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Next steps in the identification of gene targets for type 1 diabetes
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Abstract
The purpose of this review is to provide a view of the future of genomics and other omics approaches in defining the genetic
contribution to all stages of risk of type 1 diabetes and the functional impact and clinical implementations of the associated
variants. From the recognition nearly 50 years ago that genetics (in the form of HLA) distinguishes risk of type 1 diabetes from
type 2 diabetes, advances in technology and sample acquisition through collaboration have identified over 60 loci harbouring
SNPs associated with type 1 diabetes risk. Coupled with HLA region genes, these variants account for the majority of the genetic
risk (~50% of the total risk); however, relatively few variants are located in coding regions of genes exerting a predicted protein
change. The vast majority of genetic risk in type 1 diabetes appears to be attributed to regions of the genome involved in gene
regulation, but the target effectors of those genetic variants are not readily identifiable. Although past genetic studies clearly
implicated immune-relevant cell types involved in risk, the target organ (the beta cell) was left untouched. Through emergent
technologies, using combinations of genetics, gene expression, epigenetics, chromosome conformation and gene editing, novel
landscapes of how SNPs regulate genes have emerged. Furthermore, both the immune system and the beta cell and their
biological pathways have been implicated in a context-specific manner. The use of variants from immune and beta cell studies
distinguish type 1 diabetes from type 2 diabetes and, when they are combined in a genetic risk score, open new avenues for
prediction and treatment.
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Abbreviations
eQTL Expression quantitative trait locus
GRS Genetic risk score

GWAS Genome-wide association scan
IRE Inducible regulatory element
SLE Systemic lupus erythematosus
T1DGC Type 1 Diabetes Genetics Consortium
TFH Follicular helper T cells
WTCCC Wellcome Trust Case Control Consortium

Introduction

Diabetes is a clinically heterogeneous, chronic condition
characterised by a failure to maintain normal glucose levels
through conversion of food into energy via insulin-dependent
mechanisms. The most common forms of diabetes have been
defined by clinical differences in insulin dependence to main-
tain glucose homeostasis, the age and abruptness of onset of
symptoms, and tendency for ketosis. This review will provide
background on the genetic basis of type 1 diabetes, the func-
tion of genetic variation, and future work moving to discovery
of target genes, pathways and mechanisms, novel interven-
tions and the identification of therapeutic targets.
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Genetic basis of type 1 diabetes

Following the discovery of type 1 diabetes associated with
HLA [1], the insulin (INS) variable number tandem repeat
(VNTR) [2], and numerous candidate gene polymorphisms,
the development of high-throughput genotyping array tech-
nology and analytical methods expanded our knowledge of
genetic variation implicated in type 1 diabetes risk
(summarised in the Text box ‘Genetics of type 1 diabetes:
background’). Despite decades of interrogating HLA, much
remains to be understood about specific allelic and interaction

effects within that region [3] across populations. The
Wellcome Trust Case Control Consortium (WTCCC)
established the genome-wide association scan (GWAS) as a
primary tool in discovery of genetic variants associated with
common disease [4]; however, the WTCCC identified rela-
tively few novel risk loci (ERBB3, SH2B3), including one
simultaneous discovery (CLEC16A, formerly known as
KIAA0350) [5]. Later, the Type 1 Diabetes Genetics
Consortium (T1DGC) conducted the largest GWAS meta-
analysis of type 1 diabetes in ~7500 cases and ~9000 controls,
with replication in ~4000 cases, ~4500 controls and 4300 trio

• Genetic risk score (GRS) and the polygenic risk score (PRS): Approaches to integrate more than a single 

associated SNP for prediction of risk or phenotype. The GRS is often thought to include only those SNPs that are 

most associated with the trait in a locus, while the polygenic risk score includes all SNPs interrogated in an analysis.

• The development of the GRS can be calculated as a summation across robustly associated SNPs of genotype

score (coding 1 for the risk homozygote, 0 for the heterozygote, and -1 for the non-risk homozygote) or as the 

summation over SNP genotypes, weighted by the size of the effect on phenotype at each SNP. The PRS extends 

the concept to the entire set of SNPs in a genome, even those with very small effects. 

• Both GRS and PRS capture extensive genomic data in a single value, with subsequent interpretation and utility 

dependent upon the adjustment of the scores to the appropriate population, selection of SNPs (if a significance 

threshold is used), thresholds for defining risk and actionable scores, and incorporation of other genetic and non-

genetic effects in the score.

• Quantitative trait locus (QTL): The result of correlating levels of a phenotype (e.g. height) with genotype across 

the human genome, mapped using SNPs, often in a GWAS design. 

• The phenotypic trait can also be represented by other measurements, including levels of gene expression (eQTL), 

DNA methylation (methylQTL), chromatin accessibility (caQTL), or amount of specific metabolites (metabQTL) or 

proteins in plasma (pQTL). 

• Genetic variation can be a driver of changes in gene expression and regulation based in regions of open chromatin. 

In a disease setting, putative causal SNPs would be expected to impact biological pathways that are reflected by 

QTL effects (e.g. eQTL, caQTL).

• Chromatin conformation: A fundamental component of genome regulation based upon the 3D folding of the chro-

matinised genome in the nucleus. Detection of long-range chromatin interactions using chromosome conformation 

capture technologies allows examination of physical contacts between distant regulatory elements and gene pro-

moters that are critical for gene expression.

• Topologically associating domains (TADs): Regions of DNA (~880 kb in size) in which DNA sequences can 

physically interact with each other more frequently than with DNA sequences outside the TAD. The function of 

TADs is not completely known, but it is thought that TADs are largely tissue independent and regulate gene ex-

pression by limiting enhancer–promoter interactions to the TAD. Thus, disruption of the TAD boundaries may alter 

gene expression, phenotype and risk of disease.

• Genome editing: A term representing a variety of technologies to add, remove or alter DNA at specific locations 

in the genome. 

• Several approaches of genome editing have been developed, including use of zinc finger nucleases, transcription 

activator-like effector nucleases (TALENs) and CRISPR/Cas9. Once DNA is cut, the cell’s own DNA repair machin-

ery can be used to alter, add or delete pieces. 

• Genome editing is an active area of research that can target specific regions of the genome containing putative 

causal genes or SNPs. Through alteration of these DNA segments, effects on transcription, regulation, and other 

forms of gene function can be examined to determine the impact of the edited region as it may relate to disease or 

phenotype.

Definitions and background (cont’d)
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families [6]. The T1DGC identified 41 distinct loci, including
26 that were novel.

Fine mapping type 1 diabetes-associated loci
identified from GWAS

As with other GWAS, the T1DGC GWAS meta-analysis [6]
yielded loci that were large (~250 kb for each locus), with
many genes (ranging from 0 to 28) commonly harboured
within each corresponding region [7]. To get as close to the
underlying causal variants underlying these associations, fine
mapping employing genotyping arrays with dense coverage
within each locus (ImmunoChip) was performed on >30,000
individuals (cases, controls and families) [8]. Credible sets of
SNPs were established for each of the 44 loci, revealing
enrichment of SNPs in DNA regulatory regions. These results
supported a role for enhancer chromatin states in immune-
relevant cell types (CD4+ and CD8+ T cells, CD19+ B cells
and CD34+ stem cells) in type 1 diabetes risk. Similar efforts
going forward, in larger and more diverse populations, should
shed light on additional risk loci and variants contributing to
the pathogenesis of type 1 diabetes.

Although GWAS and fine mapping efforts have provided
much insight into genetic aetiology, the picture remains
incomplete. Those type 1 diabetes risk loci, uncovered by
such initial classical approaches, remain dominant factors in
the genetic picture of disease; however, they do not explain
the entire genetic architecture of type 1 diabetes. In order for
the power of genetics to fully contribute to risk prediction and
discovery of novel therapeutic avenues, additional approaches
need to be employed including expansion to multi-ethnic
populations, where novel variants have already begun to
emerge [9, 10], and into adults, who account for nearly half
of those with type 1 diabetes.

Identifying causal SNPs for type 1 diabetes

A step (of many possible) in determining whether a SNP is a
causal variant is to estimate its contribution to gene expression
(expression quantitative trait locus, eQTL) [11]. Typical eQTL
analysis is equivalent to GWAS but using gene expression as
the phenotype. The variant most associated with disease may
be near a gene of interest; however, that variant may be regu-
lating the expression of a different, more distal effector gene.
This is the situation for a variant in the FTO gene that is most
strongly associated with obesity which actually regulates IRX3
[12, 13], and a variant in TCF7L2 most strongly associated
with type 2 diabetes that regulates ACSL5 [14].

In type 1 diabetes, the 16p13 locus contains strongly associ-
ated SNPs spanning introns 10 and 19 of CLEC16A [4–6]. A
single eQTLwas identified in the neighbouringDEXI gene, such

that the CLEC16A SNPs associated with reduced risk of type 1
diabetes correlated with increased DEXI expression in mono-
cytes [15]. This result was replicated and identified the most
strongly associated variant in CLEC16A with expression in B
cells, implicating a SNP in CLEC16A alters risk of type 1 diabe-
tes through expression of DEXI [16]. Differential transcriptome
analysis of tolerogenic and mature inflammatory dendritic cells,
when overlaid with SNPs associated with type 1 diabetes, iden-
tified 11 genes with differential expression [17]; three (CCR5,
CTSH andRAC2) with higher expression in tolerogenic dendritic
cells compared with mature inflammatory dendritic cells, and
eight (IKZF4, IKZF1, SH2B3, ORMDL3, TYK2, IL2RA,
PTPN2 and ICOSLG) with lower expression. These results
implicated a role for these disease-associated variants as activa-
tors of the immune response in type 1 diabetes.

Although eQTL analysis from peripheral blood provides
some insight into possible causal effects of variants associated
with type 1 diabetes, immune cell type-specific evaluation
(e.g. T-helper 17 cells [Th17], regulatory T cells [Tregs],
monocytes) should enhance our understanding of the impact
of these variants on target genes. Microarray data from 92
children (25 seroconverters and 67 nonseroconverters) provid-
ed longitudinal change in gene expression profiles with devel-
opment of islet autoimmunity [18]. Gene expression signa-
tures in the first year of life predicted seroconversion with
genes that contribute to T cell, B cell and dendritic cell-
related immune responses, primarily through a ubiquitin-
proteasome pathway. A protein–protein interaction network
was linked to type 1 diabetes-associated genes with differen-
tially expressed seroconversion genes, revealing direct inter-
actions with ERBB3 and GLIS3, two type 1 diabetes suscep-
tibility genes.

Gene regulation from a distance

GWAS have delivered many validated loci associated with
novel aetiological pathways. But as mentioned above, these
SNP associations do not necessarily implicate the closest gene
as causal, even if reasonable hypotheses exist between the
SNP location and possible gene function (see the FTO–IRX3
experience, above). Gene expression can be controlled locally
or via long-range interactions over large genomic distances.
Indeed, many regulatory elements do not control the nearest
genes, but, rather, ones residing tens or hundreds of kilobases
away. Barriers to detecting the ‘true’ targets of disease-
associated SNPs include the limited, but growing public
domain genomic data relevant to individual immune cell
types, tissue-specific eQTLs, chromatin conformation
capture, and emergent variant-to-gene techniques required to
identify causal effector genes. Indeed, the identification of the
true gene targets is a crucial precursor to a rational therapeutic
and diagnostic development leveraging genetic information.
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The majority of type 1 diabetes-associated SNPs map to
regions distant from genes [8]; thus, genomic maps are needed
that determine how these SNPs might influence chromatin
accessibility, transcription factor binding and the physical
structure of the genome in order to identify the target genes
important in disease. The vast majority (>95%) of the human
genome is inaccessible to the machinery that regulates gene
expression [19]; thus, essentially all transcription factor and
RNA polymerase binding is concentrated at open chromatin
regions. Therefore, maps of open, transposase-accessible
chromatin (e.g. generated using the assay for transposase-
accessible chromatin using sequencing [ATAC-Seq] [20] at
the multi- or single-cell level) can identify regions of potential
regulatory significance across multiple tissues. One example
used the open chromatin landscapes of follicular helper T cells
(TFH) from human tonsil to identify functional variants impli-
cated by GWAS of systemic lupus erythematosus (SLE) [21].
The proxies of SLE ‘sentinel’ SNPs (those SNPs in strong
linkage disequilibrium with the most associated SNP
from the GWAS) are highly enriched in the open chro-
matin of TFH cells, a cell type critical for the develop-
ment of autoantibodies characteristic of SLE, compared
with naive CD4+ T cells. These accessible SLE SNPs
were more likely to be located in the promoters of
genes highly expressed in TFH cells and involved in
other systemic autoimmune disorders, including type 1
diabetes. Genetic variation in a promoter can influence
expression of its downstream gene, given proximity of
the disease-associated SNPs and recognised cis effects.

A similar prediction, however, is not obvious frommaps of
open chromatin for more distal SNPs. When disease-
associated SNPs are cis eQTLs, they may also physically
interact with the promoter (or promoters) that they regulate
(for an example, see [22]). These interactions can be detected
using chromosome conformation capture, examining not only
promoter interactions but also interaction at a distance
between promoters, enhancers, silencers and other elements.
Chromatin conformation capture-based techniques have the
ability to determine whether chromatin ‘looping’ contributes
to human disease at key locations associated with complex
traits. In particular, one can now leverage recent findings that
have revealed topologically associating domains (TADs) [23],

that are largely tissue-independent chromatin compartments
within which most enhancer–promoter contacts occur.
Effectively, TADs may establish the boundaries where inter-
actions can occur for a given genomic location, thereby
providing a defined shortlist of candidate genes within a locus,
among which at least one is highly likely to be a causal effec-
tor gene. Whole genome, promoter-focused Capture C, a
version of chromatin conformation capture, relates SNPs in
the distal regulatory regions to changes in expression of their
target genes [24, 25]. High-resolution spatial epigenomic
approaches for common complex traits have been able to
physically link strongly associated SNPs with their target
genes for traits such as SLE [21] and bone mineral density
[26, 27], as well as type 2 diabetes and type 1 diabetes
(discussed below). These studies demonstrate that 3D regula-
tory architectures are a consistent feature of highly expressed,
lineage-specific genes involved in specialised functions in
disease-relevant cell types (Fig. 1).

Type 1 diabetes distant regulators may differ
from those in type 2 diabetes

While prior genetic analysis directly implicated the immune
system in genetic risk of type 1 diabetes with lack of enrich-
ment in islet regulatory regions [8], other biological pathways
are likely to be involved. The impact of type 1 diabetes asso-
ciated SNPs on islets, through the targeting of the autoimmune
attack on beta cells, may occur prior to clinical onset (e.g. at
the initiation or progression stage); alternatively, the type 1
diabetes-associated variants may act directly at the beta cell
level in response to a perturbation (e.g. inflammation).

In the context of its type 2 diabetes counterpart [28], islet
accessible chromatin peaks aided the identification of active
enhancers and promoters through the use of islet samples and
3D chromatin maps by identifying chromatin loops enriched
at such genomic features. Of the >6000 islet active enhancers
that mapped to a chromatin loop anchor, half were in a loop to
a gene promoter. Many of these enhancers looped to a promot-
er over long distances (mean 165 kb, with 14% over 500 kb,
and >3% over 1 Mb). These distal islet enhancer chromatin
loops were correlated with islet-specific gene expression (as

Gene 1 Gene 2 Gene 3

Disease SNP 

~100 kb

Open chromatin

Physical interactionFig. 1 Possible promoter
interactions in open chromatin
regions, suggesting how SNPs
may regulate distant genes
through physical contact with
non-adjacent promoters, defining
likely effector genes and targets.
This figure is available as a
downloadable slide

2265Diabetologia  (2020) 63:2260–2269

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-020-05248-8/MediaObjects/125_2020_5248_MOESM1_ESM.pptx


assessed by the presence of eQTLs), with the strongest
evidence observed for active promoter and enhancer SNPs
proximal to genes. Genome-wide enrichment of SNPs was
observed in active islet regulatory elements within chromatin
loops. SNPs associated with type 2 diabetes and in active islet
enhancers had, on average, two candidate target effector
genes, including some that were >500 kb from the SNP. In a
different study [29], experimental perturbation (glucose stim-
ulation) in human islets was used to identify over 1300
enhancer hubs that had features of regulatory domains control-
ling genes involved in islet cell function and differentiation.
Factoring in islet hub SNPs in a polygenic risk score improved
identification of individuals with risk of type 2 diabetes, possi-
bly acting through islet gene regulation and insulin secretion
pathways.

The effect of inflammatory cytokine (IFN-γ and IL-1β)
exposure on the beta cell as a model of initiation of type 1
diabetes has been investigated using 3D mapping approaches
to detect novel targets [30]. After cytokine exposure, ~12,500
sites were identified that became accessible and correlated
with H3K27ac activity (acetylation at the 27th lysine residue
of the histone H3 protein, representing evidence of an active
enhancer). Inducible regulatory elements (IREs) were identi-
fied, with two-thirds becoming both chromatin accessible and
showing enhancer activity after cytokine treatment (neo-
IREs), and the other third, which were already accessible,
gaining only enhancer activity after cytokine treatment. The
proinflammatory cytokine exposure was hypothesised to
induce a beta cell response by induction of new distal regula-
tory elements and binding of transcription factors involved in
the inflammatory response. In islet 3D chromatin structure
studies, the promoters of 13 genes exhibited strong induction
of expression by cytokine exposure, with their promoters
gaining chromatin interactions. Distal genomic regions
formed specific DNA looping events with new human islet
cytokine responsive enhancer–promoter interactions. In this
system, variants associated with type 2 diabetes (not type 1
diabetes) overlapped human islet responsive regulatory
elements that were not cytokine responsive; however, human
islet IREs (induced by cytokine exposure) were enriched for
SNPs associated with type 1 diabetes (not type 2 diabetes). In
two known type 1 diabetes loci, risk SNPs (rs78037977 in
1q24.3 and rs193778 in 16q13.13) directly overlapped IREs
in islets. An allele of rs78037977 at 1q24.3 (common in indi-
viduals of European ancestry but rare in those of other ances-
tries) disrupts cytokine exposure-specific enhancer activity
and interacts with TNFSF18, a gene ~300 kb from this SNP
but activated in islets upon cytokine exposure. At 16q13.13,
rs193778 is common in most ancestries (yet monomorphic in
Asian populations) and increases enhancer activity, having
strong chromatin contact with the promoter of DEXI, a gene
~300 kb distal to the sentinel SNP and previously implicated
in type 1 diabetes [15, 16].

Detection and validation of targets of SNPs

Multiple levels of evidence are necessary to determine which
SNPs in a locus are likely to be causal and how these variants
regulate target effector genes and their products. Candidate
SNPs may influence gene expression in appropriate cell types
(e.g. detected by applying RNA-seq in immune cells and beta
cells) and on transcription (e.g. detected using ATAC-seq for
evidence of transposase-accessible chromatin). These and
other types of evidence provide a prioritisation for mapping
interactions between promoters and distal regulatory
elements, with increasing resolution [31]. As discussed, the
target gene may not be the nearest neighbour to the causal
SNP; furthermore, SNP-connected putative effector genes
may have been implicated in other diseases (for example,
see [32]), not only providing additional evidence for causality
but also providing new therapeutic options.

CRISPR/Cas9 genome editing can be used to confirm that
accessible SNPs in one gene reside in novel, cis-regulatory
elements for other genes with known roles in function disease
risk [21]. In type 2 diabetes, the most strongly associated SNP
lies within the TCF7L2 gene [33], with the rs7903146 T allele
in intron 3 widely implicated as the causal variant [34].
Informed by observation of chromatin conformation, in addi-
tion to influencing TCF7L2 expression itself, CRISPR/Cas9-
mediated editing of rs7903146 dramatically reduced ACSL5
gene expression and protein levels [14], thus implicating a
putative additional effector gene at this locus. ACSL5 is three
genes away from TCF7L2 and encodes an enzyme (acyl-CoA
synthetase long chain family, member 5) with known roles in
mammalian fatty acid metabolism. In addition, the knockout
mouse for ACSL5 has increased insulin sensitivity [35]. A
similar approach has been employed for epigenome editing
of enhancer–promoter assignments in a cell model for type 2
diabetes [29]. With the increasing number of targets being
generated, there is a need to validate such variant-to-gene
connections at scale. Emerging techniques, such as massively
parallel reporter assays [36] and wholesale CRISPR-based
perturbation of implicated enhancers, are growing areas that
will meet this need.

From omics to therapeutic targets

Using multiple lines of evidence (genomics, transcriptomics,
DNA methylation, perturbation, gene editing), selection and
prioritisation of potential therapeutic targets from validated
effector gene lists can proceed using a translational ‘bench-
to-bedside’ rationale. Gene products not previously implicat-
ed in type 1 diabetes, but currently targeted with therapeutics
approved by the US Food and drug administration in autoim-
mune disease settings, could make excellent drug repurposing
candidates. Future drug repurposing candidates would include
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targets with modalities in overlapping biological pathways.
Gene products in need of more potent and/or selective
agonists or antagonists could be the targets of future drug
development efforts.

Genetics as predictors of stages of type 1
diabetes

Variants associated with type 1 diabetes in prevalent case−
control or affected family studies (primarily of young-onset,
Northern European ancestry) may not translate to other ances-
tries, adults or to the initiation and progress of islet autoimmu-
nity. The T1DGC characterised affected family members for
genetic contributions to the presence of islet and other organ-
specific autoantibodies [37]. HLA alleles (DRB1*0101 and
DRB1*0404) and the PTPN22 rs2476601 (R620W) locus
were associated with autoimmunity, while variants in IFIH1,
PTPN22, SH2B3, BACH2 and CTLA4 were associated with
occurrence of multiple autoantibodies [38]. However, this
study was conducted in those with existing disease.

Rather than consider risk in terms of single SNPs, genetic
risk scores (GRS) sum the risk alleles for each associated SNP
(0, 1 or 2), weighted by the effect of the SNP on the pheno-
type. The use of the GRS in type 1 diabetes permits an assess-
ment of ‘global’ impact of SNPs as a single value, although
the composition of the GRS can vary by the number of SNPs
included, the population tested and phenotypic definition. In
The Environmental Determinants of Diabetes in the Young
(TEDDY) study, a type 1 diabetes GRS (T1D-GRS) in the
upper quartile increased the risk of developing multiple auto-
antibodies by the age of 6 years from 5.8% to 11.0%
(compared with 4.1% in the lower T1D-GRS quartile) [39].
The risk of developing type 1 diabetes by age 10 years
increased from 3.7% to 7.6% in those with a high T1D-GRS
(compared with 2.7% in those without). Children in the
highest T1D-GRS quartile had an earlier age of onset of islet
autoimmunity, a faster progression from single to multiple
autoantibodies, and were more likely to develop type 1 diabe-
tes [40]. A high T1D-GRS also predicts proliferation
responses to one or more islet antigens [41]. A T1D-GRS
has the potential for use in newborn screening for genetic risk
of type 1 diabetes [42], classification of adult-onset disease
and progression of islet autoimmunity [43]. Furthermore, a
T1D-GRS has the potential power to predict when those with
type 2 diabetes may require insulin administration [44].

From bench to bedside to community

Given the low prevalence of type 1 diabetes in the general
population (~4/1000), even a highly sensitive and specific
test will likely yield low predictive values. While

knowledge of associated risk variants and their function
and target effector genes offers the opportunity to identify
novel therapeutic pathways [45], there is uncertainty as to
how genetics can drive risk prediction. The overall risk of
type 1 diabetes is, in part, due to genetic factors, so a high
T1D-GRS does not mean one is destined to develop type 1
diabetes per se, just as a low T1D-GRS is not necessarily
protective from the disease. Nonetheless, a relatively simple
T1D-GRS can identify >10% risk of developing autoimmu-
nity before the age of 6 years [42], making genetic screen-
ing a real possibility [46]. Currently, genetics is the only
tool detecting those at risk prior to development of islet
autoimmunity, until environmental factors (or other novel
biomarkers) that trigger the autoimmunity are identified. It
is likely that population screening will use a combination
of genetics with emergent risk factor testing to determine
those eligible for intervention (e.g. intervention trials prior
to disease onset, such as with oral insulin therapy) and is
being tested now [47]. With the ever-expanding reliance on
the merger of electronic health records with biobanks, these
research directions could be directly applied to prediction,
intervention and treatment in diverse and previously under-
served populations.

Conclusions

The genetic basis of type 1 diabetes is becoming increasingly
clear, particularly in Northern European paediatric popula-
tions. These gains have yet to impact prediction, prevention
and treatment strategies. The vast majority of genetic variants
associated with type 1 diabetes reside in regulatory regions of
the genome (not in coding regions of genes). Thus, integration
of genomics with gene expression, epigenetics and 3D
mapping of interactions within the genome are needed to
determine the likely target effector genes involved in type 1
diabetes pathogenesis. Identification of new classes of genetic
variants associated with type 1 diabetes may enhance the
application of genetic risk scores in many ways, from predic-
tion of risk to the need for insulin treatment in type 2 diabetes.
Many needs remain, including studies in ethnically diverse
populations and in adults, all of which may provide the
biological insights needed to translate genomic findings into
precision diabetes medicine.
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