory in shellfish Aplysia (Si, Choi, White-Grindley, Majumdar, & 

Kandel, 2010; Si, Lindquist, & Kandel, 2003), fruit fly Drosophila (Majumdar et al., 2012), 

and mouse Mus (Fioriti et al., 2015). Many proteins or peptides are capable of forming 

amyloids in vitro depending on conditions. It has been proposed that amyloid represents an 

ancient protein fold that has been suppressed in evolution for a majority of proteins as the 

amyloid formation interfered with their functions. Thus, amyloid formation in vivo is either 

pathogenic or retained in cases when it plays biologically positive roles.

While a number of approaches have been developed for the prediction of amyloidogenic 

properties (Antonets & Nizhnikov, 2013, 2017; Conchillo-Sole et al., 2007; Fernandez-

Escamilla, Rousseau, Schymkowitz, & Serrano, 2004; Maurer-Stroh et al., 2010; O’Donnell 

et al., 2011), most of these approaches are capable of accurately predicting amyloid 

formation by short peptides in vitro, but not by full-length proteins in the in vivo conditions. 

The ArchCandy algorithm, based on the ability of an amino acid (aa) sequence to form 

folded parallel in-register intermolecular β-sheets (termed β-archs), that are characteristic of 

many amyloids, claims relatively accurate predictions for known proteins (Ahmed, Znassi, 

Chateau, & Kajava, 2015). However, ArchCandy is yet to be tested in the large-scale 

searches. An attempt to perform a large-scale bioinformatic search based on several features 

found in previously confirmed amyloidogenic sequences has uncovered 260 proteins with an 

amyloidogenic potential in human proteome (Prabakaran, Goel, Kumar, & Gromiha, 2017). 

While these data are still awaiting experimental validation, they point to a possibility of that 

amyloid formation is widespread in vivo. Either some of these amyloids are functional, or 

the adverse effects of amyloids are offset by the presence of structural optimization 

strategies in the proteome. Readers may find a more detailed overview of existing amyloid 

prediction algorithms in some recent papers (Ahmed & Kajava, 2013; Wilson et al., 2018).

Many amyloid diseases are characterized by late onset (that is, age-dependence) or long 

incubation periods (Aguzzi & O’Connor, 2010; Colby & Prusiner, 2011; Irvine, El-Agnaf, 

Shankar, & Walsh, 2008). This makes it extremely difficult to investigate mechanisms of 

amyloid formation and propagation in vivo by using animal models. Yeast provides an 
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excellent opportunity for amyloid studies due to straightforward cultivation techniques, 

easiness of producing large cell numbers, and availability of simple and powerful phenotypic 

assays. As amyloid properties are determined, to a significant extent, by the protein itself, 

“humanized” yeast cells expressing mammalian amyloidogenic proteins can be employed 

for studying the fundamental rules of amyloid behavior in vivo and searching for anti-prion 

treatments. This review describes the application of yeast models to the investigation of 

properties of mammalian amyloidogenic proteins.

2. Overview of yeast prions

Yeast prions were covered in detail in some recent reviews (Chernova, Wilkinson, & 

Chernoff, 2014; Chernova, Wilkinson, et al., 2017; Cox & Tuite, 2018; Liebman & 

Chernoff, 2012; Wickner, 2016), thus we summarize only the aspects that are important for 

understanding their applications to studying mammalian amyloids below. Prions are best 

studied in the budding yeast Saccharomyces cerevisiae, a popular model organism for 

laboratory research, although some examples of prions from other yeast species and from 

mycelial fungi have also been reported. Yeast prion proteins contain so-called prion domains 

(PrDs) that are responsible for intermolecular interactions leading to the formation of an 

amyloid axis, and are, at least in some cases, distinct from domains responsible for the major 

cellular functions of the same proteins. Usually PrDs are present as intrinsically disordered, 

or low complexity regions (IDRs, or LCRs) in the native (non-amyloid) protein structures, 

and most (although not all) known yeast prion proteins contain PrDs that are enriched by Q 

and/or N residues.

At present, about 10 yeast proteins are proven to form amyloid-based prions in yeast (see 

Table 2, for examples). In addition, a variety of QN-rich domains capable of prion formation 

when fused to reporter constructs were found (Alberti et al., 2009). It was also shown that 

about 100 yeast proteins possess QN-rich regions similar to known PrDs, and from 1% to 

4% of proteins with such regions were found in the proteomes of higher eukaryotes 

including humans proteomes (Michelitsch & Weissman, 2000). Yeast cells also contain non-

QN-rich amyloids, both of prion nature, such as Mod5 (Suzuki et al., 2012), and of non-

prion nature, potentially playing a functional role, for example, cell wall proteins Bgl2 

(Bezsonov et al., 2013; Kalebina et al., 2008; Selivanova et al., 2016) and Toh1 (Sergeeva et 

al., 2019). A proteome-wide screening approach for identification of detergent-resistant 

assemblies (potential amyloids) has been developed for yeast cells and could be applied to 

mammalian systems (Nizhnikov et al., 2014). Improved bioinformatic searches employing 

other sequence patterns rather than only QN-richness further increased the numbers of 

candidate proteins with “prion domain like domains” (PrLDs), both in yeast and in other 

organisms (Alberti et al., 2009; Iglesias, Conchillo-Sole, Batlle, & Ventura, 2019; March, 

King, & Shorter, 2016; Pallares et al., 2018; Prabakaran et al., 2017; Zambrano et al., 2015). 

Moreover, PrLDs (which can be considered as a subgroup of LCRs, low complexity regions 

that are intrinsically disordered in non-amyloid state) are found in a large number of proteins 

that are not phylogenetically related to each other and have diverse biological functions. This 

suggests that PrLDs may have some regulatory roles, although it is not yet known if these 

roles are related to their amyloid-forming abilities.
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The best characterized yeast prion-forming proteins are the translation termination (release) 

factor Sup35, denoted as [PSI+] in its prion form (Cox, 1965; Wickner, 1994), and a 

posttranscriptional regulator in the nitrogen metabolism, Ure2, denoted as [URE3] in its 

prion form (Lacroute, 1971; Wickner, 1994). The Sup35/[PSI+] system, also reviewed in 

(Cox & Tuite, 2018; Liebman & Chernoff, 2012) is explained in more detail below, as it is 

used in a variety of assays described in this review. A yeast counterpart of the eukaryotic 

release factor eRF3, Sup35 consists of three regions (see Fig. 2A): (1) prion domain, or PrD 

at N-terminus (Sup35N), which contains a QN-rich stretch (NQ), and a region of 

oligopeptide repeats (NR); (2) middle linker domain (Sup35M), which contains clusters 

enriched in charged residues, and (3) the C-terminal release factor region (Sup35C, or RF) 

that is essential and sufficient for Sup35’s function in translation termination and for cell 

viability. Sup35N is typically unstructured but can be converted into a cross-β conformation, 

thus forming the axis of the amyloid fibril. The NQ stretch of Sup35N is primarily 

responsible for amyloid aggregation and is typically included in the protected cross-β “core” 

when Sup35 forms an amyloid, while the repeat region (NR) plays an important role in the 

propagation of prion state (Osherovich, Cox, Tuite, & Weissman, 2004; Toyama, Kelly, 

Gross, & Weissman, 2007), possibly through interactions with the chaperone machinery as 

described below. Sup35N and Sup35M regions are also responsible for the inclusion of 

Sup35 into reversible liquid droplet or hydrogel assemblies, formed in response to the low 

pH stress and apparently playing a protective role (Franzmann et al., 2018). The charged 

clusters within Sup35M region act as pH sensors, facilitating the solubilization of liquid 

droplets during a recovery from the pH stress. Thus, in normal conditions, Sup35M helps to 

maintain Sup35 in the soluble state. The relationship between the phase separation pathway 

leading to liquid droplets, and the Sup35 amyloid formation pathway is not clear. Pre-

existing prion aggregates have been reported to antagonize the formation of liquid droplets 

(Franzmann et al., 2018); however, it is not known which role (if any) phase separation may 

play in de novo prion formation. Overall, the existence of protective assemblies modulated 

by the Sup35NM region agrees with the previously hypothesized role of the PrD-mediated 

assemblies in protecting Sup35 protein from degradation during stress (Chernoff, 2007). 

When Sup35N converts into a prion conformation, it is immobilized into insoluble fibrous 

aggregates, that results in a reduced ability to access terminating ribosomes, thus causing 

readthrough of nonsense codons (Liebman & Chernoff, 2012). Specifically designed yeast 

strains with a premature stop codon, for example, in the gene ADE1 (the UGA mutation 

ade1-14), are used to detect the Sup35 prion, [PSI+] phenotypically by growth on selective 

medium (for example, the medium lacking adenine, – Ade in case of ade1-14 reporter) or by 

color on the complete medium, due to accumulation of the polymerized intermediate in the 

adenine biosynthetic pathway, conferring red color to the yeast cells (see Fig. 2B). Some 

strains employ the ade2-1 UAA allele (instead of ade1-14) as a reporter, in combination with 

a weak tRNA-based UAA-suppressor SUP16; this suppressor is not able to cause a 

detectable readthrough of ade2-1 in the absence of [PSI+], but can do this when translation 

termination becomes impaired due to the presence [PSI+] (Cox & Tuite, 2018; Cox, 1965). 

The Sup35 PrD-containing constructs, for example, the Sup35NM fragment, readily form 

amyloid fibers in vitro when seeded with amyloid aggregates, thus mimicking the 

conformational conversion of prion proteins in vivo (Glover et al., 1997; Serio, Cashikar, 

Moslehi, Kowal, & Lindquist, 1999). These in vitro produced amyloids can transfect yeast 
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cells, converting the endogenous Sup35 protein into a phenotypically detectable prion state 

(King & Diaz-Avalos, 2004; Tanaka, Chien, Naber, Cooke, & Weissman, 2004).

The spontaneous de novo formation of the [PSI+] prion is very rare, at the rates of 10−6 to 

10−8 depending on strain and prion composition, see refs. (Allen, Chernova, Tennant, 

Wilkinson, & Chernoff, 2007; Chernoff, Newnam, Kumar, Allen, & Zink, 1999; Lancaster, 

Bardill, True, & Masel, 2010), and below. However, the frequency of [PSI+] can be 

increased up to 10−1 by transient overproduction of the Sup35 protein or its PrD (Chernoff, 

Derkach, & Inge-Vechtomov, 1993; Derkatch, Chernoff, Kushnirov, Inge-Vechtomov, & 

Liebman, 1996), see Fig. 3A. Typically, the induction of prion formation by protein 

overproduction is efficient only in cells that either contain another (typically QN-rich) 

protein in a prion form (Derkatch et al., 2001, 1997), or co-overproduce another 

aggregation-prone protein with a QN-rich domain (Derkatch et al., 2001; Osherovich & 

Weissman, 2001). Specifically, the prion form of the Rnq1 protein, termed [PIN+] or [RNQ
+], promotes de novo nucleation of [PSI+] by overproduced Sup35 or Sup35N/NM, as well 

as increases the spontaneous formation of [PSI+] (Allen et al., 2007; Cox, Byrne, & Tuite, 

2007; Derkatch et al., 2001; Serio, 2018). It was proposed and supported by some data that 

prion polymers of Rnq1 nucleate the initial assembly of the Sup35 amyloid (Derkatch et al., 

2001, 2004), as shown in Fig. 3A. Once formed, Rnq1 and Sup35 amyloids are further 

maintained as separate entities. De novo prion formation by a transiently overproduced prion 

protein is also promoted by actin cytoskeletal structures that are physically associated with 

the aggregates of overproduced constructs containing Sup35 PrD (Ganusova et al., 2006). 

Lsb2 (also called Pin3), a stress-inducible yeast short-lived yeast cytoskeletal protein with a 

QN-rich domain, also promotes the de novo nucleation of [PSI+] when Lsb2 is overproduced 

(Chernova et al., 2011; Derkatch et al., 2001), or when it forms a metastable heat shock 

inducible prion, termed [LSB+] (Chernova, Chernoff, & Wilkinson, 2017; Chernova, Kiktev, 

et al., 2017). While cross-nucleation interactions between QN-rich proteins are best studied, 

there are also cases when QN-rich aggregates promote prion formation by a non-QN-rich 

heterologous protein (Mathur, Taneja, Sun, & Liebman, 2010) or interact with a non-QN-

rich yeast amyloid, or when overproduction of a non-QN-rich amyloidogenic protein 

promotes prion nucleation by Sup35 (Suzuki et al., 2012). In some cases, an aggregated 

protein apparently promotes prion misfolding and nucleation in trans via sequestration of 

cofactors rather than by direct cross-seeding (Arslan, Hong, Kanneganti, Park, & Liebman, 

2015). The de novo induction of heritable aggregated state by transient protein 

overproduction has been used as a tool for the identification of new yeast prion candidates 

(Alberti et al., 2009; Du et al., 2008; Patel, Gavin-Smyth, et al.2009, , some of which are not 

QN-rich and are not yet proven to form amyloids (Chakrabortee et al., 2016).

Misfolded proteins are recognized by molecular chaperones that facilitate their folding into 

native states, as specified by their primary sequence. The Hsp104 chaperone is a 

homohexameric AAA ATPase, that is required for induced thermotolerance (Glover & 

Lindquist, 1998). In the context of prions, the levels of Hsp104 expression are crucial for 

[PSI+] propagation: either an overproduction or a deletion of Hsp104 eliminates [PSI+] 

(Chernoff, Lindquist, Ono, Inge-Vechtomov, & Liebman, 1995). Accumulated evidence, 

reviewed in (Chernova et al., 2014; Chernova, Wilkinson, et al., 2017) demonstrates that 

Hsp104, together with a cytosolic protein of the Hsp70 family (Ssa) and its Hsp40 cofactor 
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fragments [PSI+] fibrils into smaller prion seeds that can efficiently promote the prion 

conversion of monomeric or newly synthesized Sup35, as shown in Fig. 3B. When Hsp104 

levels are depleted, the larger prion fibrils are not fragmented into prion seeds, and thus 

inefficiently transmitted to daughter cells. On the other hand, an excess of Hsp104 binds 

prion fibrils independently of Hsp70/40, apparently within the Sup35M region (Helsen & 

Glover, 2012; Winkler, Tyedmers, Bukau, & Mogk, 2012). This “non-productive” binding 

does not lead to fragmentation and causes prion loss due to malpartitioning in cell divisions 

(Ness, Cox, Wongwigkarn, Naeimi, & Tuite, 2017). Some data also point to the ability of 

excess Hsp104 to solubilize aggregates by “trimming” from the ends, although role of this 

process in prion “curing” by excess Hsp 104 is not clear (Greene, Zhao, & Eisenberg, 2018; 

Park et al., 2014). Essentially all known QN-rich yeast prions require Hsp104 for 

propagation, while they differ in their response to Hsp104 overproduction, with Sup35 being 

most efficiently cured by excess Hsp104 (Chernova et al., 2014; Chernova, Wilkinson, et al., 

2017). The efficiency of polymer fragmentation by chaperones relative to polymer growth 

explains phenotypic differences between yeast prion variants (Derkatch et al., 1996), 

analogous to prion or amyloid “strains” in mammalian systems (Rossi, Baiardi, & Parchi, 

2019; Tian, Meng, & Zhang, 2019; Vorberg, 2019); notably, the Sup35 “strains” with a 

longer cross-β protected core are less efficiently fragmented and therefore produce less 

“seeds,” thus exhibiting the “weaker” propagation and phenotype (Tanaka, Collins, Toyama, 

& Weissman, 2006; Toyama et al., 2007). While Hsp104 is not present in multicellular 

organisms, other components of the yeast prion fragmentation machinery (Hsp70 and 

Hsp40) possess orthologs there, as reviewed in (Rikhvanov, Romanova, & Chernoff, 2007). 

Artificially introduced Hsp104 can antagonize aggregation of some proteins such as 

polyglutamines in animal cells (Satyal et al., 2000), and “potentiated” variants of yeast 

Hsp104 with presumably hyperfunctional mutations were shown to antagonize some 

disease-associated amyloids in both yeast and mammalian systems ( Jackrel et al., 2014; 

Jackrel & Shorter, 2014, 2015). Interestingly, the prion form of yeast Sup35NM can 

propagate in cultured mammalian cells (Krammer et al., 2009), although it appears that there 

are some differences between the Sup35 PrD regions that are crucial for the prion 

propagation in yeast and mammals (Duernberger et al., 2018).

Overall, yeast prions provide an excellent system for understanding the general mechanisms 

of amyloid formation and propagation, of which many are applicable to mammals. 

Moreover, availability of powerful phenotypic and cytological assays makes yeast an 

excellent model for studying properties of specific mammalian and human amyloidogenic 

proteins, as described in subsequent sections.

3. Yeast models for polyglutamine aggregation

3.1 Overview of polyglutamine diseases

Polyglutamine (polyQ) diseases are neurodegenerative disorders, encompassing at least nine 

heritable disorders, including Huntington disease (HD) and most spinocerebellar ataxias 

(SCA) (Shao & Diamond, 2007). In contrast to most other amyloid-type diseases, polyQ 

diseases are strictly heritable. Each of these diseases results from the expansion of a CAG 

repeat, coding for a polyQ tract that is present in a respective wild-type protein (for HD, this 
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is a protein named huntingtin and abbreviated as Htt). However, it has been demonstrated in 

cell models that huntingtin with a polyQ extension can seed aggregation of wild-type Htt 

(Ren et al., 2009).

Variations in the size of polyQ tract occur due to replication “slippage” on trinucleotide 

repeats. In healthy individuals, the length of Htt’s polyQ tract is usually below 35 repeats 

(Fig. 4A). Tracts of intermediate length (between 35 and 40) are termed “premutations,” as 

they may or may not lead to disease, however, individuals with HD frequently appear in the 

progeny of the carriers of such intermediate expansions. Once the length polyQ tract reaches 

above 40, it typically results in a disease, and longer tracts (that could be up to over 100 Qs) 

lead to a more severe disease with earlier onset (Shao & Diamond, 2007). PolyQ expansion 

promotes formation of fibrous Htt’s aggregates, associated with HD. Recombinant proteins 

with an expanded polyQ stretch were found to form insoluble high molecular weight protein 

aggregates due to formation of intermolecular polar “zippers” in vitro (Perutz, Johnson, 

Suzuki, & Finch, 1994). PolyQ composition of the aggregation-prone regions in huntingtin 

aggregates makes them somewhat similar to the endogenous yeast prion proteins, of which 

many are characterized by the high QN contents (see above). Thus, yeast provides an 

excellent model for studying the mechanisms leading to polyQ aggregation.

3.2 Factors modulating polyQ aggregation and toxicity in yeast

Yeast models for polyQ-mediated aggregation typically employ exon 1 of huntingtin protein 

(Chernova, Chernoff, & Wilkinson, 2019; Duennwald, 2013). Exon 1 is coding for the N-

terminal region in the wild-type huntingtin protein and includes the polyQ stretch, and the P-

rich region following it (Fig. 4A). The length of the protein region encoded by exon 1 with a 

23Q stretch (minimal length in a non-altered protein) is 68 aa residues. However, the length 

of polyQ tract in healthy individuals varies from 23 to 35 aa. Typically the yeast constructs 

are based on the whole or portion of exon 1 (see below), fused to a C-terminal fluorescent 

protein tag—most frequently, green fluorescent protein, or GFP (Fig. 4B). Constructs with 

varying lengths of polyQ stretch, from 25 (corresponding to healthy individuals) to 103 

(corresponding to severe early-onset HD) have been produced and tested in yeast. In some 

Htt-based yeast plasmids, the sequence of the polyQ coding stretch is artificially engineered 

into the interspersed CAG and CAA triplets, rather than homogenous CAG as in humans 

(Meriin et al., 2002). This prevents replication slippage, leading to the instability of the 

repeat length during propagation in yeast. Some constructs (designated here and further as 

polyQ, Fig. 4B) lack the P-rich region, while other constructs (designated here and further as 

polyQP, Fig. 4B) include the whole exon 1 with P-rich region. This should be noted that 

some constructs designated in literature as 103Q (or 103QP) in fact contain somewhat lesser 

number of Qs (by several residues) within the polyQ tract, possibly because initial 

designation has also taken into account Q residues located with the P-rich region. However, 

to avoid confusion, we designate all these constructs here and further as 103Q or 103QP.

The system using exon 1 based constructs is adequate for studying Htt aggregation, as 

studies in mammalian cells have shown that Htt aggregation is frequently associated with 

short N-proximal proteolytic Htt fragments (encompassing exon 1) in native conditions 

(Ratovitski et al., 2009). While aggregates of short fragments may immobilize the full-
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length protein, possible impairment of the Htt protein function is apparently irrelevant to the 

disease mechanism; therefore the presence of the full-length protein is not necessary for 

studying the mechanisms of polyQ aggregation and toxicity. As in humans, 25Q (or 25QP) 

Htt exon 1, fused to GFP (designated here and further as Htt-GFP) is soluble in yeast, while 

expansion of polyQ tract promotes aggregation (Krobitsch & Lindquist, 2000; Meriin et al., 

2002; Wang et al., 2009), depending on a strain (see below). It has been shown by cryo-

electron tomography that expanded polyQ constructs form both unstructured inclusions and 

structured fibrillar aggregates in yeast cells (Gruber et al., 2018; Peskett et al., 2018). 

Notably, yeast studies revealed an important role of P-rich region in determining the mode of 

Htt aggregation and cytotoxicity, as described below (Gong et al., 2012; Peskett et al., 2018; 

Wang et al., 2009).

Importantly, aggregation and toxicity of the Htt-GFP constructs with expanded polyQ stretch 

in yeast cells are promoted by the presence of the endogenous yeast QN-rich prions, such as 

[PIN+], a prion form of the Rnq1 protein (Meriin et al., 2002). The 103Q-GFP construct 

rarely aggregates in the [pin−] cells (lacking the Rnq1 prion), while it forms numerous 

cytologically detectable dots, leading to cytotoxicity in the [PIN+] cells (Fig. 5A). At least 

some other yeast prions, for example, [PSI+], a prion form of the Sup35 protein, can 

substitute for the Rnq1 prion in regard to promotion of polyQ aggregation. Notably, 

overexpression of Htt-based constructs with the expanded polyQ region promoted de novo 
formation of [PSI+] in the cells lacking the Rng1 prion (Derkatch et al., 2004); thus, 

expanded polyQ could, to a certain extent, substitute for the [PIN+] prion in regard to 

induction of de novo [PSI+] formation, even though polyQ aggregation is relatively rare in 

the absence of [PIN+]. As explained above, both Rnq1 and Sup35 proteins contain QN-rich 

PrDs, making it likely that prion aggregates of these proteins directly nucleate aggregation 

of the Htt-based polyQ constructs, and vice versa.

Interestingly, overproduction of some Q-rich yeast proteins is shown to promote conversion 

of a fraction of the non-expanded Htt-based construct (25Q-GFP) into insoluble toxic 

aggregates in yeast (Serpionov, Alexandrov, Antonenko, & Ter-Avanesyan, 2015). On the 

other hand, overexpression of such yeast proteins with Q-rich PrD-like domains as Gts1, 

Nab3 and Mcm1 has been shown to antagonize 103Q-GFP toxicity (Ripaud et al., 2014). 

This occurs due to altering the polyQ interactome rather than by antagonizing polyQ 

aggregation. Possibly binding of the nonhomogeneous Q-rich sequences to polyQ stretches 

in protein aggregates prevented them from sequestering other proteins from cytosol.

Toxicity of 103Q-GFP in the [PIN+] cells has been linked to the defect in endocytosis 

(Meriin et al., 2003), possibly because of sequestration of some actin cytoskeleton-

associated protein (frequently containing QN-rich domains). Indeed, proteomic 

characterization of the polyQ-expanded Htt aggregates from yeast cells shows that they 

accumulate some cytoskeleton-associated and other endogenous QN-rich proteins (Wang, 

Meriin, Costello, & Sherman, 2007). Some studies also connect Htt aggregation in 

mammalian cells to the endocytosis defect (Harjes & Wanker, 2003; Meriin et al., 2007; 

Waelter et al., 2001), thus signifying the relevance of yeast data.
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This has been initially reported (Krobitsch & Lindquist, 2000) that aggregation of polyQ-

expanded Htt in yeast depends on the chaperone protein Hsp104, shown earlier to modulate 

propagation of yeast prions (see above). However, later studies demonstrated that at least for 

the 103Q-GFP construct, this effect of Hsp104 is largely indirect: deletion of the HSP104 
gene impairs propagation of the prion state of the Rnq1 protein, thus converting the [PIN+] 

cells into [pin−] cells, in which aggregation of 103Q-GFP is inefficient and toxicity is not 

detected (Meriin et al., 2002). However, some mutations in Hsp104 modulate polyQ toxicity 

without eliminating yeast prions (Gokhale, Newnam, Sherman, & Chernoff, 2005). This 

suggests that some interaction of Hsp104 with polyQ aggregates possibly occurs in yeast. 

Yeast Hsp70 chaperone, as well as some yeast or mammalian chaperones of the Hsp40 

family also influence aggregation and toxicity of the Htt-based polyQ constructs in the yeast 

model (Muchowski et al., 2000), in an agreement with data obtained in mammalian models 

(Hageman et al., 2010; Kakkar et al., 2016). Specifically, overexpression of the chaperone 

protein Sis1 of the DnaJB group decreases size and counteracts cytotoxicity of the 103Q-

GFP aggregates in yeast (Gokhale et al., 2005), and the human chaperone DnaJB6 (Kumar, 

Kline, & Masison, 2018) of the same family also counteracts polyQ cytotoxicity when 

expressed in yeast cells. Overexpression of Sis1 is also shown to counteract toxicity of other 

protein aggregates in yeast, as described below and in Park et al. (2018, 2017). In contrast, 

some other mammalian DnaJB chaperones don’t have such an effect, while overproduction 

of the yeast Hsp40 chaperone of the DnaJA family, Ydj1 exhibits an opposite effect, leading 

to an increase of both aggregate size and cytotoxicity of 103Q-GFP (Gokhale et al., 2005). 

Deletions of the genes coding for two other Hsp40 chaperones, Apj1 and Hlj1, were also 

shown to increase toxicity of the Htt-derived 53Q construct, expressed in yeast cells, and in 

case of Hlj1, this effect of the respective deletion was partly rescued by expression of its 

human ortholog, DnaJA2 (Willingham, Outeiro, DeVit, Lindquist, & Muchowski, 2003). It 

still remains to be understood if effects of Hsp40 chaperones on polyQ aggregation are 

direct, or mediated by an endogenous prion present in yeast cells. In case of Sis1, it has been 

shown that expanded polyQ aggregates sequester Sis1 chaperone in the yeast cells, that 

inhibits proteasome-mediated degradation of other yeast proteins; this sequestration may at 

least partly explain the antitoxic effect of excess Sis1 (Park et al., 2013). Interestingly, the 

multisubunit chaperonine complex (TriC or Cct) is involved in the modulation of 

interactions between yeast chaperones and polyglutamine aggregates, and increased 

abundance of TriC is antitoxic, possibly by directing polyQ polymerization toward 

formation of non-toxic oligomers (Behrends et al., 2006).

The yeast deletion library was used to search for gene deletions that suppress toxicity of 

103Q-GFP (Giorgini, Guidetti, Nguyen, Bennett, & Muchowski, 2005). However, it has 

been shown later that some deletion derivatives uncovered by this screen have lost [PIN+] 

prion that is required for 103Q-GFP toxicity (Manogaran, Fajardo, Reid, Rothstein, & 

Liebman, 2010). The loss of [PIN+] apparently was a by-product of the deletion construction 

procedure, including the anti-prion treatments such as osmotic stress (used in the 

transformation techniques) etc., thus it was not related to the deletion per se and produced a 

false positive in the screen. Nevertheless, at least some deletion strains, identified in the 

initial screen, retained [PIN+]. One of them contained a deletion of the gene that encodes 

Bna4 (kynurenine 3-monooxygenase, KMO), an enzyme in the kynurenine pathway of 
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tryptophan degradation, also implicated in the pathology of HD in humans (Jacobs, 

Castellano-Gonzalez, Guillemin, & Lovejoy, 2017). Moreover, a small molecule inhibitor of 

KMO, Ro61-8048, rescued 103Q-GFP mediated toxicity in yeast (Giorgini et al., 2005). 

KMO and the kynurenine pathway are being now proposed as respectively a potential drug 

and a drug target for HD (Campesan et al., 2011; Jacobs et al., 2017; Wild & Tabrizi, 2014; 

Zwilling et al., 2011), further emphasizing the disease relevance of the yeast model. Other 

small molecule compounds counteracting polyQ aggregation and/or toxicity that have been 

isolated by using yeast models are reviewed in Chernova et al. (2019).

Another interesting observation is that a construct with a moderate expansion of the polyQ 

stretch, 56Q, causes a cytostatic effect (that is, prevents cell division) of the haploid yeast 

cells, but is not toxic to diploids and cells of higher ploidy levels (Kaiser et al., 2013). The 

56Q-arrested haploid cells exhibit mislocalization of the septins Cdc10 and Shs1, suggesting 

their involvement in the polyQ toxicity, at least in dividing cells. Relevance of this 

observation to HD is so far unclear, as neurons are not dividing.

3.3 Role of P-rich stretch and aggresome formation

Importantly, the presence of the P-rich sequence, immediately following the polyQ tract 

within exon 1 of Htt, ameliorated cytotoxicity and changed the mode of aggregation of the 

expanded polyQ constructs in yeast cells, containing the [PIN+] prion (Wang et al., 2009). In 

contrast to 103Q-GFP, producing numerous dot-like aggregates, the 103QP-GFP protein 

typically aggregated into a single large clump as shown in Fig. 5B. This assembly was 

different from the so-called JUNQ, a perinuclear deposit of soluble misfolded proteins 

(Kaganovich, Kopito, & Frydman, 2008), as the 103QP-GFP clump contained detergent-

resistant insoluble polymers (Gong et al., 2012). Thus, it rather resembled another deposit of 

the insoluble misfolded proteins, previously observed in yeast in the conditions of 

proteolysis impairment, and termed IPOD (Kaganovich et al., 2008). However, IPOD 

typically shows peripheral localization, while 103QP-GFP deposit was perinuclear at least in 

some cells and was colocalized with the spindle body, or SPB (yeast microtubule organizing 

center, analogous to mammalian centrosome), Spc72 (Wang et al., 2009). Colocalization of 

the SPB marker with the peripheral IPOD-like structure formed by Rnq1 protein upon its 

overproduction has also been reported by another group (Treusch & Lindquist, 2012), 

however, such an IPOD-like formation was toxic, likely due to sequestration and 

misplacement of the SPB components. Contrary to this, the formation of the 103QP-GFP 

deposit was cytoprotective in the yeast [PIN+] cells (Wang et al., 2009), showing that the 

SPB assembly and organization remained unaltered. Apparently, SPB acts as an “assembly 

center” for 103QP-GFP, rather than being sequestered by 103QP-GFP aggregates. In both its 

localization and protective functions, the 103QP-GFP deposit resembled mammalian 

perinuclear aggregate of misfolded proteins (including Htt), termed an aggresome (Johnston, 

Ward, & Kopito, 1998; Kopito, 2000). Here and further, we refer to this aggregate as yeast 

aggresome, although it is possible that the aggresome and IPOD deposits are formed by 

similar mechanisms in yeast cells, and just differ by location in specific cases. Notably, the 

defect in endocytosis was not detected in the [PIN+] cells expressing 103QP-GFP and 

containing an aggresome (Gong et al., 2012; Wang et al., 2009), in contrast to those 

expressing 103Q-GFP and bearing multiple aggregates. Apparently, assembly of 103QP-
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GFP into an aggresome impaired the ability of polyQ stretches to interact with cytoskeleton-

associated proteins and sequester them, thus leading to a cytoprotective effect.

An exact mechanism by which a P-rich region promotes the aggresome assembly remains 

unclear. Possibly, the presence of the structure-breaking P-rich sequence immediately next to 

the cros-μ-forming polyQ core serves as a signal for the recognition by proteins promoting 

the assembly of the aggresome deposit. Detailed analysis employing electron microscopy 

techniques demonstrated that the P-rich region in a combination with expanded polyQ tract 

facilitates formation of the liquid-liquid phase separation assemblies, which can then be 

converted into irreversible fibrillar aggregates (Peskett et al., 2018).

Notably, the P-rich region may promote aggresome assembly in trans, when it is fused to 

25Q stretch and expressed in the presence of 103Q-GFP aggregates. This agrees with the 

observations that Htt aggregates with an expanded polyQ stretch and Htt derivatives with a 

non-expanded stretch are co-assembled into the same aggregates in mammalian cells. In 

addition to the P-rich stretch, the N-terminal 17 aa residues of exon 1 are also important for 

the aggresome formation (Wang et al., 2009). Interestingly, the yeast model demonstrated 

that the expression of the wild-type exon 1 lacking the P-rich region counteracts aggregation 

of polyQ-expanded exon 1, as well as aggregation of some mammalian proteins lacking 

polyQ stretches (Sethi et al., 2018). It appears that the Htt protein contains sequences 

capable of ameliorating the aggregation and/or toxicity caused by the polyQ expansion.

Yeast model is well suited for the identification and characterization of the proteins involved 

in the control of aggresome assembly and integrity. The Cdc48 protein (a member of the 

AAA + superfamily and distant paralog of Hsp104), and a member of the pleiotropic 14-3-3 

chaperone family, Bmh1, as well as microtubular cytoskeleton (as shown by the effect of an 

anti-microtubule drug benomyl) are implicated in the aggresome assembly (Wang et al., 

2009). It is also shown that downregulation of one of the essential genes, RVB1 or RVB2 
leads to the formation of numerous small aggregates instead of a single aggresome by 

103QP-GFP, and makes it toxic to the [PIN+] yeast cells (Zaarur et al., 2015). RVB1 and 

RVB2 code for the proteins of AAA + superfamily, orthologous to mammalian RuvbL1 and 

RuvbL2, respectively (Matias et al., 2015). Downregulation of the RuvbL1 or RuvbL2 

production impairs the polyQ-derived aggresome formation in mammalian cells as well 

(Zaarur et al., 2015). Importantly, RuvbL1 and RuvbL2 exhibit protein disaggregation 

activity, both in vivo (Narayanan et al., 2019) and in regard to amyloid β (Aβ, see Table 1 

and below) fibrils, in vitro (Zaarur et al., 2015). It is possible that RuvbL/Rvb proteins 

promote aggresome formation via disassembly of polyQ aggregates into oligomers, that are 

recognized by the aggresome-forming machinery as substrates for the aggresome assembly, 

while larger aggregates cannot be transported to the aggresome site and become toxic.

Another factor that makes the 103QP-GFP expression toxic to yeast cells is the presence of 

the prion [PSI+] (Gong et al., 2012), as shown in Fig. 5B. An aggresome is still formed in 

the [PSI+] cells; however, it is no longer cytoprotective. As mentioned above, [PSI+] is a 

prion form of the translation termination factor Sup35 (eRF3). It is shown that an aggregated 

form of Sup35, sequestered by the 103QP-GFP aggregates, in turn mediates sequestration of 

another translation termination factor, Sup45 (eRF1) (Gong et al., 2012; Zhao et al., 2012), 
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which is a normal interacting partner of Sup35. Increase in the Sup45 levels counteracts 

cytotoxicity of 103QP-GFP. Depletion of Sup45 from the terminating ribosomes causes a 

cytotoxicity. 103Q-GFP aggregates lacking the P-rich region can also sequester some 

fraction of the Sup35 and Sup45 proteins in the [PSI+] strain, that apparently contributes to 

103Q-GFP toxicity, in addition to the endocytosis defect described above (Kochneva-

Pervukhova, Alexandrov, & Ter-Avanesyan, 2012). Sequestration of release factors per se is 

not likely to be directly applicable to humans, as human ortholog of Sup35 does not contain 

the QN-rich region, capable of mediating interac-tions with polyQ aggregates (Inge-

Vechtomov, Zhouravleva, & Philippe, 2003). However, these data could be still relevant to 

HD in a more general sense, as it has been demonstrated that polyQ aggregates or oligomers 

may sequester some other components of translational machinery in fruit flies or 

mammalian cells (Joag et al., 2019; Kim et al., 2016).

Overall, the yeast model for HD shows that the composition of endogenous aggregated 

proteins serves as a major modulator of Htt aggregation and toxicity at least in yeast (and 

possibly in humans). The presence of endogenous amyloids/prions determines both the 

mode of polyQ aggregation (cytotoxic versus cytoprotective) and the composition of 

proteins, sequestered by polyQ aggregates. Therefore, both the prion composition of the cell, 

and the type of the Htt construct have to be taken into account when results of the 

experiments, using Htt-based polyQ constructs in yeast are interpreted. In application to 

humans, it is possible that the variability in the composition of endogenous protein 

aggregates between different cell types could explain why the Htt aggregates are toxic 

primarily to neurons, while the differences in endogenous protein aggregation between 

neurons from different individuals could be responsible for the largely “non-genetic” 

variation in HD onset, reported previously (Wexler et al., 2004).

4. Yeast models for aggregation of α-synuclein, associated with 

Parkinson’s disease (PD)

PD is associated with intracellular aggregation of the 140-aa intracellular protein termed α-

synuclein (αSyn) (Uversky, 2017). In contrast to HD, most cases of PD are of sporadic (that 

is, non-genetic) nature, also some heritable forms of PD have also been identified (some of 

them are caused by mutations in αSyn). While yeast cells do not have an ortholog of αSyn, 

human αSyn can be expressed in yeast, either alone or in fusion to a fluorophore such as 

GFP. High levels of αSyn expression result in its aggregation, accompanied by growth 

inhibition and cytotoxicity in a dosage-dependent fashion (Outeiro & Lindquist, 2003). 

However, in contrast to polyQ aggregates, expression of αSyn (as well as of some other non-

QN-rich aggregating proteins, such as synphilin and transthyretin) does not promote 

aggregation and prion formation by Sup35 (Derkatch et al., 2004). This indicates that αSyn 

and at least some other non-QN-rich aggregates possess features that are distinct from the 

endogenous yeast prion aggregates. Applications of yeast system to studying PD and related 

synucleinopathies are summarized in recent reviews (Bras, Popova, Braus, & Outeiro, 2019; 

Cronin-Furman, Barber-Singh, Bergquist, Yagi, & Trimmer, 2019; Piotrowski & Tardiff, 

2019), thus we mention only some selected examples below.
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Importantly, yeast studies point to the differences in the mechanisms of polyQ and αSyn 

toxicity. When the yeast deletion collection was screened for deletions of non-essential 

genes that increase toxicity of expanded Htt-derived polyQ (53Q) or αSyn constructs, 

expressed in yeast, 52 deletions increasing sensitivity to 53Q and 86 deletions increasing 

sensitivity to αSyn have been identified. Among those, only one deletion (that of the gene 

STD2, coding for a transcription factor) increased sensitivity to both (Willingham et al., 

2003). Moreover, the sample of genes influencing the sensitivity to αSyn has been enriched 

in those coding for proteins involved in vesicle trafficking and lipid metabolism. Such genes 

were not abundant among those influencing sensitivity to 53Q. Such a relationship between 

the αSyn-mediated toxicity and membrane-related pathways indicates that an association of 

αSyn with membranous structures (including vesicles) is apparently maintained in yeast and 

contributes to its toxicity. Roles of the proteasomal and autophagy system in the clearance of 

misfolded αSyn in yeast (Popova, Kleinknecht, & Braus, 2015), as well as the role of the 

Hsp70 chaperone Ssa in the reduction of αSyn toxicity via promotion of its degradation by 

autophagy (Gupta et al., 2018) are also being studied.

Expression of αSyn makes yeast cells more sensitive to hydrogen peroxide, pointing to the 

connection between α-synucleinopathies and oxidative damage (Liang et al., 2008). 

Possibly, aggregation of αSyn increases accumulation of reactive oxygen species (ROS), 

thus making yeast cells incapable of sustaining further increase in the ROS levels. Forty 

yeast genes capable of suppressing this super-sensitivity phenotype upon overexpression 

have been identified in a genetic screen. Products of these genes are involved in ubiquitin-

dependent protein catabolism, protein biosynthesis, vesicle trafficking and the response to 

stress. Deletions of each of five genes with the strongest effect (ARG2, ENT3, HSP82, IDP3 
and JEM1) increased toxicity of wild-type αSyn and promoted ROS accumulation in the 

presence of αSyn. Interestingly, most of the strongest suppressors of the toxicity of wild-

type αSyn did not rescue yeast cells from the toxicity of αSyn containing a mutation 

associated with heritable PD, A30P or A53T, even though this has been shown that mutant 

αSyn also causes increased ROS accumulation (Flower, Chesnokova, Froelich, Dixon, & 

Witt, 2005). Another study identified a high copy suppressor of the toxicity of wild-type 

αSyn, Ypt1 that also rescued cells from A53T αSyn, but not from A30P αSyn (Cooper et 

al., 2006). Wild-type and A53T (but not A30P) αSyn transits through the yeast secretory 

pathway and is targeted to the plasma membrane (Dixon, Mathias, Zweig, Davis, & Gross, 

2005), which may partly explain the differences in the effects of Ypt1, but not in the effects 

of other suppressors. In contrast, the overproduced Ypp1 protein suppresses toxicity of 

A30P αSyn, but not of wild-type or A53T αSyn (Flower et al., 2007). Notably, tagging of 

wild-type αSyn with GFP has shown that overexpression of Ent3 causes relocation of a 

fraction of αSyn from the peripheral region, underlying plasma membrane to the 

intracellular puncta (Liang et al., 2008). One possibility is that Ent3, which is a yeast 

counterpart of the human protein epsin R and is involved in clathrin-mediated retrograde 

protein transport between Golgi and endosomes, promotes trafficking of wild-type αSyn to 

endosome for eventual degradation. Likewise, excess Ypp1 is shown to promote trafficking 

of both wild-type and mutant αSyn from plasma membrane to endocytic vesicles, however, 

only the A30P αSyn containing vesicles merge to vacuole, where A30P is degraded (Flower 

et al., 2007). Overall, these data point to the role of endocytic trafficking and stress response 
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in the amelioration of αSyn toxicity, as well as to the differences in the specific pathogenic 

mechanisms involved in heritable and sporadic forms of PD.

Yeast system was successfully used for identifying several potential therapeutic candidates, 

that rescue αSyn aggregation and/or toxicity (Tardiff & Lindquist, 2013). These include 

some flavonoids (e.g., quercetin and epigallocatechin gallate) (Griffioen et al., 2006), small 

molecule stimulators of the Rab GTPase, associated with PD (Fleming, Outeiro, Slack, 

Lindquist, & Bulawa, 2008), 1,2,3,4-tetrahydroquinolinones (Su et al., 2010, cyclic peptides 

(Kritzer et al., 2009), mannosylglycerate, originated from marine organisms (Faria et al., 

2013), red pigment which is a polymerized intermediate in the yeast adenine biosynthesis 

pathway (Nevzglyadova et al., 2018), ascorbic acid which is a natural antioxidant 

(Fernandes et al., 2014), and N-aryl benzimidazole (NAB), that promotes endosomal 

transport via the E3 ubiquitin ligase, Rsp5 (a yeast ortholog of mammalian Nedd4) and 

apparently antagonizes the vesicular traffic disruption by αSyn (Tardiff et al., 2013). Many 

of these compounds (including NAB) also turned active in the animal models of PD, as 

reviewed in (Chernova et al., 2019). These data emphasize the utility of the yeast models for 

identifying potential PD cures. One general issue with some of αSyn studies using yeast that 

a distinction between the role of αSyn production and its aggregation is not always clearly 

made.

5. Yeast models for amyloid proteins associated with Alzheimer’s disease 

(AD) and tauopathies

5.1 Overview of protein aggregation in AD

AD is a fatal and incurable disease, characterized by the progressive loss of neurons, 

resulting in dementia and eventually in death. It is typically reported as the sixth most 

frequent cause of death in the United States; however, AD was routinely underdiagnosed in 

the past, and its evaluation as the third most frequent cause of death in the United States, and 

possibly in other developed countries with a long life-expectancy is likely to be more 

realistic (Alzheimer’s, 2016; James et al., 2014). AD is one of the major factors affecting the 

quality of life at an advanced age and is associated with tremendous healthcare costs. The 

most common form of AD is late onset sporadic AD (with patient age greater than 65 years), 

while early-onset heritable cases (with the patient age between 30 and 65 years) account for 

approximately 1–6% of all cases (Alonso Vilatela, Lopez-Lopez, & Yescas-Gomez, 2012). 

Both extracellular amyloid plaques, formed by amyloid beta (Aβ) and neurofibrillary tangles 

(NFTs) formed by the intracellular microtubule-associated protein tau (usually called MAPT 

or tau) in an amyloid form are diagnostic hallmarks of AD (Irvine et al., 2008), and are 

included in the definition of AD for research purposes, as recommended by the National 

Institutes of Health and Alzheimer’s Association (Walker, Lynn, & Chernoff, 2018).

Aβ (Fig. 6A) is generated via cleavage of the amyloid precursor protein (APP) by β- and γ-

secretases. This cleavage produces extremely hydrophobic peptides that include Aβ40, 

Aβ42, and less abundant Aβ39 and Aβ43 (Irvine et al., 2008), where numbers reflect sizes 

in aa residues. Aβ42 and less abundant Aβ43 are found to be more prone to aggregation and 
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more neurotoxic (Irvine et al., 2008; Jarrett, Berger, & Lansbury, 1993; Naslund et al., 

1994).

Tau protein (Fig. 6B) is aggregated into bundles of paired helical filaments (PHFs), forming 

neurofibrillary tangles in AD brains (Irvine et al., 2008; Mietelska-Porowska, Wasik, Goras, 

Filipek, & Niewiadomska, 2014). Aggregation of tau protein is also detected on other 

neurodegenerative disorders (termed tauopathies), that include Pick disease and some forms 

of frontotemporal dementia (FTD), such as FTD with parkinsonism, FTDP-17 (Goedert, 

2018; Spires-Jones, Stoothoff, de Calignon, Jones, & Hyman, 2009). Most non-AD 

tauopathies are heritable and are associated with mutations in a gene, coding for the tau 

protein (Hutton et al., 1998; Ingram & Spillantini, 2002; Spillantini et al., 1998). Tau is a 

major microtubule-associated protein present in mature neurons (Gendron & Petrucelli, 

2009), and is also implicated in other processes such as formation of stress granules (SGs), 

protective RNA-protein complexes generated in the cytosol during stress (Maziuk et al., 

2018; Vanderweyde et al., 2016). Amyloid-forming core of tau filaments is located within 

the microtubule-binding repeat region (Fitzpatrick et al., 2017), which is polymorphic due to 

alternative splicing: isoforms containing from two to four repeats are detected (Andreadis, 

Brown, & Kosik, 1992; Goedert & Jakes, 1990). In the longest isoform with 4 repeats, the 

region of repeats is located between aa positions 244 and 372. The four-repeat isoform of tau 

forms tangles in AD brains, although amyloids, formed by shorter isoforms, are found in 

some tauopathies (Falcon, Zhang, Murzin, et al., 2018; Falcon, Zhang, Schweighauser, et al., 

2018; Goedert, 2018). Phosphorylation of tau modulates its microtubule-binding affinity and 

in doing so regulates the morphology of neurons and intracellular transport; however, the 

hyperphosphorylation of tau depresses this biological activity of tau (Gendron & Petrucelli, 

2009). In AD and tauopathies, aggregated tau protein is hyperphosphorylated, although it is 

not clear if hyperphosphorylation plays a causative role in amyloid formation or represents a 

consequence of the decreased access of protein phosphatases to amyloid fibrils. Mutations, 

associated with tauopathies are usually located within or near the repeat region, and are 

shown to reduce ability of tau to interact with microtubules, and/or to lead to overproduction 

of tau isoforms with four repeats, and/or to stimulate formation of an amyloid by tau repeat 

fragment in vitro (Hutton et al., 1998; Ingram & Spillantini, 2002; Poorkaj et al., 1998; 

Spillantini et al., 1998). It has been shown that the patient brain extracts can seed in vitro 
aggregation of the construct containing the repeat region of tau protein (Metrick et al., 

2019), although some patterns of aggregates produced in vitro differ from those used as a 

seed (Nam & Choi, 2019).

The amyloid cascade hypothesis (Aβ hypothesis) suggesting a causative role of Aβ in AD 

etiology has been the mainstream explanation for the pathogenesis of AD for over 25 years 

(Hardy & Selkoe, 2002; Irvine et al., 2008; Walker et al., 2018). According to this model, 

polymerization of Aβ initiates the pathway to a disease, and induces (directly or indirectly) 

aggregation of tau, that leads to pathological consequences. Accumulating experimental 

evidence from in vitro models, in vivo models, and from biomarkers analysis in patients 

generally supports the amyloid cascade model. Essentially all mutations associated with the 

familial (heritable) form of AD occur either within Aβ sequence, or in the flanking regions 

of APP, or in the genes that control proteolytic processing of Aβ from APP, such as 

components of the β-secretase complex (Irvine et al., 2008). APP mutations associated with 
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familial (heritable) AD and falling within the Aβ sequence have been reported to increase 

the amount of produced Aβ, increase the ratio of Aβ42 to Aβ40, increase the aggregation 

potential of the mutant Aβ variant, or promote the formation of particularly toxic 

conformations of aggregates, such as oligomers. The APOE4 allele, which is the major risk 

factor for sporadic AD as indicated by genomic studies, influences Aβ aggregation and 

clearance (Liu et al., 2017; Uddin et al., 2019). A substitution at aa position 2 of the Aβ 
sequence, that is frequently found in the population of Iceland, leads to a decrease in both 

Aβ levels and incidence of sporadic AD, as well as to an increase of life span (Jonsson et al., 

2012). Promotion of tau aggregation by Aβ aggregates is shown in the cell culture (Ferrari, 

Hoerndli, Baechi, Nitsch, & Gotz, 2003) and transgenic animal models (Gotz, Chen, van 

Dorpe, & Nitsch, 2001). While the typical Aβ deposits are extracellular, and tau tangles are 

intracellular, several studies point to the existence of intracellular Aβ, which might even be 

formed before extracellular Aβ in the disease development pathway (Wirths, Multhaup, & 

Bayer, 2004). Likewise, some tau is found outside of the cells, e.g., see (Holmes & 

Diamond, 2014). Importantly, aggregates of Aβ and tau can self-propagate and spread, both 

in culture models and throughout the brain (and in experimental models, even between 

animals) by prion-like mechanisms (Frost, Jacks, & Diamond, 2009; Holmes & Diamond, 

2014; Jucker & Walker, 2018; Kane et al., 2000; Kaufman, Thomas, Del Tredici, Braak, & 

Diamond, 2017). Counterarguments against the amyloid cascade model are primarily based 

on numerous failures of therapeutic interventions targeting Aβ (Castellani, Plascencia-Villa, 

& Perry, 2019), however, these failures could be easily predicted from the amyloid model, 

because none of these interventions specifically addressed of either Aβ conversion into an 

amyloid or promotion of the tau amyloid formation by Aβ. Moreover, recent 

immunotherapies using Aβ-aimed antibodies do show some promise in clinical trials (Tolar, 

Abushakra, & Sabbagh, 2019).

5.2 Yeast models for Aβ

Yeast does not have an APP homolog. While exogenous Aβ shows some toxicity when 

uptaken by yeast cells (Bharadwaj, Waddington, Varghese, & Macreadie, 2008), relevance of 

this observation to AD is unclear, because Aβ is generally known to exhibit anti-microbial 

properties (Soscia et al., 2010). Yeast cells with heterologously expressed Aβ typically don’t 

accumulate it at high levels, possibly due to proteolytic instability of a short peptide in the 

yeast cytosol, e.g, see (Chandramowlishwaran et al., 2018). Thus, most yeast models for 

studying Aβ are based on chimeric constructs that include Aβ region. The major models are 

described below.

5.2.1 Fusion of Aβ to a fluorophore—Aβ40 or Aβ42, fused to a fluorophore such as 

green (GFP), yellow (YFP) or cyan (CFP) fluorescent protein (Fig. 7A), has been expressed 

and shown to aggregate in yeast. Some constructs allowed microscopic detection of dot or 

clumps corresponding to Aβ-based aggregates in yeast (Rubel, Ryzhova, Antonets, 

Chernoff, & Galkin, 2013). This has been shown that aggregated Aβ is present in the form 

of detergent-resistant polymers as typical of yeast amyloids. The GFP-Aβ construct has also 

been prepared, in which amyloid formation by Aβ suppressed green fluorescence (Caine et 

al., 2007; Macreadie et al., 2008). This construct was used to search for compounds that 

increase fluorescence, in a hope that such compounds would antagonize aggregation and 
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therefore lead to the development of new drugs against AD. Pentapeptides corresponding to 

the portions of the hydrophobic core region of Aβ, such as KLVFF or LVFFA, were 

produced by rationale design and shown to antagonize GFP-Aβ aggregation, decrease GFP-

Aβ toxicity and promote GFP-Aβ clearance by autophagy in the yeast cells (Rajasekhar, 

Suresh, Manjithaya, & Govindaraju, 2015). Similar effects (that is, decreased toxicity and 

increased clearance) were reported for the anti-histamine drug latrepirdine, that upregulates 

vacuolar (lysosomal) activity and trafficking to the vacuole (Bharadwaj et al., 2012). This 

compound also promotes Aβ autophagy in mice (Doody et al., 2008) and shows some 

benefits in AD trials (Steele et al., 2013). Folinic acid was also uncovered as a compound 

antagonizing Aβ misfolding in the yeast screen (Macreadie et al., 2008).

5.2.2 Use of a secretory Aβ-based construct—Another yeast mode, also 

employing Aβ fused to a fluorophore, attempted to recapitulate the Aβ secretion and 

endocytosis that are observed in human brains (D’Angelo et al., 2013; Matlack et al., 2014). 

In this model, Aβ42 was fused to either the endoplasmic reticulum targeting signal (ssAβ42-

GFP) (Matlack et al., 2014), or to the signal peptide of α-factor, yeast excreted mating 

pheromone (MFa) (MFα-Aβ42-GFP) (D’Angelo et al., 2013). Accumulation of the Aβ-

based constructs in the secretory pathway and/or in the periplasmic space resulted in 

cytotoxicity. Several metal-binding compounds related to clioquinol (CQ), that is working in 

the mouse AD model (Cherny et al., 2001) were shown to antagonize toxicity in the yeast 

screen via promoting Aβ turnover, restoring vesicle trafficking and protecting against 

oxidative stress (Matlack et al., 2014). The major disadvantage of this assay is that it is 

targeting Aβ42 accumulation and secretion, so that the toxicity effect might not be relevant 

to toxicity in human brains. It has been reported that ssAβ42-GFP is present in the 

detergent-resistant form (Matlack et al., 2014); however, it is not clear if toxicity of ssAβ42-

GFP, detected in the yeast assay, is a consequence of its aggregation. While compounds 

identified in this assay could still be effective in counteracting Aβ accumulation, they do not 

necessarily target Aβ oligomerization and aggregation, a triggering factor in AD.

5.2.3 Substitution of Sup35 PrD by Aβ—The abovementioned models are based on 

the detection of aggregation and/or cytotoxicity of Aβ. The model allowing for phenotypic 

detection of Aβ aggregation by growth or color was produced on the basis of yeast Sup35 

prion protein (Park et al., 2011; von der Haar, Josse, Wright, Zenthon, & Tuite, 2007), which 

is a translation termination factor as described above. In this model, Aβ42 was substituted 

for the region coding for Sup35N domain, that is Sup35 PrD (Fig. 7B). Resulting construct 

was termed Aβ-MRF, where M is a middle domain and RF is a release factor, or C domain. 

Retention of the RF domain allowed its use as a reporter, thus employing the nonsense-

suppression assay in the same way as described above for the Sup35 prion. Aβ-MRF 

instantly oligomerized in yeast, as confirmed by both phenotypic assay and biochemical 

detection of detergent-resistant polymers using semi-denaturing detergent agarose gel 

electrophoresis, SDD-AGE. A triple aa substitution with the Aβ region that is predicted from 

in vitro studies to knock out amyloid formation by Aβ antagonized oligomerization and 

suppression in yeast. Overexpression of the yeast protein Yap1802 also reduced 

oligomerization and suppression by Aβ42-MRF in yeast (Park, Ratia, Ba, Valencik, & 

Liebman, 2016). Yap1802 is a yeast ortholog of human phosphatidylinositol binding clathrin 
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assembly protein (PICALM). Polymorphism in the PICALM-coding gene has been linked to 

the risk of AD on the basis of the genome-wide association studies in humans, and the 

deletion of both yeast genes coding for PICALM homologs, YAP1801 and YAP1802, 
rescued toxicity in the previously described yeast assay for secretory Aβ, while expression 

of the mammalian PICALM protein in such a double deletion strain partly restored it 

(D’Angelo et al., 2013), pointing to some similarities between these two yeast Aβ models. 

The Aβ-MRF construct has been employed to identify compounds reducing Aβ 
oligomerization from the small molecule libraries and from the list of drugs that are 

approved by Food and Drug Administration for other purposes (Park et al., 2011, 2016). 

Notably, the drugs identified by this screen also reduced Aβ42 toxicity to cultured human 

cells. Therefore, proposed approach is capable of identifying potential anti-AD drug 

candidates and is amenable to high-throughput screening. The major shortcoming of this 

assay (as well as other yeast assays for Aβ described above) is that due to instant 

oligomerization of Aβ-MRF in the yeast cells, it is not possible to target the switch between 

the monomeric and polymeric forms of Aβ, a step that apparently triggers the development 

of AD. A yeast model allowing for monitoring of such a switch in various mammalian 

proteins, including Aβ has been developed recently and is described below (see Section 9). 

A summary of yeast models for studying Aβ aggregation is provided in Table 3.

5.3 Yeast models for tau

Yeast does not have an ortholog of tau, however, human tau protein has been produced in 

yeast cells and shown to form detergent-insoluble aggregates, as reviewed in (De Vos et al., 

2011). These aggregates were recognized by the conformational antibody MC1 (Vandebroek 

et al., 2005), capable of binding the pathological tau filaments and their precursors in 

mammalian cells (Jicha, Bowser, Kazam, & Davies, 1997; Weaver, Espinoza, Kress, & 

Davies, 2000). Major tau-phosphorylating kinases Gsk-3β (Flaherty, Soria, Tomasiewicz, & 

Wood, 2000; Ishiguro et al., 1993) and Cdk5 (Flaherty et al., 2000; Kobayashi et al., 1993), 

and tau-dephosphorylation modulator, Pin1 (Legname et al., 2018; Zhou et al., 2000) 

possess orthologs in S. cerevisiae (Mds1, Pho85 and Ess1, respectively). Indeed, AD-

associated phosphorylation epitopes of tau are shown to be phosphorylated in yeast, and 

hyperphosphorylation at some sites coincides with an increased aggregation (Vandebroek et 

al., 2005). Phosphorylation was antagonized by a deletion of the MDS1 gene; however, the 

deletion the PHO85 gene increased the proportion of phosphorylated tau. Authors (De Vos et 

al., 2011) interpret this as an evidence of that at least in yeast, Pho85 (Cdk5) might not 

directly phosphorylate tau but rather influence tau phosphorylation by Mds1 (Gsk-3β), and 

point to the other results indicating that in mammalian cells, Cdk5 may interfere with the 

activity of Gsk-3β (Wen et al., 2008). Indeed, genetic studies show that Mds1 operates 

downstream of Pho85 in the tau phosphorylation pathway in yeast (Vanhelmont et al., 2010). 

Hyperphosphorylated tau from the pho85Δ cells exhibited increased aggregation propensity, 

supporting the role of hyperphosphorylation in aggregation (Vandebroek et al., 2005). Tau 

hyperphosphorylation has also been detected in the strain with impaired activity of Ess1, an 

ortholog of Pin1 as per data quoted in (De Vos et al., 2011). Counterintuitively, the 

tauopathy (FTDP-17)-associated mutations P301L or R406W reduced both tau 

phosphorylation at the S409 site and level of insoluble aggregates, especially in the pho85Δ 
strain (Vanhelmont et al., 2010). This suggests that mechanisms of tau aggregation in 
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heritable tauopathies could be different from those involved in aggregation of wild-type tau. 

The substitution of serine by a non-phosphorylated alanine, S409A decreased tau 

aggregation in yeast, while the phosphorylation-mimicking substitution S409E either 

increased (in pho85Δ cells) or did not change (in wild-type cells) proportion of aggregated 

tau. By using these mutations, this has also been shown that tau phosphorylation at S409 

primes phosphorylation at some other sites. While binding of tau to yeast tubulin was not 

detected, it has been shown that the S409 phosphorylation inhibits binding of tau from yeast 

extracts to mammalian tubulin (Vandebroek et al., 2006). This confirms an antagonistic 

relationship between the abilities of tau to bind microtubules and to form aggregates. 

Oxidation stress (induced by Fe2+) or mitochondrial dysfunction (due to mutations) are 

shown to enhance tau aggregation in yeast (Vanhelmont et al., 2010). While tau was not 

toxic on its own to the wild-type or pho85Δ yeast strains, it became toxic in the strain with 

defective Ess1, as per preliminary data published in the review paper (De Vos et al., 2011), 

or when coexpressed with α-synuclein (Ciaccioli, Martins, Rodrigues, Vieira, & Calado, 

2013), known to promote tau aggregation from mammalian studies, e.g. (Riedel, Goldbaum, 

& Richter-Landsberg, 2009).

In addition to the expression of tau in the cytosol, the model has been developed in which 

tau is displayed on surface of the yeast cells (Wang & Cho, 2019). While being applicable to 

studying interactions between tau and other proteins (including antibodies, recognizing 

filaments of aggregated tau), this model does not address tau phosphorylation and nucleation 

of tau aggregates.

Overall, yeast studies produced some data that are important for understanding the 

relationship between tau hyperphosphorylation, aggregation and microtubule binding. 

However, it still has to be determined if tau aggregates formed in yeast are of the same type 

as those associated with human diseases, and convenient phenotypic or cytological assays 

for tau aggregation in yeast are still lacking, that prevents efficient searches for agents 

counteracting tau aggregation and/or toxicity.

6. Yeast models for aggregation of mammalian prion protein (PrP)

Prion protein (PrP) in its “scrapie” or prion form (PrPSc) is a causative agent of TSEs, or 

prion diseases, which are fatal incurable neurodegenerative disorders found in various 

mammals, including goat and sheep (scrapie), cattle (bovine spongiform encephalopathy or 

“mad cow” disease), elk, deer and moose (chronic wasting disease), some predators (e.g. 
mink encephalopathy) and humans (kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-

Scheinker disease, and fatal familial insomnia) (Colby & Prusiner, 2011; Prusiner, 1998, 

2013). In addition to heritable (about 15% of patients in humans that are all carrying 

mutations in the PrP-coding gene) and sporadic cases, TSEs can also be infectious. While 

relatively rare in humans, TSEs attracted a lot of attention due to documented cases of BSE 

transmission to humans (Collinge, 1997; Prusiner, 1998). PrPSc is a cross-β polymer that 

produces amyloid deposits in patient’s brains and in vitro. Rodents (especially mouse and 

hamster) are frequently used as experimental models for studying TSEs. The major obstacle 

to studying molecular basis of TSEs are long incubation periods, than take several years in 

cows and humans, and months even in rodents (Colby & Prusiner, 2011). Normal cellular 
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function of PrP remains elusive, despite many years of studies. At least, TSE disease is not a 

consequence of the loss of PrP function, because mice homozygous by the deletion of PrP-

coding gene do not develop disease symptoms but rather are resistant to the infection by 

PrPSc (Weissmann & Flechsig, 2003).

Structural and functional organization of mouse PrP, used in the majority of yeast studies, is 

shown in Fig. 8A, which is based on (Flechsig & Weissmann, 2004; Prusiner, 1998, 2013) 

and other studies reviewed there. The cellular (non-prion) form of PrP (PrPC) is a 

glycosylated protein, which is secreted (using the N-terminal signal peptide between aa 

positions 1 and 22, that is processed out during secretion) and attached to the outer surface 

of the plasma membrane with a glycophosphatidylinositol (GPI) anchor, using the C-

terminal region of PrP, located between the aa positions 231 and 254 (Stahl, Borchelt, Hsiao, 

& Prusiner, 1987). Neither PrP glycosylation nor GPI anchor appear to be required for the 

PrP conversion into a prion form, and for infectivity. Therefore, some studies employ the 23

—230 PrP fragment. Moreover, the intrinsically disordered 23–89 region is not included into 

an amyloid core and is dispensable for the PrP-mediated infection, although this region 

contains five oligopeptide (octapeptide) repeats of consensus sequence P(Q/

H)GGG(G/–)WGQ, somewhat similar (although not homologous) to the oligopeptide 

repeats of the yeast Sup35 protein (shown in Fig. 2 above), and mutations leading to 

expansions of these repeats are shown to be associated with heritable prion disease in 

humans. In contrast, the region encompassing aa positions 90 and 119, which is also 

overlapping a portion of the intrinsically disordered N-proximal segment of PrPC (Fig. 8A), 

is required for the susceptibility to TSE in mammalian systems (Flechsig & Weissmann, 

2004).

In order to reproduce PrP secretion patterns in yeast, the hydrophobic core of the signal 

peptide of mouse PrP was replaced by the signal sequence from the yeast excreted protein 

dipeptidyl aminopeptidase B, so that the resulting protein would be targeted 

cotranslationally to the yeast secretory pathway. PrP molecules with the modified signal 

peptide were efficiently secreted, glycosylated, glycolipid-anchored, and localized to the 

plasma membrane (Li, Dong, & Harris, 2004). This model was used to show that PrPC is 

unlikely to play a direct role in trafficking of Cu2+ or Zn2+ ions, as it was proposed earlier. It 

can also potentially be useful for identification of proteins interacting with PrPC. However, it 

is not clear how PrP polymerization into PrPSc is to be monitored in this model.

Unglycosylated mouse PrP lacking a signal peptide and expressed in yeast forms fibrous 

cytosolic aggregates, which are protease-resistant and detergent-insoluble, as typical of 

PrPSc (Ma & Lindquist, 1999). While most PrP is extracellular in mammalian cells, it is not 

yet clear where the prion isoform (PrPSc) is initially formed, so that the authors proposed 

that PrP could undergo aggregation in result of retrograde transport from the ER/secretory 

pathway to the cytosol. The PrP aggregates formed in yeast cells are able to convert normal 

PrPC from the mouse brain homogenates into a proteinase K-resistant conformation, 

resembling PrPSc (Yang, Yang, & Tien, 2006). PrP or its derivatives encompassing the 90–

230 region produced detergent-resistant aggregates detectable by FM in yeast cytoplasm 

when they were fused to the fluorophore, such as yellow (YFP), cyan (CFP) or green (GFP) 

fluorescent protein as shown in Fig. 8B (Rubel et al., 2013, 2008). In addition, PrP 
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aggregates formed in yeast interacted with amyloid-specific aptamers (Mitkevich et al., 

2012). These results indicate that PrP, produced in the cytosol of yeast cells, possesses 

biochemical properties that are similar to disease-associated PrPSc from the brains of sick 

animals. However, infection of animals by aggregated PrP from yeast cells has never been 

reported. This has to be noted that the infection of animals with recombinant PrP produced 

in vitro is also inefficient, and some positive results have been achieved relatively recently as 

reviewed in (Charco et al., 2017; Legname & Moda, 2017).

In contrast to mammalian neurons, PrP aggregates are not toxic to yeast and do not affect the 

growth of yeast cultures. However, deletions of some genes associated with proteasome 

system inhibit the growth of strains expressing PrP (Apodaca, Kim, & Rao, 2006). It is not 

yet clear if this effect is related to PrP aggregation.

This has also been demonstrated that the interaction between the PrP protein with a 

methionine residue at the position 129 (PrP-129M), and the PrP protein with valine at this 

position (129V) is reduced in the yeast cells, compared to homotypic combinations (Mallik, 

Yang, Norstrom, & Mastrianni, 2010). Position 129 is polymorphic in humans, and this has 

been shown that the 129M/129V heterozygotes are less susceptible to prion disease and 

infection (Kobayashi, Hizume, Teruya, Mohri, & Kitamoto, 2009; Mead et al., 2008; 

Nystrom & Hammarstrom, 2014), that agrees with the less efficient interaction between 

heterotypic PrP molecules. Importantly, an introduction of the substitution P101L (that is 

equivalent to the disease-associated substitution P102L in human PrP) into a fluorophore-

tagged mouse PrP abolished fluorescence resonance energy transfer (FRET) with wild-type 

PrP in yeast, whereas mutant PrP-P101L displayed high FRET with identical PrP-P101L, as 

long as residue 129 was matched (Mallik et al., 2010).

Fusions of mouse PrP or PrP-derived fragments to fluorophores allow for the analysis of 

protein-protein interactions that involve aggregated PrP (Fig. 8B). By using FRET, it has 

been demonstrated that aggregated fluorophore-tagged PrP and Aβ proteins physically 

interact in yeast cells (Rubel et al., 2013). PrP sequences essential for such an interaction 

have been identified. This agrees with previous reports on Aβ-PrP interactions from 

mammalian systems, e.g. (Chen, Yadav, & Surewicz, 2010). However, mammalian studies 

typically targeted PrPC, thus the ability of aggregated PrP to interact with Aβ represents a 

contribution of the yeast model.

Another approach for studying PrP aggregation in yeast (Josse, Marchante, Zenthon, von der 

Haar, & Tuite, 2012) employed the yeast prion-forming Sup35 protein as a reporter, in a 

manner similar to that described above for the Aβ-MRF fusion (Park et al., 2011). In the 

yeast model for PrP (Fig. 8C), most of the N-terminal domain of Sup35 (up to the position 

97) was replaced with either the core region of mouse PrP (aa positions 88–240) or the 

longer region (49–240) including oligopeptide repeats (49–240) (Josse et al., 2012). These 

constructs are designated here and further as PrP-MRF, to keep in line with Aβ-based 

constructs, although authors used different nomenclature. In addition, authors constructed a 

chimera in which only the NQ stretch of Sup35 was replaced by the 49–240 PrP region 

(designated here and further as PrP-NR-MRF). These chimeric constructs were expressed in 

yeast cells, lacking the endogenous SUP35 gene. The PrP-MRF constructs (with or without 
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PrP repeats) aggregated in yeast, but these aggregates were not resistant to sodium dodecyl 

sulfate (SDS). In contrast, the chimera, in which in only the N-terminal QN-rich stretch of 

Sup35 PrD has been substituted by PrP and both the PrP and Sup35 repeat regions were 

present, formed SDS-resistant polymers. This should be noted that according to our 

preliminary results, aggregates formed by PrP-Sup35 constructs similar to those employed 

by Josse et al. (2012) are resistant to sarkosyl (A. Rubel, Y. Chernoff, A. Galkin, 

unpublished data), and in case of PrP-NR-MRF, this resistance does not depend on the 

presence or absence of the oligopeptide region of PrP (V. Lashkul, D. Kachkin, Y. Chernoff, 

A. Rubel, unpublished data). Apparently, the combination of the oligopeptide regions of 

both PrP and Sup35 is needed specifically for resistance to SDS, rather than for the 

formation of the detergent-resistant fibrils in general.

Phenotypic analysis of the yeast strains producing various chimeric constructs has shown 

that attachment of PrP leads to a decrease in the termination function of Sup35, thus 

resulting in translational readthrough and nonsense-suppression (similar to what is described 

above for Aβ-MRF). The presence of oligopeptide repeats from mouse in the PrP-NR-MRF 

chimera enhanced suppression, although the replacement of the Sup35 repeat region by the 

repeat region from PrP (see construct designated as Sup35QN-PrP(49–90)-MRF on Fig. 8C) 

did not inhibit Sup35 function if other PrP-derived sequences were not present. It is not clear 

if nonsense-suppression was a consequence of aggregation or caused by other reasons, such 

as interference of the PrP-derived sequence with the folding of the globular domain and/or 

proper functioning of Sup35. However, the readthrough-stimulating effect of the addition of 

the repeat region of PrP (which also increases the detergent-resistance of aggregates) is a 

strong indication to that aggregation contributes to this phenotype. Notably, neither 

overproduction nor inactivation of the Hsp104 chaperone, known to control the propagation 

of the Sup35 prion (see above), affected the nonsense suppressor phenotype in strains 

expressing the PrP-Sup35MC constructs. This points to the differences between yeast prions 

and PrP-mediated aggregates in yeast. Likewise, quinacrine, a compound which has been 

reported to efficiently inhibit PrP polymerization and PrPSc accumulation in cultured cells 

and some other previously tested compounds with anti-PrP activity did not impact the PrP-

mediated nonsense-suppression in yeast, pointing to the differences between the aggregates 

formed by PrP-based chimeras in yeast, and PrP prions in native environments (Josse et al., 

2012). It is worth noting that quinacrine can antagonize the endogenous yeast prion [PSI+] 

formed by Sup35 protein, and some other compounds initially identified by their anti-[PSI+] 

effect were shown to antagonize PrPSc in cultured mammalian cells (Bach et al., 2003; 

Nguyen et al., 2014; Voisset et al., 2017). Therefore, endogenous [PSI+] prion recapitulates 

some aspects of PrP propagation better than some artificial PrP-based chimeric constructs.

While PrP-based assays developed in yeast produced some interesting data, convenient yeast 

model for tracking the PrP prion propagation that would be relevant to mammalian systems 

is still lacking. However, data described in Section 9 below show that the processes leading 

to the initial nucleation of PrP polymers can be modeled in yeast.
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7. Yeast models for proteins associated with amyotrophic lateral sclerosis 

(ALS)

7.1 Overview of ALS-associated proteins

ALS is the progressive neurodegenerative disease that affects upper and lower motor 

neurons, and is characterized by a rapidly progressive loss of motor neurons in the spinal 

cord, muscle weakness and paralysis. In many cases, ALS is associated with accumulation 

of aggregated proteins in the form of cytoplasmic inclusion in central neurons and glial cells. 

These inclusions may contain trans-activation response element (TAR) DNA-binding protein 

43 (TDP-43) and some others RNA-binding proteins (FUS, SOD1, hnRNPA2, TAF15, 

EWS). Some of the same proteins have also been detected in aggregated form in patients 

with frontotemporal dementia (FTD, see above), suggesting that some forms of ALS and 

FTD may have a common cause (Couratier, Corcia, Lautrette, Nicol, & Marin, 2017). 

Approximately 90% of the ALS cases are non-heritable (that is, sporadic), while remaining 

10% are heritable, or familial (fALS). Among a growing number of genes associated with 

fALS, mutations in four genes are most common: C9orf72 (~ 40% of heritable cases), SOD1 
(~20%), FUS (~1–5%), and TARBDP (~1–5%). Other rare gene mutations associated with 

fALS include mutations in UBQLN2 (ubiquilin 2), OPTN (optineurin), VCP (valosin-

containing protein) and TBK1 (TANK-binding kinase 1) (Renton, Chio, & Traynor, 2014).

Yeast models are successfully applied to elucidation of the molecular mechanisms 

underlying the development of ALS pathologies. Among the proteins associated with ALS, 

TDP-43 and FUS are most extensively studied in yeast (Di Gregorio & Duennwald, 2018; 

Kryndushkin, Wickner, & Shewmaker, 2011; Lindstrom & Liu, 2018; Monahan, Rhoads, 

Yee, & Shewmaker, 2018).

7.2 TDP-43

TDP-43 is highly conserved RNA/DNA-binding protein involved in RNA processing, 

including splicing, transcription and transport. TDP-43 is expressed in a variety of cell types 

and is predominantly localized in the nucleus, but also performs some functions in the 

cytoplasm (Ayala et al., 2008). TDP-43 protein (Fig. 9A) includes the following important 

regions: (1)N-terminal domain (aa 1–102) that mediates self-assembly and contains a 

nuclear localization signal (NLS, aa 82–98); (2) two RNA recognition motifs, RRM1 (aa 

104–176) and RRM2 (aa 192–262); (3) a nuclear export signal (NES, aa 239–250); and (4) 

an intrinsically disordered low complexity domain (LCD) at the C-terminus (aa 274–414), 

that includes a QN-rich domain (aa 345–366) and a G-rich stretch (aa 366–414) (Jiang et al., 

2016; Kuo, Chiang, Wang, Doudeva, & Yuan, 2014; Mompean et al., 2016; Qin, Lim, Wei, 

& Song, 2014). The aa composition of the QN-rich domain of TDP-43 is similar to that of 

yeast prion domains, therefore this portion of the protein is termed a “prion domain like 

domain” (PrLD) region.

Majority of the sporadic ALS cases are associated with the deposition of the TDP-43 

protein, phosphorylated at S409 and S410 positions, and its 25 and 35 kD C-terminal 

cleavage fragments in neuronal and glial cytoplasmic inclusions (Mackenzie et al., 2007; 

Neumann et al., 2006). This points to a key role of TDP-43 aggregation in ALS pathology. 
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Moreover, mutations in TDP-43 (mostly within its G-rich C-terminal domain) are associated 

with about 5% of fALS cases (Gendron et al., 2013; Sreedharan et al., 2008). LCD is 

responsible for liquid-liquid phase separation and inclusion of TDP-43 into stress granules 

(SGs). Disease-linked TDP-43 mutations lead to excessive accumulation of SGs in cells and 

its reduction in the cell nucleus (Johnson et al., 2009; Nonaka, Kametani, Arai, Akiyama, & 

Hasegawa, 2009).

It is still debated whether or not TDP-43 inclusions, detected in the neuronal cells possess 

amyloid properties. It has been reported that neither filamentous TDP-43 assemblies, found 

in the ALS-affected brains, nor aggregates formed by recombinant TDP-43 in vitro or in 

Escherichia coli cells are stained with thioflavin-T (ThT) or Congo red (CR), dyes that are 

routinely used to detect cross-β amyloid structures (Capitini et al., 2014; Johnson et al., 

2009; Neumann et al., 2006). However, some other studies point to the formation of β-sheet-

rich, ThT-positive fibrillar aggregates, similar to amyloids by both wild-type TDP-43 and its 

derivative, bearing an ALS-associated mutation (Bigio et al., 2013; Robinson et al., 2013; 

Zhu et al., 2014). In addition, prion-like spread of TDP-43 aggregates has been 

demonstrated in mammalian cell models (Feiler et al., 2015; Furukawa, Kaneko, Watanabe, 

Yamanaka, & Nukina, 2011; Ishii, Kawakami, Endo, Misawa, & Watabe, 2017; Nonaka & 

Hasegawa, 2018; Smethurst et al., 2016).

Yeast studies made a significant contribution to current understanding of the pathogenicity 

of TDP-43 and were mostly confirmed by using other approaches (Di Gregorio & 

Duennwald, 2018; Lindstrom & Liu, 2018; Monahan et al., 2018). It was shown that the 

yeast model for TDP-43 recapitulates its key pathology-relevant features seen in humans, 

including normal nuclear localization and cytotoxic cytoplasmic sequestration (Johnson, 

McCaffery, Lindquist, & Gitler, 2008). Notably, the C-terminal LCD region (including 

PrLD) was implicated as one playing a critical role in TDP-43 aggregation (Johnson et al., 

2008). Most ALS-associated mutations increased TDP-43 aggregation and toxicity in yeast, 

although some mutations having no such effect were also reported (Johnson et al., 2009). 

Mitochondrial function and oxidative stress were also linked to the TDP-43-triggered 

toxicity in yeast (Braun et al., 2011). Indeed, TDP-43 toxicity is enhanced in respirating 

yeast cells, although TDP-43 remains toxic even in the absence of respiration (Park, Park, & 

Liebman, 2019). Random mutagenesis of the PrLD-coding region revealed that mutations 

increasing TDP-43 toxicity typically promote phase separation (that is, formation of the 

dynamic liquid-like cytoplasmic condensates), while the increase in hydrophobicity and 

aggregation per se reduces toxicity (Bolognesi et al., 2019).

Yeast model has also been effectively used as a tool for identification of the proteins that 

influence TDP-43 aggregation and toxicity. By screening the yeast deletion library, it was 

shown that expression of TDP-43 is not toxic to the yeast cells lacking the DBR1 gene, that 

codes for the protein involved in splicing (Armakola et al., 2012; Daigle et al., 2013; Figley 

& Gitler, 2013). This was confirmed by showing that knocking down of the DBR1 homolog 

in human cells also protects against TDP-43 cytotoxicity (Armakola et al., 2012). Possibly, 

splicing intermediates accumulated in cytosol in the absence of Dbr1 sequester TDP-43, 

preventing it from interfering with essential RNAs and/or RNA-binding proteins.
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Additional modifiers of TDP-43 toxicity revealed by high-throughput screens in yeast 

include RNA-binding proteins such as poly-A binding protein Pab1 and a yeast ortholog of 

the translation initiation factor EIF2A, that are incorporated into SGs during stress; these 

findings were confirmed in Drosophila melanogaster model (Kim et al., 2014).

Engineered “potentiated” (hyperfunctional) derivatives of yeast chaperone Hsp104 (see 

above) rescued cytotoxicity of TDP-43, as well as that of another ALS-associated protein, 

FUS (described below) and of αSyn in yeast (Jackrel et al., 2014; Jackrel & Shorter, 2014). 

While Hsp104 is not present in mammals, the engineered Hsp104-based constructs can 

potentially be introduced there as an agent, counteracting disease, although the potential side 

effects on other processes should be of course characterized first. Overexpression of the 

Hsp40 chaperone Sis1 also antagonized toxicity of both TDP-43 and FUS in the yeast 

model, that agrees with the effect of this protein on polyQ toxicity (see above) and is 

confirmed by studying the impact of its human ortholog DnaJB1 on TDP-43 and FUS 

toxicity in mammalian and human cell models, including and primary cortical neurons (Park 

et al., 2018, 2017). The yeast studies also demonstrated that the endosomal-vacuolar 

trafficking pathway and the vacuolar (lysosomal) protein degradation machinery are crucial 

for the TDP-43 degradation and cell survival in yeast, although autophagy increased toxicity, 

indicating a complex impact of the lysosome-associated pathways on the TDP-43 associated 

(Leibiger et al., 2018).

7.3 FUS

Another protein associated with ALS, whose role in this disease is largely understood from 

the yeast models (Di Gregorio & Duennwald, 2018; Lindstrom & Liu, 2018; Monahan et al., 

2018) is a FUS protein, coded by the gene FUS/TLS. The name of this gene is coming from 

“fused in sarcoma/translocated in sarcoma” and has no relation to its function. Like TDP-43, 

FUS is a RNA/DNA-binding protein that plays a role in numerous cellular processes, 

including transcription, splicing, microRNA maturation, RNA transport and SG formation, 

and can shuttle between the nucleus and cytosol. Normally, FUS is predominantly nuclear in 

glial cells and neurons. Relocalization of FUS to cytosolic aggregates and the decrease in the 

proportion of the nuclear FUS fraction is an important hallmark of some ALS cases (Lagier-

Tourenne & Cleveland, 2009). Mutations in FUS cause around 5% of all familial ALS cases, 

with disease phenotypes inherited in an autosomal dominant fashion (Renton et al., 2014). 

Interestingly, TDP-43 aggregation is not detected in fALS cases with FUS mutations (Vance 

et al., 2009).

FUS protein (Fig. 9B) contains the N-terminal PrLD or LCD (Q/G/S/Y-rich) domain (aa 

positions 1–165), the Gly-rich region (aa 166–267), and the C-terminal region includes 

RRM (aa 285–371), two RGG-repeat regions (aa 371–422 and 453–501), a zinc finger 

motif, or ZNF (aa 422–453), and a non-conventional nuclear localization signal, NLS (aa 

510–526) (Dormann et al., 2012, 2010; Iko et al., 2004). Most of the fALS-associated FUS 

mutations are located in the N-terminal LCD domain, in the second RGG domain or with 

NLS in the C-terminal region. Disease-associated mutations accelerate the phase transition 

of FUS, promoting sequestration of wild-type FUS protein into SGs, and delaying SG 

formation in response to stress, while accelerating SG dissociation (Murakami et al., 2015; 
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Patel et al., 2015). These data suggest direct pathological role of SGs in ALS. Normal 

function of FUS is not critical for the survival of motor neurons, suggesting that 

neurodegeneration is a consequence of a gain of toxicity (Sharma et al., 2016), although 

some researchers still dispute this notion, e.g. (Lindstrom & Liu, 2018). Abnormal FUS 

phase transition has been suggested to be a causative factor in ALS (Hofweber et al., 2018; 

Luo et al., 2018; Murray et al., 2017; Qamar et al., 2018). While yeast does not have a FUS 

ortholog, many cell pathways in which FUS is involved are conserved in yeast (Ju et al., 

2011). Several yeast models that express human FUS, either in wild-type form or with ALS-

linked mutations have been introduced and exploited, as described below.

Yeast models served as a powerful tool for identifying the FUS domains, that are responsible 

for its nuclear versus cytoplasmic localization and aggregation. In contrast to mammalian 

cells, not only mutant FUS but also a full-length wild-type FUS protein are preferentially 

localized in the cytosol and forms numerous cytoplasmic aggregates in yeast cells (Ju et al., 

2011). This difference suggests that the non-canonical NLS of FUS is insufficient to 

efficient localize protein to the nucleus in yeast (Ju et al., 2011). Addition of strong 

heterologous SV40 NLS to FUS increased its localization to the nucleus and eliminated 

cytoplasmic aggregation of FUS. Thus, defective nuclear import of FUS might be a key 

upstream event in ALS (Sun et al., 2011). Moreover, FUS lacking the RGG regions localized 

to the nucleus even if it did not contain NLS, while addition of one of the RGG regions 

restored its cytosolic localization in yeast (Sun et al., 2011). Apparently, interaction with 

RNA via RGG domain is crucial for the retention of FUS in the cytosol. It was also shown 

that PrLD is required for the aggregation of FUS in the cytoplasm (Sun et al., 2011). 

Respective roles of these domains were later confirmed using insect and human cell models 

(Patel et al., 2015; Sun et al., 2011).

Yeast studies have demonstrated that FUS toxicity to the yeast cells is increased with the 

increase of its expression levels, and is associated with FUS accumulation in cytosolic 

aggregates (Kryndushkin et al., 2011). Despite similarities between FUS and TDP-43 

proteins, they apparently aggregate in yeast via distinct mechanisms, as in addition to the 

PrLD region of FUS, RRM and RGG regions are also required for toxicity and the C-

terminal region is involved (Kryndushkin et al., 2011; Sun et al., 2011). As FUS PrLD is 

extensively phosphorylated during stress in human cells (Rhoads et al., 2018), 

phosphomimetic substitutions were introduced into FUS and shown to reduce aggregation 

and ameliorate FUS-associated cytotoxicity in both human cell and yeast models (Monahan 

et al., 2017).

A genome-wide genetic screen using a yeast overexpression library demonstrated that the 

proteins involved in SG assembly and RNA metabolism modify FUS toxicity (Ju et al., 

2011; Sun et al., 2011). Effect of one of the antagonists of FUS toxicity, yeast RNA helicase 

Ecm32, was confirmed for its human homolog (Daigle et al., 2013; Ju et al., 2011; Sun et al., 

2011). Yeast two-hybrid screens identified protein arginine methyltransferase 1 (PRMT1) as 

one of binding partners of FUS (Yamaguchi & Kitajo, 2012). Methylation of FUS by 

PRMTs has subsequently been shown to be important for regulation of its nuclear versus 

cytoplasmic localization (Tradewell et al., 2012).
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Despite the obvious similarity between FUS PrLD and PrDs of most yeast prion proteins, it 

is still unclear whether or not FUS assemblies, associated with ALS possess amyloid 

properties (Cushman, Johnson, King, Gitler, & Shorter, 2010; Udan & Baloh, 2011). In 

contrast to typical amyloids, FUS aggregates formed in yeast cells were initially reported to 

be detergent-sensitive (Ju et al., 2011; Kryndushkin et al., 2011), while aggregates formed 

by recombinant FUS in vitro are not stained by ThT, usually staining amyloid fibrils (Sun et 

al., 2011). However, another study described ThT staining of FUS aggregates in yeast, as 

well as their resistance to a mild detergent, 0.5% sarkosyl (Fushimi et al., 2011). Mutant 

LCD region of FUS can form fibrils in vitro that are similar to typical amyloid fibrils by 

morphology (Zhu et al., 2014). However, no matter what is the molecular basis of FUS 

aggregation, it possesses at least one unique feature: in contrast to amyloid-based prions and 

most disease-associated amyloids, FUS aggregation is reversible and can be regulated. FUS 

amyloid fibrils can be disassembled depending on FUS concentration, phosphorylation of 

the LCD domain, and DNA or RNA levels (Han et al., 2012; Kato et al., 2012; Kwon et al., 

2013; Schwartz, Wang, Podell, & Cech, 2013).

7.4 Other ALS-associated proteins

In addition to TDP-43 and FUS, about 20 genes/proteins have been linked to ALS at present. 

For some of them, studies in the yeast models have also been performed.

7.4.1 C9orf72—A massive GGGGCC hexanucleotide repeat expansion in the first intron 

of the C9orf72 gene has been identified as one of the most frequent causes for fALS and 

FTD, being linked to about 40% cases of heritable ALS (Renton et al., 2014). The following 

(mutually non-exclusive) mechanisms for this expansion were proposed.

1. Decrease in the levels of functional C9orf72 protein due to interference of the 

expansion with gene expression (DeJesus-Hernandez et al., 2011; Waite et al., 

2014).

2. Formation of toxic secondary RNA structures (that sequester RNA-binding 

proteins) due to bidirectional transcription of the expanded repeat region 

(DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Haeusler et al., 2014).

3. Non-AUG initiated translation of sense and antisense repeat-containing RNAs, 

producing aggregation-prone polypeptides with dipeptide repeats (DPR), such as 

GP, GA, GR, PA and PR. Of these, PR and GR containing polypeptides are most 

toxic in a variety of model systems, ranging from human cells to yeast (Ash et 

al., 2013; Mori et al., 2013; Zu et al., 2013). A genetic screen for modifiers of PR 

and GR toxicity identified toxicity suppressors and enhancers and pointed to that 

toxicity of PR and GR containing polypeptides is possibly due to distinct 

mechanisms (Chai & Gitler, 2018; Jovicic et al., 2015).

7.4.2 Sod1—Up to 20% of fALS cases are associated with an over 150 mutations within 

the gene encoding Cu,Zn-superoxide dismutase 1 (Sod1), a primarily cytosolic homodimeric 

protein implicated in the defense against free radicals (Renton et al., 2014). Wild-type Sod1 

protein also can participate in the ALS pathology, including some cases associated with 

other proteins (Graffmo et al., 2013), and aggregates of TDP-43 or FUS can promote 
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misfolding of wild-type Sod1 in cultured cells (Pokrishevsky, Grad, & Cashman, 2016). In 

general, misfolded and/or unstable Sod1 protein is widely reported as a hallmark of ALS. It 

is still not fully understood how is Sod1 misfolding related to cellular dysfunction. 

Interestingly, recent studies have shown that misfolded toxic aggregates of mutant (Ayers, 

Fromholt, O’Neal, Diamond, & Borchelt, 2016; Munch & Bertolotti, 2011; Munch, 

O’Brien, & Bertolotti, 2011; Pokrishevsky, Hong, Mackenzie, & Cashman, 2017) or wild-

type (Grad & Cashman, 2014; Grad et al., 2014; McAlary, Plotkin, Yerbury, & Cashman, 

2019) Sod1 exhibit prion-like properties so that the misfolded state of the protein can be 

transmitted between cells, although amyloid formation per se has not been reported.

The S. cerevisiae yeast possesses the Sod1 ortholog (with the same name) showing 54% aa 

identity with human Sod1. Wild-type or mutant human Sod1 are enzymatically active in 

yeast and restore the wild-type phenotype in the sodlΔ yeast strain (Rabizadeh et al., 1995). 

This suggested that ALS-associated mutations in SOD1 gene do not influence the functional 

activity of the Sod1 protein. This was further confirmed by using a transgenic mice model 

with overexpressed human SOD1 mutants (Reaume et al., 1996). Yeast studies demonstrated 

that the accumulation of some fraction of wild-type Sod1 in the mitochondrial 

intermembrane space (IMS), mediated by the copper chaperone, CCS is protecting cells 

against oxidative stress (Sturtz, Diekert, Jensen, Lill, & Culotta, 2001). One of the common 

ALS-linked mutations in Sod1 (G93A) leads to an increased Sod1 accumulation in IMS and 

(somewhat surprisingly) increases the protection of yeast cells from mitochondria-induced 

oxidative stress (Kloppel, Michels, Zimmer, Herrmann, & Riemer, 2010). Such an effect was 

not detected for the catalytically inactive (G85R) Sod1 mutant. Defects in the assembly of 

the electron transport complex after expression of some mutant derivatives of Sod1 in yeast 

have also been reported (Gunther, Vangilder, Fang, & Beattie, 2004). Other data point to the 

correlation of the toxic effect of some Sod1 with the decrease in vacuole acidification, that 

antagonizes vacuolar proteolysis, perturbs metabolic regulation and promotes senescence 

(Bastow et al., 2016). It is possible that due to a high pleiotropy of superoxide dismutases, 

different mutations may influence cell viability and lead to disease via different mechanisms.

7.4.3 HnRNP—The hnRNP (heterologous nuclear ribonucleoprotein) family includes 

paralogous RNA-binding proteins, among them hnRNPA1 and hnRNPA2B1, that is 

represented by isoforms A2 and B1, originated from alternative splicing (Kim et al., 2013). 

Each of these proteins possesses a G-rich PrLD (see Fig. 9C for hnRNPA2B1), as predicted 

by sequence analysis using an algorithm derived from studying yeast prions. Mutations 

found in the conserved PrLD region of hnRNPA1 and hnRNPA2B1 are associated with an 

unusual disease, that combines features of ALS and some other disorders (inclusion body 

myopathy, FTD and Paget’s disease of bone), also involves aggregation of TDP-43 and is 

sometimes termed “multisystem proteinopathy,” or MSP (Kim et al., 2013). Notably, 

hnRNPA1 and hnRNPA2B1 are known to interact with TDP-43, and hnRNPA2B1 has been 

implicated in another neurological disease, fragile X-associated tremor ataxia syndrome 

(FXTAS), where it binds expanded rCGG repeats, underlying this disease (Iwahashi et al., 

2006; Sofola et al., 2007).

The system employed for studying hnRNPA2B1 in yeast (Kim et al., 2013; Paul et al., 2017) 

employed a chimeric construct with Sup35, termed A2-Sup35 (Fig. 9D) and based on the 
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principle similar to one described above for PrP. The region encompassing the first 40 aa 

(that includes the QN-rich aggregation-prone stretch of PrD) of the Sup35 protein has been 

substituted by the PrLD region (aa residues 261—303) from hnRNPA2. In contrast to the 

PrP-based construct, this chimeric protein was functional in translation termination, leading 

to the Ade− phenotype in the reporter yeast strain (in this case, containing the ade2-1 UAA 

allele). However, spontaneous Ade+ colonies appeared at the frequency of about 10−4. The 

frequency of Ade+ formation was increased by transient overexpression of the hnRNPA2B1 

PrLD region fused to GFP (A2-PrLD-GFP) in the same cells. The prion nature of these Ade
+ colonies was confirmed by demon-strating that most of them were “cured” (that is, 

reverted to Ade−) after the growth in the medium containing guanidine hydrochloride, a 

compound that inhibits Hsp104 and is known to “cure” the Hsp104-dependent yeast prions, 

including [PSI+], as reviewed in (Chernova et al., 2014). Aggregation of the A2-Sup35 

protein in Ade+ cells was visualized by fluorescence microscopy after co-expression of the 

A2-PrLD-GFP construct (Paul et al., 2017). Authors do not specifically address whether or 

not the yeast strain used in this work contains other pre-existing prions; data reported in their 

work are consistent with the presence of prion [PIN+] that promotes aggregation of other 

prion proteins in yeast.

By using this system, authors studied effects of various amino acid substitutions at the 

disease-associated aa position 290 of hnRNPA2B1 protein on the ability of the respective 

A2-Sup35 chimeric construct to convert into a prion state in yeast (Paul et al., 2017). Results 

were compared to the predictions made by PAPA bioinformatic algorithms developed by the 

same group, that assesses prion propensity of various amino acid residues in yeast (Shattuck, 

Waechter, & Ross, 2017; Toombs et al., 2012). While the PAPA algorithm was able to 

accurately predict prion propensities of the mutations in the hnRNPA2B1 PrLD in yeast and 

in vitro, some mutations did show different results in the Drosophila model for the 

aggregation of full-length hnRNPA2B1, indicating that either yeast-derived sequences (used 

in a chimeric construct) or cellular environment makes certain impact on the ability to 

propagate the prion state dependent on the hnRNPA2B1 PrLD region (Paul et al., 2017). The 

difference in prion propagating machineries could be expected due to absence of Hsp104 

chaperone in the animal cells, and this could be an obstacle for other yeast assays based on 

the ability to propagate heterologous prions as well. In the subsequent paper (Cascarina, 

Paul, Machihara, & Ross, 2018), authors employed the same yeast model for comparing 

effects of aa composition of the hnRNPA1 and hnRNA2B1 PrLD regions, and of Sup35 PrD 

on the balance between aggregation and degradation propensities. They have shown that 

large aliphatic residues that are known to enhance aggregation in other systems actually 

promote degradation of the G-rich PrLD regions in yeast, whereas aromatic residues 

enhanced aggregation without promoting degradation. Interestingly, the degradation-

promoting effect of aliphatic residues was suppressed in the context of the Q/N-rich prion 

domain, that may explain QN-richness of yeast PrDs, and of many PrLD regions in other 

proteomes. This remains to be seen if these findings are applicable to human cells.

7.4.4 Other proteins associated with ALS—Yeast models also helped to investigate 

the mechanisms of toxicity caused by some rare ALS-associated mutations in the following 

proteins: VAPB (Nakamichi, Yamanaka, Suzuki, Watanabe, & Kagiwada, 2011); VCP 
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(Takata et al., 2012); OPTN (Kryndushkin, Ihrke, Piermartiri, & Shewmaker, 2012); SETX 

(Bennett & La Spada, 2018; Richard, Feng, & Manley, 2013); profilin 1 (Figley, Bieri, 

Kolaitis, Taylor, & Gitler, 2014). Recently, a yeast model was used for characterization of 

the toxicity of calcium-responsive transactivator (CREST), chromatin-remodeling protein 

whose mutant variant is associated with some cases of ALS (Chesi et al., 2013; Teyssou et 

al., 2014). CREST contains QN-rich PrLD and forms toxic nuclear (and occasionally 

cytoplasmic) aggregates stained by ThT in the yeast cells (Park, Park, Watanabe, et al., 

2019). Toxicity of CREST to yeast cells is enhanced by the presence of the QN-rich prion 

protein Rnq1 in a prion form, and reduced by the deletion of a gene coding for the 

chaperone Hsp104, required for the fragmentation and propagation of most known 

endogenous yeast prions (see above). Deletion of the PBP1 gene, coding for the yeast 

ortholog of one of the human ataxin proteins (ATXN2) reduced aggregation and toxicity of 

CREST in yeast cells. Notably, ATXN2 itself contains the polyQ PrLD region, and 

intermediate expansion (up to 27—34 residues) of the ATXN2 polyQ tract is a known risk 

factor associated with FTD and ~5% of ALS cases (Becker et al., 2017). Moreover, CREST 

and PBP1/ATXN2 co-localize in both yeast and mammalian cells. These observations were 

also confirmed in a transgenic Drosophila model for CREST (Park, Park, Watanabe, et al., 

2019).

8. Aggregation of transthyretin in yeast

Transthyretin (TTR) is a protein associated with amyloidosis affecting various tissues, 

including transthyretin amyloidosis (ATTR) and familial polyneuropathy (Connors, Lim, 

Prokaeva, Roskens, & Costello, 2003). Most cases of TTR-associated amyloidoses are 

heritable and caused by mutations in TTR. Native TTR is a tetramer; some amyloid-

associated mutations disrupt the tetramer assembly and promote amyloid formation as an 

alternative assembly pathway (Johnson, Connelly, Fearns, Powers, & Kelly, 2012). However, 

non-mutant TTR can also aggregate in systemic amyloidosis (Westermark, Engstrom, 

Johnson, Westermark, & Betsholtz, 1990).

It has been shown that TTR with a disease-promoting mutation (TTR-L55P) forms 

detergent-insoluble aggregates in yeast cells, while wild-type TTR does not (Gomes et al., 

2012). Analysis of the changes in the yeast proteome composition, occurring in response to 

TTR-L55P aggregation reveled increased abundance of the following proteins: some 

enzymes of the tricarbon acid cycle, involved in respiration; superoxide dismutase; some 

chaperones of the Hsp70 family (specifically, Ssa1 and Ssa2); the ubiquitin-like protein 

Smt3 (yeast ortholog of mammalian SUMO, previously linked to AD and HD); and 

members of the peptidyl-prolyl-cis-trans isomerase (PPIase) family (cyclophilin A and 

FKBP), whose human homologs were identified as TTR-interacting partners in ATTR 

patients. Overall, these data are consistent with that aggregation of mutant TR leads to the 

increased mitochondrial respiration, promoting oxidative stress, that is likely to be relevant 

to the mechanism of pathogenicity of TTR amyloids in humans.

Another work has shown that the mutant (M) TTR-GFP construct, bearing double amino 

acid substitution at positions, associated with TTR amyloidoses (F87M/L110M) formed 

insoluble aggregates, detectable by fluorescence microscopy in yeast cells at acidic pH 
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(Verma et al., 2018). Aggregation of M-TTR-GFP was enhanced in the presence of the 

Sup35 prion, [PSI+], or in the cells overexpressing Sup35 PrD containing region fused to red 

fluorescent protein, RFP (Sup35NM-RFP), even though TTR does not contain a QN-rich 

domain, and M-TTR-GFP aggregation does not promote de novo formation of [PSI+]. The 

M-TTR-GFP and Sup35NM-RFP aggregates colocalized the yeast cells, and Sup35 was co-

immunoprecipitated with M-TTR-GFP aggregates. Interestingly, another yeast prion, formed 

by Rnq1 protein, [PIN+] did not promote aggregation of M-TTR-GFP. One possibility that 

remains to be addressed is the nature of the Sup35-TTR coaggregates. Sup35 is known to 

undergo phase separation and form hydrogel-like assemblies at the acidic pH in yeast 

(Franzmann et al., 2018), thus it is possible that aggregates detected by Verma et al. could 

represent this kind of assemblies, although one counterargument against this is that prion 

state of Sup35 interferes with the incorporation of Sup35 into such assemblies rather than 

promotes them.

9. Yeast assay for amyloid nucleation by mammalian proteins

A new assay for the initial amyloid nucleation by mammalian proteins in yeast has been 

developed using de novo prion induction by overproduced constructs containing PrD of the 

yeast prion protein Sup35. As described above (see Section 2 and Fig. 3A), a transient 

overproduction of Sup35 or its PrD induces de novo formation of the [PSI+] prion efficiently 

only in yeast cells containing other aggregated proteins, for example, the prion form of the 

Rnq1 protein, [PIN+]. However, the addition of an expanded polyQ stretch to the Sup35 

PrD-containing region enabled it to induce [PSI+] after the transient overproduction in the 

strain lacking known pre-existing prions, [psi− pin−]) (Goehler et al., 2010). As Sup35 PrD 

is also QN-rich, and expanded polyQ constructs are shown to promote [PSI+] nucleation by 

excess Sup35 in trans, this result could in principle be interpreted as a lengthening or 

“duplication” of the Sup35 PrD region, that increases its prion-inducing abilities. Indeed, the 

construct combining the Sup35N (PrD) and Rnq1 sequences in a tandem was later shown to 

induce de novo [PSI+] formation very efficiently (Newby et al., 2017). To check if an 

attachment of the amyloidogenic protein of an entirely different sequence composition, not 

capable of nucleating the Sup35 aggregation in trans would enhance de novo prion 

nucleation by Sup35 PrD, a series of constructs has been prepared (Chandramowlishwaran 

et al., 2018), in which either the Sup35N (PrD) or the Sup35NM (PrD with linker) coding 

region was fused in frame to the sequence, coding for one of the following amyloidogenic 

domains of mammalian origin: mouse PrP (the region between aa positions 90 and 230, 

known to be sufficient for the prion transmission as described in Section 6 above); human 

Aβ42; the aggregating core of human αSyn encompassing aa positions 61–95 (Irvine et al., 

2008; Rivers et al., 2008), and the aggregation-prone region (aa positions 8–37) of human 

IAPP, or amylin (Louros et al., 2015; Westermark et al., 1990), a peptide hormone forming 

amyloid aggregates that are associated with type II diabetes (Fig. 10A). The chimeras were 

expressed from regulated promoters (copper-inducible PCUP1 or in some cases, galactose-

inducible PGAL) that allowed for the modulation of expression levels. Each of the chimeric 

constructs was able to nucleate [PSI+] formation when transiently overproduced in the [psi− 

pin−] yeast strain, lacking pre-existing prion (Chandramowlishwaran et al., 2018). The 

strongest effect was observed for Sup35N-Aβ42 construct, that was capable of nucleating 

Chernoff et al. Page 32

Adv Genet. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[PSI+] in up to 12% of the cells at high levels of expression. The formation of detergent-

resistant aggregates by chimeric proteins and the immobilization of full-length Sup35 into an 

aggregated state have also been confirmed by biochemical approaches. The insertion of the 

M region between the Sup35N and the mammalian sequences generally decreased [PSI+] 

nucleation, however, all mammalian proteins mentioned above (with the exception of PrP) 

were still capable of nucleating [PSI+] when fused to Sup35NM.

Notably, sequence alterations in PrP and Aβ that are known to antagonize prion propagation 

or amyloid formation also decreased the ability of respective constructs to nucleate the [PSI
+] prion in yeast, while the sequence alterations associated with a heritable form of the 

disease promoted [PSI+] nucleation (Chandramowlishwaran et al., 2018). For example, a 

deletion of the region between aa positions 90 and 120 (which is known to be required for 

susceptibility to TSE, as described above) in PrP, or mutations disrupting intermolecular 

interactions involved in amyloid formation by Aβ (Hilbich, Kisters-Woike, Reed, Masters, & 

Beyreuther, 1992; Morimoto et al., 2004; Williams et al., 2004), such as triple substitution 

F19S, F20S, I31P also knocked out [PSI+] nucleation by respective constructs in yeast 

(Chandramowlishwaran et al., 2018). Substitution K28E disrupting the proposed “salt 

bridge” in the Aβ structure (Reddy, Straub, & Thirumalai, 2009), and substitution Q167R in 

PrP, known to inhibit prion propagation in mice (Perrier et al., 2002), also decreased [PSI+] 

nucleation in yeast (Chandramowlishwaran et al., 2018). The Aβ40 peptide, that is less 

amyloidogenic and less toxic in humans, as compared to Aβ42 (see above, Section 5.1), was 

also less efficient in nucleating [PSI+] in yeast when fused to Sup35N, and was not capable 

of nucleating [PSI+] when fused to Sup35NM. In contrast, the substitution P101L in mouse 

PrP (Manson et al., 1999), corresponding to P102L that is associated with heritable TSE in 

humans (Young et al., 1995), and the substitution D23N in human Aβ42, corresponding to 

so-called Iowa mutation, associated with the heritable form of AD (Grabowski, Cho, 

Vonsattel, Rebeck, & Greenberg, 2001; Van Nostrand, Melchor, Cho, Greenberg, & Rebeck, 

2001) both increased [PSI+] nucleation in yeast (Chandramowlishwaran et al., 2018). C-

terminal truncations of mouse PrP also increased [PSI+] nucleation in yeast; this agrees with 

the observations that similar truncations are associated with a heritable disease showing TSE 

symptoms in humans, even though infectivity of such truncated proteins has not been proven 

(Capellari et al., 2018; Kitamoto, Iizuka, & Tateishi, 1993; Lorenz, Windl, & Kretzschmar, 

2002). Overall, these parallels between the yeast and mammalian models (summarized in 

Table 4) indicate that amyloidogenic properties of a mammalian protein drive prion 

nucleation by chimeric constructs in yeast, and confirm the relevance of yeast data to 

mammalian and human disease.

The exact molecular mechanism of prion nucleation by chimeric constructs remains under 

investigation. The most likely scenario is that mammalian proteins/domains aggregate in 

yeast thus bringing together the Sup35 PrD regions, attached to them, and therefore 

promoting the conversion of these regions into a cross-β nucleus (Chandramowlishwaran et 

al., 2018), as shown in Fig. 10B. The complete Sup35 protein, present in the cell is 

immobilized into such a nucleus and converted into a prion form, thus allowing a phenotypic 

detection. It is not clear whether the physical proximity of PrDs is sufficient for the initiation 

of amyloid conversion, or the attached cross-β assemblies formed by mammalian domains 

play an active role in the process. At least, an attachment of proteins forming non-amyloid 
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globular multimolecular assemblies to Sup35 PrD does not nucleate [PSI+] formation at the 

level comparable to mammalian amyloidogenic domains (Chandramowlishwaran et al., 

2018). Further studies are needed to determine if some proteins forming more complex, non-

globular although still non-amyloid assemblies, such as liquid droplets, hydrogels, 

hydrophobic protein agglomerates or cytoskeletal fibrils, would have an effect on prion 

nucleation. However, independently of the outcome of these studies, it is obvious that the 

yeast nucleation assay could be applied to studying the effects of sequence alterations or 

chemicals on amyloid nucleation by known amyloidogenic proteins, as well as for 

identifying new candidate proteins with amyloid properties in various organisms.

The unique property of this assay is that it specifically targets the initial conversion from the 

non-amyloid into an amyloid form (a triggering step in amyloid diseases) and is capable of 

detecting amyloid abilities even for a protein that is not capable of propagating an amyloid 

state ion its own in the yeast cell. Our preliminary experiments using this approach have 

uncovered new mutations in Aβ that influence its amyloidogenic properties (O. Malikova, A. 

Rubel, and Y. Chernoff, unpublished data), detected new chemicals influencing amyloid 

nucleation by Aβ (P. Chandramowlishwaran, Z. Deckner, R. Mezencev and Y. Chernoff, 

unpublished data), and identified new proteins with amyloidogenic properties (confirmed by 

other methods) in a human proteome (A. Zelinsky, N. Romanova, D. Kachkin, A. Rubel and 

Y. Chernoff, unpublished data).

10. Conclusions and future directions

Yeast S. cerevisiae is a powerful model eukaryotic cell for studying the fundamental cellular 

processes and protein functions that are also associated with complex multicellular 

eukaryotes such as humans. The basic mechanisms and pathways leading to such 

manifestations of neurodegenerative diseases as transcriptional dysfunction, defect in 

trafficking, defect in clearance pathways such as proteasome or autophagy, mitochondrial 

dysfunction, transcriptional dysregulation etc., are highly conserved between yeast and 

human species. Major features of protein misfolding and its consequences in yeast and 

mammalian cells exhibit a lot of similarities, and yeast can be easily manipulated genetically 

in order to investigate the role of prions and heritable amyloids associated with mammalian 

and human diseases. Due to huge cell numbers, simple cultivation techniques and 

availability of easily detectable phenotypes, level of resolution provided by yeast assays is 

unthinkable even for mammalian cell cultures, not mentioning animal models. As described 

above, yeast is specifically pliable for studying protein-based inheritance controlled by 

endogenous yeast prions that could be applied to characterizing mammalian proteins in 

specifically engineered constructs. Data reviewed above clearly demonstrate that yeast 

models have already made a huge contribution to understanding the molecular and cellular 

processes associated with major aggregation-related disorders. A number of important 

results obtained in yeast have been confirmed by further studies in animal models and/or 

human cells, and yeast assays have been successfully employed for identification of the anti-

aggregation agents, some of which show a therapeutic promise.

The major issue usually raised in connection with applying yeast models to studying 

mechanisms of mammalian and human diseases is to which extent the behavior of 
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heterologous proteins in yeast cells recapitulates behavior of these proteins in their natural 

environments. This is a valid concern, however, it could be (and is being) addressed both 

experimentally, by rechecking the promising leads coming from yeast studies in animal 

models and human cells, and logically, based on already acquired knowledge about 

particular proteins and diseases. In application to amyloid and prion diseases, the pathway to 

disease can be divided into the following steps.

1. Initial nucleation of amyloid formation. In many cases, it can be reproduced by 

an amyloidogenic protein even in vitro, and therefore is primarily controlled by a 

protein itself. Thus, yeast cells provide an adequate model for studying the 

mechanisms underlying this crucial step, as well as for identifying conditions 

and agents, that influence initial amyloid nucleation and may uncover new leads 

for prophylactic recommendations or therapeutic interventions. Notably, 

availability of simple phenotypic assays and typically eukaryotic cellular 

environment make yeast models more useful for this kind of research even in 

comparison to in vitro biochemical studies. Up to date, this potential of yeast 

models for studying the initial amyloid nucleation has not yet been realized in its 

full capacity, although recent developments (for example, see Section 9 above) 

indicate that we may hope for significant breakthrough in these studies in near 

future.

2. Amyloid propagation and spread. Studying of endogenous yeast prions made 

seminal contributions to understanding these phenomena by uncovering the role 

of chaperone machinery in prion propagation, while extension of this work to 

heterologous mammalian proteins has already been fruitful and will likely 

continue to be so in future. However, some differences between the yeast and 

mammalian/human protein homeostasis machineries have already been noticed, 

and alteration of protein localization in yeast systems (e.g., intracellular versus 

extracellular) may cause additional discrepancies. Here, validation of yeast data 

in authentic environments is certainly critical, although yeast simplicity still 

provides huge advantages for initial screens.

3. Mechanisms of amyloid toxicity. These mechanisms obviously vary with a 

particular disease and a particular protein, and applicability of yeast systems to 

understanding this step depends on the extent to which the mammal-specific 

parameters of pathology could be recapitulated in yeast cells. Some 

amyloidogenic proteins such as huntingtin-based constructs are toxic to yeast 

cells, and an argument can be made that at least some features of this toxic effect 

may recapitulate cytotoxicity observed in human disease. On the other hand, 

some aggregated mammalian proteins such as PrP appear not to be toxic to yeast 

cells, while other proteins such Aβ may cause toxicity by mechanisms that are 

different from those operating in humans. Thus, applicability of yeast model for 

studying specific processes leading to pathological manifestations could be 

limited, depending on a disease.

Overall, closer to the triggering step of the amyloid disease we are, more valuable are the 

advantages of a yeast-based assay, and more relevant are its outcomes for understanding the 
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processes occurring in mammalian and human organisms. This should be noted, however, 

that understanding the early steps of protein misfolding and spread represents the major 

challenge in counteracting protein assembly disorders, and targeting of this step would 

provide the most radical solution for the development of anti-amyloid therapies.

In addition to providing a model for studying amyloid diseases, that is primarily emphasized 

in the given review, yeast assays could also be applied to identifying new mammalian and 

human amyloids or other aggregated proteins that could be involved in regulatory processes. 

This direction of research is only at the beginning steps, and future studies promise 

interesting new developments in this area.
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Abbreviations

25Q huntingtin polyQ tract containing 25 glutamine residues

25QP huntingtin polyQ tract containing 25 glutamine residues 

and followed by the P-rich region

103Q huntingtin polyQ tract containing 103 glutamine residues

103QP huntingtin polyQ tract containing 103 glutamine residues 

and followed by the P-rich region

αSyn α-synuclein

aa amino acid residue

AAA+ the “ATPases associated with diverse cellular activities” 

protein superfamily

AD Alzheimer’s disease

ALS amyotrophic lateral sclerosis

APP amyloid precursor protein

ATTR transthyretin amyloidosis

Apβ amyloid beta

BSE bovine spongiform encephalopathy

CFP cyan fluorescent protein

eRF1 eukaryotic release factor 1 (termed Sup45 in yeast)

eRF3 eukaryotic release factor 3 (termed Sup35 in yeast)

Chernoff et al. Page 36

Adv Genet. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fALS familial amyotrophic lateral sclerosis

FRET fluorescence resonance energy transfer

FTD frontotemporal dementia

FTDP-17 frontotemporal dementia with parkinsonism associated 

with chromosome 17

GFP green fluorescent protein

GPI glycophosphatidylinositol

HD Huntington’s disease

hnRNP heterologous nuclear ribonucleoprotein

Hsp heat shock protein

Htt huntingtin protein

Htt-GFP exon 1 of Htt, fused to GFP

IAPP islet amyloid polypeptide, also termed amylin

IMS intermembrane space (mitochondrial)

IPOD insoluble protein deposit

kD kilodalton

KMO kynurenine 3-monooxygenase

LCD low complexity domain

MAPT microtubule-associated protein tau

MRF the region including middle (M) and release factor (RF, or 

C) domains of Sup35 protein

MSP multisystem proteinopathy

NAB N-aryl benzimidazole

NFT neurofibrillary tangle

NQ stretch asparagine/glutamine-rich stretch in the yeast Sup35 

protein

NR region of oligopeptide repeats in the yeast Sup35 protein

NLS nuclear localization signal

PD Parkinson’s disease

PHF paired helical filament
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PolyQ polyglutamine

PolyQP construct including the polyglutamine tract of huntingtin 

protein, followed by the P-rich region

PrD prion domain

PrLD prion domain like domain

PrP mammalian prion protein

PrPSc “scrapie” or prion isoform of mammalian prion protein PrP

PrPC cellular or non-prion isoform of mammalian prion protein 

PrP

RF release factor C-proximal region of the yeast protein Sup35

RFP red fluorescent protein

RRM RNA recognition motif

SDS sodium dodecyl sulfate

SDD-AGE semi-denaturing detergent agarose gel electrophoresis

SG stress granule

SPB spindle body

TAR trans-activation response element

ThT thioflavin-T

TSE transmissible spongiform encephalopathy

TTR transthyretin protein

YFP yellow fluorescent protein
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Fig. 1. 
Templated nucleated polymerization of amyloids and prions. The example of parallel in-

register cross-β amyloid structure (β-arch) is shown. Boxes with arrowheads correspond to 

β-strands. The folded intermolecular β-sheet exists only within a polymer. A newly 

immobilized monomer acquires exact same conformation as a pre-existing unit of the 

amyloid fibril due to formation of hydrogen bonds between identical amino acid (aa) 

residues.

Chernoff et al. Page 62

Adv Genet. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The Sup35/[PSI+] system in yeast. (A) Structural and functional organization of the yeast 

Sup35 protein. NQ—asparagine- and glutamine-rich stretch, NR—region of oligopeptide 

repeats. Repeats are indicated by green boxes. Sequences of oligopeptide repeats are shown 

by green characters, the piece of the sequence located between the first and second repeats—

by red characters. Numbers correspond to aa positions. (B) The phenotypic detection assay 

for the [PSI+] prion. On the left—soluble Sup35 (eRF3), together with Sup45 (eRF1), is 

functioning as a part of translation termination complex in the [psi−] strain bearing the 

premature stop codon in the ADE1 gene (UGA nonsense-allele ade1-14). Termination on 

this premature stop codon results in the formation of truncated Ade1 protein, leading to the 

inability to grow on the medium lacking adenine (−Ade) and red color (due to accumulation 

of the red pigment, which is a polymerized intermediate of the adenine biosynthetic 

pathway) on the complete organic (YPD) medium. On the right—aggregation of Sup35 in 

the prion-containing ([PSI+]) cells, accompanied by sequestration of Sup45, decreases the 

ability of the termination complex to access translating ribosomes, and results in the 

impairment of termination, leading to the readthrough (nonsense-suppression) of premature 
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UGA codon and synthesis of full-length Ade1 protein, that confers growth on −Ade medium 

and prevents accumulation of the red pigment on YPD medium. Designations of the soluble 

and aggregated (prion) forms of Sup35, as well as designations of Sup45, ribosome and 

newly synthesized Ade1 polypeptide are indicated.
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Fig. 3. 
[PSI+] formation and propagation in yeast, and roles of other proteins. (A) Induction of [PSI
+] formation by overproduction of constructs bearing Sup35 PrD (Sup35N or NM), in the 

presence of another yeast prion (such as Rnq1 prion, [PIN+]) acting as a heterologous 

nucleation center. (B) Chaperone role in [PSI+] propagation: fragmentation of amyloid 

fibrils, generating new oligomeric “seeds” for new rounds of polymerization is achieved by 

the chaperone machinery composed of the Hsp104, Hsp70-Ssa and Hsp40 proteins. 

Designations of the prion and non-prion isoforms are the same as in Fig. 2. See more 

detailed comments in the text.
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Fig. 4. 
Huntingtin protein (Htt) and its derivatives used to model Huntington’s disease (HD) in 

yeast. (A) Human full-length wild-type (WT) and Huntington disease-associated (HD) 

variants of the Htt protein. Aa numbering is shown for the variant with 23 glutamines (Qs) in 

the polyglutamine (PolyQ) tract. N17—amino terminal region of 17 aa; P-rich—proline-rich 

region. (B) Yeast constructs for studying polyQ aggregation and toxicity. For the polyQ-

expanded version, only a construct with the longest polyQ stretch (designated as 103Q, see 

explanation in the text) is shown as an example. Yeast constructs with shorter polyQ 

expansions are also used as described in the text. GFP—green fluorescent protein (the most 

frequently used fluorophore, although other fluorophores are also occasionally employed). 

This should be noted that majority of the yeast Htt-derived polyQ constructs also contain the 

FLAG epitope attached at the N-terminus (not shown in figure).
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Fig. 5. 
Role of endogenous yeast prions in polyQ aggregation and cytotoxicity. (A) Rnq1 

aggregates nucleate formation of multiple peripheral 103Q-GFP aggregates in the [PIN+] 

strain, containing Rnq1 protein in a prion form. Sequestration of the endocytosis-associated 

(EA) proteins by 103Q-GFP aggregates leads to the defect of endocytosis, resulting in 

cytotoxicity. Other proteins, sequestered by polyglutamine aggregates and possibly 

contributing to cytotoxicity are discussed in the text. (B) 103QP-GFP protein, containing the 

P-rich region (see Fig. 4), is assembled into a cytoprotective aggregate deposit (aggresome), 

colocalized with a spindle body. This prevents sequestration of EA proteins and makes 

constructs non-toxic to [psi−] cells, containing Sup35 protein in a non-prion form. However, 

in the [PSI+] cells, which contain the prion form of Sup35 protein, 103QP-GFP polymers 

sequester aggregated Sup35 (and through it, another translation termination factor, Sup45), 

leading to the defect of translation, that results in cytotoxicity. Designations unique for this 

figure are shown in the bottom left corner;other designations are the same as on Fig. 2.
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Fig. 6. 
Aβ and tau proteins. (A) Generation of Aβ by proteolytic processing of the amyloid 

precursor protein (APP). APP processing is catalyzed by the membrane-associated secretase 

complex. Cleavage by β-secretase and subsequently, by γ-secretase produces Aβ peptides, 

while cleavage by α-secretase prevents Aβ formation. Depending of the position of β-

secretase cleavage site, Aβ peptides of various lengths are produced. Two major sites, 

leading to the formation of 40 aa (Aβ40) and 42 aa (Aβ42) peptides are indicated. An 

example of Aβ42 production as well as its subsequent polymerization are shown. (B) 

Structural and functional organization of the longest isoform of human tau protein of 441 aa 

in length (tau441 or tau 2N4R) presented in the neurons of central nervous system is shown. 

Alternative splicing may eliminate some or all of the regions shown in blue rectangles, 

resulting in the generation of total of six tau isoforms, denoted by either their total number 

of amino acids or the number of N-terminal exons (N) and microtubule-associated repeats 

(R). Exons absent in some of the shorter isoforms but present in the longest isoform (N1 and 

N2) are termed “Inserts.” The N-terminal part tau is referred to as the “Projection domain” 

since it projects away from the microtubule surface and can interact with membrane-

associated structures or motor proteins. Microtubule-assembly domain containing repeat 

sequences (R1-R4 in the longest isoform), and adjacent proline-rich (P-rich) region are also 

indicated. These regions of tau regulate the rate of microtubule polymerization. Repeat 

sequences are also involved in the formation of tau amyloid fibrils.
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Fig. 7. 
Examples of yeast model systems for the detection of Aβ aggregation. (A) Fusion of Aβ to a 

fluorophore: C-terminal fusions of Aβ40 and Aβ42 to green (GFP), yellow (YFP) or cyan 

(CFP) fluorescent proteins are shown. (B) Chimeric construct for the phenotypic detection 

of Aβ aggregation, using the yeast Sup35 protein (translation termination factor) as a 

reporter in a termination readthrough (nonsense-suppression) assay described on Fig. 2. In 

this construct, Aβ42 is substituted for the PrD region of Sup35 (Sup35N). Resulting 

chimeric protein, retaining the middle (Sup35M) and the C-proximal release factor (RF, 

Sup35) domains of Sup35 is termed Aβ42-MRF. Designations of the Sup35 domains are the 

same as on Fig. 2; Aβ designations are the same as on Fig. 6. Numbers indicate amino acid 

positions in Aβ (black font, located under the drawing in a chimeric construct) and Sup35 

(red font, located above the drawing in a chimeric construct).
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Fig. 8. 
Mouse prion protein (PrP) and its derivatives used in yeast studies. (A) Structural and 

functional organization of mouse PrP(moPrP). Signal peptide (first 22 aa), which is cleaved 

during processing, as well as the region including G-rich octapeptide repeats (indicated by 

navy blue boxes), and a GPI anchoring signal (GPI) are indicated. The processed form of 

moPrP (23–230) includes the N-proximal unstructured domain and C-terminal globular 

domain as shown. The globular domain contains three α-helices (α1–3), and two β-strands 

(β1–2) as indicated. Glycosylation sites at positions 180 and 196 (not recognized in yeast), 

and a disulfide bridge are not shown. Regions that are essential and sufficient for prion 

propagation in mammals are indicated. This should be noted that the last (incomplete) 

oligopeptide repeat overlaps with the region 90–119 that is crucial for prion propagation. (B) 

C-terminal fusions of mature full-length (23—231) and N-terminal truncated (90–231) 

moPrP with GFP. (C) Construction of chimeric moPrP-Sup35 proteins. Designations of the 
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Sup35 regions are the same as on Fig. 2 (with the Sup35N domain shown as a rectangle, as it 

can aggregate when included in a chimeric construct). Numbers indicate amino acid 

positions in moPrP (numbers located under the drawing in a chimeric construct, shown in 

black font) and Sup35 (numbers located above the drawing in a chimeric construct, shown in 

red font). Chimeras beginning from the PrP-derived sequence contained four N-terminal 

amino acids of Sup35N remaining in the chimeric construct (not shown in figure).
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Fig. 9. 
Proteins associated with amyotrophic lateral sclerosis (ALS). (A) Structural and functional 

organization of TDP-43. NLS—nuclear localization signal;RRM1 and RRM2—RNA 

recognition motifs 1 and 2, respectively; NES—nuclear export signal; LCD—low 

complexity domain; QN—QN-rich domain. (B) Structural and functional organization of 

FUS. Q/G/S/Y-rich—the region rich in glutamine, glycine, serine, and tyrosine; G-rich—the 

region rich in glycine, RRM—RNA recognition motif, RGG—the motifs containing 

arginine/glycine/glycine repeats; ZnF—zinc finger domain; NNLS—non-conventional 

nuclear localization signal. (C) hnRNPA2B1 and yeast chimeric constructs based on this 

protein: PrLD –prion domain like domain; Core PrLD—core region of PrLD; RRM1 and 

RRM2—RNA recognition motifs 1 and 2, respectively. Insertion distinguishing hnRNPB1 

from hnRNPA2 is shown. Sup35 designations are the same as on Fig. 2 (with the Sup35N 

domain drawn as a rectangle, as it aggregates when included in a chimeric construct). 

Numbers indicate amino acid positions in ALS-associated proteins (black font, located 

under the drawing in a chimeric construct) and Sup35 (red font, located above the drawing 

in a chimeric construct).
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Fig. 10. 
Prion nucleation by mammalian amyloidogenic proteins (MAPs) in yeast. (A) Chimeric 

prion domains constructed from the Sup35 PrD-containing region fused to Aβ, PrP, αSyn 

and IAPP, respectively (see text for the description of the regions of amyloidogenic proteins, 

used in these constructs). (B) Model of de novo prion nucleation by chimeric constructs in 

the [pin−] yeast cells lacking any known pre-existing prions. As shown in Fig. 3, 

overexpression of Sup35N or Sup35NM alone does not lead to efficient nucleation of the 

[PSI+] prion in the [pin−] cells. Designations of the domains, prion and non-prion forms of 

Sup35 are the same as on Fig. 2. The region of oligonucleotide repeats (NR) is present, but 

not shown for the sake of simplicity. See text for detailed description.
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Table 1

Examples of mammalian and human disease-associated misfolded proteins that have been studied in yeast.

Misfolded
protein(s) Localization Disease Type

Huntingtin (Htt) Cytoplasmic or nuclear Huntington’s disease (HD) Heritable

α-Synuclein (αSyn) Cytoplasmic Parkinson’s disease (PD) and other 
synucleinopathies

Mostly sporadic, 
sometimes heritable

Amyloid β (Aβ) Mostly extracellular Alzheimer’s disease (AD) Primarily sporadic, rarely 
heritable

Tau Cytoplasmic AD, frontotemporal dementia (FTD), Pick’s 
disease and other tauopathies

Sporadic or heritable

Prion protein (PrP) Mostly extracellular Transmissible spongiform encephalopathies 
(TSEs)

Sporadic, heritable and/or 
infectious

TDP-43 Cytoplasmic or nuclear Amyotrophic lateral sclerosis (ALS), FTD Sporadic or heritable

FUS Cytoplasmic or nuclear ALS Sporadic or heritable

C9orf72 Cytoplasmic ALS, FTD Heritable

Cu,Zn-superoxide dismutase 
(Sod1)

Cytoplasmic, or mitochondrial 
IMSa

ALS Sporadic or heritable

hnRNPA2B1, hnRNPA1 Nuclear or cytoplasmic Multisystem proteinopathy (MPS)—type of 
ALS

Heritable

CREST Nuclear ALS Heritable

VAPB, VCP, OPTN, SETX, 
profilin 1

Cytoplasmic or nuclear ALS Heritable

Ataxin 2 (ATXN2) Nuclear or cytoplasmic Spinocereberral ataxia 2 (SCA), ALS, FTD Heritable

Transthyretin (TTR) Extracellular or cytoplasmic Transthyretin amyloidosis (ATTR), 
polyneuropathy

Mostly heritable

Amylin (IAPP) Mostly extracellular Type II diabetes Sporadic

aIntramembrane space.
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Table 2

Examples of yeast and fungal amyloid-based prions.

Species and
protein Cellular function

QN-rich
PrD(s)

Prion
designation

Saccharomyces cerevisiae

Sup35 (eRF3) Translation termination (release) factor Yes
[PSI+]

a

Ure2 Regulatory protein in nitrogen metabolism Yes
[URE3]

b

Rnq1 Unknown Yes
[RNQ+] or [PIN+]

c

Swi1 Chromatin remodeling factor Yes
[SWI+]

d

Cyc8 Transcriptional corepressor Yes
[OCT+]

e

Mot3 Transcriptional repressor Yes
[MOT3+]

f

Nup100 FG-nucleoporin Yes
[NUP100+]

g

Lsb2 Stress-inducible cytoskeletal protein Yes
[LSB+]

h

Mod5 tRNA isopentenyltransferase No
[MOD+]

i

Podospora anserina

Het-s Cytoplasmic incompatibility No
[HetS]

j

a
Cox (1965) and Wickner (1994).

b
Lacroute (1971) and Wickner (1994).

c
The term [PIN+], from “[PSI+] inducibility” has initially been introduced to designate the specific prion factor that promoted de novo formation 

of [PSI+] (Derkatch, Bradley, Zhou, Chernoff, & Liebman, 1997) and has later been identified as a prion form of Rnq1 protein (Derkatch, Bradley, 

Hong, & Liebman, 2001). Rnq1 prion was termed [RNQ+] in an independent paper (Sondheimer, Lopez, Craig, & Lindquist, 2001). Other prions 

may also exhibit Pin+ phenotype.

d
Du, Park, Yu, Fan, and Li (2008).

e
Patel, Gavin-Smyth, and Liebman (2009).

f
Alberti, Halfmann, King, Kapila, and Lindquist (2009) and Holmes, Lancaster, Lindquist, and Halfmann (2013).

g
Halfmann, Wright, Alberti, Lindquist, and Rexach (2012).

h
Chernova, Kiktev, et al. (2017).

i
Suzuki, Shimazu, and Tanaka (2012).

j
Coustou, Deleu, Saupe, and Begueret (1997) and Maddelein, Dos Reis, Duvezin-Caubet, Coulary-Salin, and Saupe (2002).
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Table 3

Comparison of yeast models for studying Aβ aggregation.

Yeast
construct Localization

Amyloid
aggregation Toxicity

Soluble to
aggregate
switch

Express detection
of aggregation
in yeast

Aμ-GFP (−YFP,−CFP) Cytoplasmic Instant No No Cytological (by fluorescence)

GFP-Aμ Cytoplasmic Instant Yes No Cytological (by lack of fluorescence)

MFα-Aμ42-GFP Secretory pathway or 
periplasmic

?a Yes ?
?
a

ssAμ42-GFP Secretory pathway or 
periplasmic

Instant? Yes ?
?
b

Aμ-MRF (Aμ-Sup35MC) Cytoplasmic Instant No No Phenotypic (by readthrough)

Sup35N (NM)-Aμ
c Cytoplasmic Inducible No Yes Phenotypic (by readthrough)

a
Authors detect accumulation of fluorescent protein, but it is not clear if it is in an amyloid form, or is simply accumulated within vesicular 

compartments (D’Angelo et al., 2013).

b
Authors confirm formation of detergent-resistant aggregates by biochemical means, however, the fluorescence microscopy assay detects protein 

accumulation in the secretory pathway, rather than amyloid-type aggregation per se (Matlack et al., 2014).

c
Data are from Chandramowlishwaran et al. (2018) as described in Section 9.
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Table 4

De novo [PSI+] nucleation by wild-type and altered derivatives of Aβ and PrP in yeast.
a

Protein Derivative
Effect in vitro or in
mammals/humans

Effect in yeast when fused to
Sup35 PrD

PrP 90–230 Susceptible to TSE Prion nucleation

23–230 Susceptible to TSE, prone to instability Increased prion nucleation

120–230 Not susceptible to TSE No prion nucleation

90–144
Heritable TSE-like disease

b Increased prion nucleation

90–159
Heritable TSE-like disease

b Increased prion nucleation

90–171
Not tested

c Increased prion nucleation

90–230 P101L Heritable TSE Increased prion nucleation

90–230 Q167R Inhibition of PrPSc propagation Decreased prion nucleation

Aβ 1–42 High aggregation propensity Prion nucleation

1–40 Low aggregation propensity Low prion nucleation

1–42 19S, F20S,I31P
No amyloid formation

d No prion nucleation

1–42 D23N Heritable AD Increased prion nucleation

1–42 K28E Aβ structure impairment? Decreased prion nucleation

a
Yeast data are from Chandramowlishwaran et al. (2018). See text for mammalian and in vitro references.

b
Effects of truncations in mammalian/human systems were studied within the context of a protein containing the full-length N-proximal region.

c
While this particular truncation has not been studied in mammals, it has been reported (after publication of yeast data) that a truncation at the aa 

position 169 of human PrP is associated with a TSE-like disease (Capellari et al., 2018).

d
Individual substitutions were also tested in yeast, with a strongest effect detected for I31P.
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