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Abstract We present results on the mortality statis-
tics of the COVID-19 epidemic in a number of coun-
tries. Our data analysis suggests classifying countries
in five groups, (1) Western countries, (2) East Block,
(3) developed Southeast Asian countries, (4) North-
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ern Hemisphere developing countries and (5) South-
ern Hemisphere countries. Comparing the number of
deaths per million inhabitants, a pattern emerges in
which the Western countries exhibit the largest mor-
tality rate. Furthermore, comparing the running cumu-
lative death tolls as the same level of outbreak progress
in different countries reveals several subgroups within
theWestern countries and further emphasises the differ-
ence between the five groups. Analysing the relation-
ship between deaths per million and life expectancy in
different countries, taken as a proxy of the preponder-
ance of elderly people in the population, a main reason
behind the relatively more severe COVID-19 epidemic
in theWestern countries is found to be their larger pop-
ulation of elderly people, with exceptions such as Nor-
way and Japan, for which other factors seem to dom-
inate. Our comparison between countries at the same
level of outbreak progress allows us to identify and
quantify a measure of efficiency of the level of strin-
gency of confinementmeasures.Wefind that increasing
the stringency from 20 to 60 decreases the death count
by about 50 lives per million in a time window of 20
days. Finally, we perform logistic equation analyses of
deaths as ameans of tracking the dynamics of outbreaks
in the “first wave” and estimating the associated ulti-
mate mortality, using four different models to identify
model error and robustness of results. This quantitative
analysis allows us to assess the outbreak progress in
different countries, differentiating between those that
are at a quite advanced stage and close to the end of
the epidemic from those that are still in the middle of
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it. This raises many questions in terms of organisation,
preparedness, governance structure and so on.

Keywords COVID-19 epidemic · Mortality · Life
expectancy · Stringency of confinement measures ·
Logistic equation · Outbreak progress
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1 Introduction

Since first identified in December 2019 in Wuhan,
China, a novel coronavirus disease (COVID-19) caused
by the SARS-CoV-2 virus has been spreading in China
in Jan–Feb 2020, and then was declared a global pan-
demic on March 11, 2020, by the World Health Organ-
isation (WHO). As of 24 April 2020 when the first ver-
sion of this paper was finalised, despite various start-
ing times of the outbreak among different countries,
more than 2.7million cases of COVID-19 have been
reported worldwide with 190K acknowledged deaths.
As of 19th July 2020 when the revised version of this
paper was finalised, according to the European Centre
for Disease Prevention andControl (in accordancewith
the applied case definitions and testing strategies in the

affected countries), 14.3million cases of COVID-19
have been reported, including approximately 602,000
deaths.

An immediate qualitative observation of the cur-
rent epidemic is the wide range of mortality outcomes
among various countries and regions, suggesting a
number of entangled factors affecting the statistics.
It was clear from the start that mortality data were
impacted by two key variables, namely the size of
population and the degree of progression of the out-
break. We developed methodology to normalise for
both of these variables that we describe below. For
example, Japan, South Korea and Singapore seemed to
have much lower death rates compared to West Euro-
pean economic peers. Hubei Province in China seemed
to have much higher mortality than all other Chinese
provinces. Germany and Norway seemed to be per-
forming a lot better than West European peers. Eastern
Europe seemed to be performing much better than the
West. And Mexico seemed to perform better than the
neighbouring USA. Why was it that poorer countries
seemed to be performing so much better than the rich
countries of the OECD with their high performance
health services?

In this paper, we try to untangle some of these ques-
tions by dissecting mortality statistics in details. In
Sect. 2, we demonstrate how mortality statistics are
generated and discuss the potential reliability and con-
sistency issues. In Sect. 3, we transform the mortal-
ity data to partly account for the normalisation prob-
lem across country and time, and then analyse the two
key variables: age distribution and lockdown strate-
gies. In Sect. 4, we provide a top-down modelling
approach to analyse the current stage of the epidemic
in different countries and project future scenarios.
In Sect. 5, we discuss potential implications of our
results.

2 Mortality data: understanding its nature and
biases

In order to understand the mortality data of COVID-
19, it is vital to first analyse the characteristics of the
disease and how it leads to a death. SARS-CoV-2 is a
positive-sense single-stranded RNA virus, with a sin-
gle linear RNA segment, belonging to the broad fam-
ily of viruses known as coronaviruses. It is unique
among known betacoronaviruses in its incorporation
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of a polybasic cleavage site, a characteristic known
to increase pathogenicity and transmissibility in other
viruses [1–3]. Common symptoms include fever, cough
and shortness of breath. Other symptoms may include
fatigue, muscle pain, diarrhoea, sore throat, loss of
smell and abdominal pain [4]. The elderly and those
with underlying medical problems like chronic bron-
chitis, emphysema, heart disease or diabetes are more
likely to develop serious illness [5–7]. There has been
an increasing number of reports of COVID-19 out-
breaks in long-term care homes across Europe with
high associatedmortality, highlighting the extreme vul-
nerability of the elderly in this setting [8]. It is impor-
tant to stress the characteristics of infections by SARS-
CoV-2, which is mainly dangerous for the elderly and
persons with co-morbidity, in contrast with many pre-
vious epidemics (including the Spanish flu of 1918–19,
the Asian flu of 1957) for which a large proportion of
deaths were teenagers and young people [9–11].

The five stages of COVID-19 progression as we
understand them are:

– Stage1 (asymptomatic or presymptomatic):Asymp-
tomatic infection with SARS-CoV-2 where the
infected person does not know they have the disease
but could probably transmit it to others [12–14]. It
is this feature of SARS-CoV-2 that makes it partic-
ularly difficult to contain. A recent modelling study
suggested that asymptomatic individuals might be
major drivers for the growth of the COVID-19 pan-
demic [15]. It is possible that asymptomatic cases
may never develop symptoms [16], but if they do,
the time between exposure to COVID-19 and the
onset of symptoms is commonly around five to six
days but can range from 1 to 14days [17–19]. We
note however that the WHO did not accept the
claim of asymptomatic infections and even chal-
lenges this claim on its website; see also the points
raised by Beda M Stadler, former director of the
Institute for Immunology at the University of Bern
[20] against this claim of “healthy sicks”.

– Stage 2 (mild): An unknown number of persons
progress from Stage 1 to develop symptoms. Based
on data from China, the WHO estimate that 75%
asymptomatic cases continue to develop symptoms
after testing positive, 80% of laboratory confirmed
patients have had mild to moderate disease and the
median time from onset to clinical recovery for
mild cases is approximately 2weeks [21]. The two

key symptoms are a mild fever accompanied by
a chesty cough. The severity of these symptoms
varies widely from case to case.

– Stage 3 (moderate): A small but unknown fraction
of those who develop symptoms do not recover and
begin to develop more serious pathological condi-
tions. Many who contract this secondary infection
remain at home and manage to recover.

– Stage 4 (severe): A small but unknown fraction
fromStage 3 becomemore seriously ill and develop
respiratory distress, requiring admission to hos-
pital. In China and the USA, hospitalisation has
occurred in 10.6% and 20.7 to 31.4% of cases
reported, respectively [8]. Lungs lose their ability
to absorb sufficient amount of oxygen. The admin-
istration of oxygen buys the patient time and aids
recovery. Autopsies have revealed severe violation
ofmicrocirculation in the lungs in a number of dead
patients [22].

– Stage 5 (critical): A small but unknown fraction do
not recover at Stage 4, become critically ill, and
are admitted to an intensive care unit where many
are placed on invasive mechanical ventilation. The
European Centre for Disease Prevention and Con-
trol (ECDC) estimates that 7% hospitalised cases
are admitted to intensive care units (ICU) based on
data from 13 countries [8]. Median length of stay in
ICU has been reported to be around seven days for
survivors and eight days for non-survivors, though
evidence is still limited [23,24]. At this stage, an
unknown fraction dies while the remainder recover
with potential lung damage and viral damage to a
wide range of organs including kidneys, liver and
heart [22].

Stage 1 makes COVID-19 a particularly infectious
disease since an infected and contagious person may
pass the disease on to others without even knowing
they had it. Compared to seasonal influenzawith a basic
reproduction number R0 ∼ 1.1 to 2.0 [25,26], COVID-
19 is estimated to have a much higher R0 ∼ from 1.4 to
6.5 [17,19,27–29]. In fact, there is no unique number
since transmission is heavily dependent upon popula-
tion density and structure as well as the biological char-
acteristics. Large cities with underground trains will
have higher R0 than remote rural areas. Family tradi-
tion may also play a role since this is mainly a disease
of the very old. If the family tradition is to have grand-
parents in the family home (Italy and Iran), or staying
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in care homes, then there is a higher possibility of the
elderly getting infected.

Before tackling these entangled factors, we need
to first understand what is behind the numbers. Usu-
ally, we have an absolute measure and relative mea-
sure of mortality statistics. For the absolute measure,
i.e. the number of COVID-19 deaths, it is important
to acknowledge different standards of death reporting
system among countries. The WHO guidelines man-
dated that the death be recorded as COVID-19 if it is a
probable or confirmed COVID-19 case, unless there is
a clear alternative cause of death that cannot be related
to COVID-19 disease [30].

As illustrations of the heterogeneity of reporting
standards, it is useful to review the case of the UK
and of New York. The UK Office of National Statis-
tics (ONS) began publishing data on the number of
UK deaths from COVID-19 that began to occur during
week 11, i.e. the week ending 13 March 2020. Fig-
ure 1 shows details on the UK reported mortality in
hospitals. (A) shows the age profile of hospital deaths
from Covid-19 in England andWales. Like other coun-
tries, the mortality profile shows that the disease was
most lethal in the ageing 65+ cohorts and increased
exponentially with age; (B) in week 14, the age profile
had changed reflecting a change in policy where (1)
elderly patients in hospitals were sent back to their care
homes and (2) doctors became more selective send-
ing very elderly Covid-19 patients from care homes
to hospital since it was recognised that the survival
of the very old was not good and hospital capacity
was reserved for younger patients; (C) shows how the
plunge in age of the hospital deceased was reversed in
week 16 [the peak of mortality, see panel (D)], pre-
sumably because it was now recognised that hospital
capacity was not over-stretched and an increasing num-
ber of elderly were admitted, many of whom died as
testified by the statistics; (D) the profile of hospital
deaths from Covid-19 in England and Wales showing
the huge peaks of more than 8000 deaths in weeks
16 and 17. These huge peaks in part reflect failure
to protect the most vulnerable from infection in care
homes.

OnApril 14,NewYork’smortality statistics included
people who died at homewithout getting tested, or who
died in nursing homes or at hospitals, but did not have
a confirmed positive test result. The New York Times
[31], The Economist [32] and The Financial Times
[33] estimated there might be up to 100% more deaths

not included in the current statistics in some countries
based on an analysis of the excess deaths, although they
did not correct for the significant short-term reporting
lag in mortality data (see section A.3 in the “appendix”
for a visualisation of this reporting delay). On April 17,
authorities inWuhan revised the local death toll upward
by 50%.

Regarding the relative measure of mortality statis-
tics, most media and reports only use case fatality rate
(CFR), the number of deaths divided by the number
of confirmed cases, to compare status of the epidemic
among different countries. Let alone the reliability of
the absolute number of deaths (the numerator men-
tioned above), the denominator—number of confirmed
cases—is also subject to a number of biases. For exam-
ple, China’s national health commission issued seven
versions of a case definition for COVID-19 between
15 January and 3 March, and a recent study found
each of the first four changes increased the propor-
tion of cases detected and counted by between 2.8
and 7.1 times [34]. Furthermore, the number of cases
is usually on the basis of testing, which is biased
towards severe cases in some countries, health care
staff in others (the UK) while towards a larger group
in some other countries implementing massive testing
programs, such as SouthKorea and Iceland. The testing
protocols and accuracy may also have a large impact
on the results.

Relating positive test results to real levels of infec-
tion is also subject to a large number of biases. It is
important to note that the real number of infections is
far higher than those recorded in positive tests since
only a tiny fraction of any population has been tested.
This relates to another concept: Infection Fatality Rate
(number of deaths divided by total infections including
asymptomatic cases). The commonly cited death rates
for seasonal flu of 0.1% to 0.2% are usually reported in
terms of a version of the CFR (deaths among the popu-
lationwho have visible symptoms of the disease), while
several recent studies on seroprevalence of antibodies
to SARS-CoV-2 in the general population [35,36] have
used IFR. These IFR cannot be directly compared with
the CFR of seasonal flu. If, say, 50% of the infected
population is asymptomatic, this implies that CFR = 2
IFR.

It is not realistic to wait for all the reliable statistics
beforewe start tomodel and understand the progression
of the COVID-19 epidemic. In the following section,
wewill use the existing statisticswith appropriate trans-
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Fig. 1 Mortality statistics for England and Wales for week 12 ending 20 March (a), for week 14 (b), mean recorded age of hospital
decease week 12–23 (c) and total recorded hospital deaths in week 11–23 (d)

formation to extract some information about the status
of the epidemic stage in different countries, keeping in
mind all the caveats mentioned above and in the next
subsection when drawing conclusions.

3 Analysing key factors of international mortality
rates

3.1 Caveats

There are two main time series available for a wide
range of countries, namely number of daily confirmed
cases and the daily number of deaths. The former has
the advantage of being a leading indicator but suf-
fers from selective testing, time-dependent and often
unknown number of tests and testing policies that vary
significantly across countries. Mortality data, on the
other hand, are a lagging indicator, which ismuchmore

reliable but, as discussed above, is still subject to (i) a
lack of comparability due to varying times of outbreak
of the epidemic throughout the world, (ii) a significant
reporting lag and (iii) under-/overreporting (discussed
in the previous section).

In this section, we deal with point (i), which allows
us to identify essential drivers of COVID-19 mortality
across countries. In this analysis, we assume that (ii)
is approximately constant across the countries studied
here, while (iii) has to be analysed on a case-by-case
basis and is partially1 corrected for in Figs. 3 and 5
below. While the tools employed in this section are
those of simple data analysis, in a dynamic and com-
plex system such as the evolution of an epidemic, one
should try to carefully understand and exploit the data

1 Because the dynamic range between countries is so large, cor-
rections for reporting standard tend not to have a material impact
on interpretations.
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along several dimensions before applyingmore sophis-
ticatedmodels. Analysing themost influential explana-
tory factors allows us to identify anomalies and put our
prediction results of Sect. 4 in perspective.

Below, we use mortality data from Johns Hopkins
University Centre for Systems Science and Engineer-
ing [37].

3.2 Transforming mortality data for cross-country
comparison

3.2.1 Population normalised death rates and rough
geographic grouping

To allow for a suitable comparison across countries,
we normalise for population size and simply reduce
mortality statistics to deaths per million population
(deaths/mil). Figure 2 presents population normalised
deaths (as of 15 July 2020) across awide range of coun-
tries, which suggests a grouping by geographical fac-
tors into

1. Western countries (West Europe and North Amer-
ica) tend to have higher mortality rates and concen-
trate towards the left in Fig. 2;

2. East block countries tend to occupy the middle
ground;

3. Developed SE Asian countries have extremely low
mortality rates and are concentrated to the right of
the distribution;

4. Developing Northern Hemisphere tends to have
low mortality rates and is spread between the mid-
dle ground and the right of the distribution;

5. Southern Hemisphere countries, which may have
initially benefited from late summer2 but have
evolved since April, tending to occupy the middle
ground trending towards the left with higher and
mounting death tolls.

In general terms, the epidemic was halted early in a
number of Western countries that have tended to move
to the right of the distribution (e.g. Norway, Finland
and Austria), and it arrived late in Latin America where
Latin American countries are now moving towards the
left. As mentioned above, these kinds of comparisons
suffer from the fact that the epidemic evolves through

2 The potential beneficial influence of warmer temperatures has
been noted in [38], but has been questioned to suffice in reducing
the transmission rate in the case of a novel virus [39].

highly clustered outbreaks and reaches countries at dif-
ferent times. In the next section, we propose a method
to normalise for this variability. There are some notable
exceptions to the general distribution. For example,
Australia and New Zealand (not shown) are southern
hemisphere outliers lying far to the right of the distribu-
tion. Australia andNewZealand are special cases being
globally isolated islands with low population density
that (so far) seem to have managed a highly efficient
Southeast Asian style response.

3.2.2 Quantitative comparison by defining a suitable
reference time

To normalise cumulative mortality trends to the same
stage of outbreak, we suggest to align countries once
they have reached a certain number of deaths per mil-
lion (denoted deaths/mil). A larger value of deaths/mil
will be more robust towards noise in the early reporting
of mortality. On the other hand, if this reference time
is too large, it will contain information on country-
specific growth rates, which we want to avoid in our
analysis below.As discussed in detail in sectionA.1,we
choose 1 death/mil, the largest value that does not lead
to a significant correlation of growth rates before and
after the reference time. Below we refer to the respec-
tive date of alignment as the datum, representing the
(country-dependent) date where 1 death/mil is reached.

Figure 3 illustrates this time shift for 18 selected
countries.We have included a normalisation for report-
ing standard using excess mortality statistics as docu-
mented by the Financial Times [33].3 Note that these
numbers (just like officially reported data) should be
taken with a grain of salt, as these calculation are
influenced by reporting delay, statistical anomalies in
expected (“normal”) mortality due to past flu seasons
and are likely to change significantly in time. Note
that, even withinWestern countries, the spread in these
curves shows a wide range in mortality outcomes,
which we discuss in Sect. 3.3.2 below. The trajecto-
ries presented in Fig. 3 allow for a comparison of the
early stages of the outbreak, a country’s health care per-
formancewill ultimately be judged on the final count of
deaths per mil. In this respect, we discuss our logistic-
based predictions and their performance in Sect. 4.

3 In particular,we corrected countrieswith indication of underre-
porting: Spain (factor 0.78), Portugal (0.8), UK (0.56), Belgium
(0.95), Italy (0.63), Netherlands (0.54) and Austria (0.53).
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Fig. 2 Deaths per million population for 55 countries selected
to represent five main socioeconomic and geo-political groups
from around the world. Sweden, Brazil and Belarus are high-
lighted as countries that have pursued a policy of no lockdown.

The two graphs differ only in the logarithmic versus linear scale
of their vertical axis, allowing us to put in perspective the relative
death toll across different countries

3.3 Quantifying key factors of COVID-19 mortality

3.3.1 Age dependence and life expectancy

For most, the SARS-CoV-2 infection goes unnoticed
(stage 1), for some, it leads to mild symptoms (stage
2). For a tiny minority of vulnerable people, it develops
into a lethal disease (stages 4– 5). The relatively high
R0 produces a flood of hospital admissions giving an
amplified sense of seriousness at the whole population
level.

As noted in [23,40] and evident from country-
specific mortality statistics, there is clear evidence of
those most susceptible to progression to Stage 5. Fig-
ure 4 shows the total number of deaths as recorded
in Italy and the population structure of India. Mortal-
ity is highest in the older cohorts, with a median age of
80years, while India has a small number of the very old
in its population. This observation informs the hypoth-

esis that COVID-19, a disease impacting mostly the
old and already sick, is most marked in countries that
have the largest quantities of very old people in their
populations. We use life expectancy [41] as a readily
available proxy for population structure and stratifica-
tion. Figure 5 shows a cross plot for 38 countries of
deaths/mil versus life expectancy. As reference time,
we use datum=1 death/mil and calculate deaths in an
interval of 97days. Certain countries, e.g. Japan, Nor-
way and Switzerland may have managed to override
the disadvantage of ageing populations with efficient
intervention measures (group E). Similar results hold
for countries in group D as compared to group B. The
countries in groupAseem tohave relatively lowmortal-
ity despite significant outbreaks, which we are arguing
may be due to the paucity of old vulnerable targets in
their populations.

Figure 6 shows the data for groups A-C in figure 5
plotted on log scale with exponential fit.
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Fig. 3 Cumulative mortality curves for selected countries. The
datum marks the point where each country reached 1/mil deaths
as explained in the text. Lower panel is corrected for potential
underreporting according to [33], see text for details. The dashed
box in the upper panel represents the data reported in an earlier
version of this paper

Based on the trends we identified here, we are
inclined to draw the following conclusions (mind the
special cases of Australia, South Korea and Japan iden-

tified above). We hypothesise that a key driver behind
the large COVID-19 epidemic in the Western coun-
tries is because these rich countries have spent large
amounts on healthcare with a focus on extending the
lives of the elderly, through a rangeofmedical andphar-
maceutical interventions. Moreover, if there is a rela-
tion of climate/temperature to the outbreak severity of
COVID-19, it is rather weak and does not seem signifi-
cant as compared to the demographic structure. Finally,
there is a substantial variation even within the Western
countries that is unexplained by (minor) demographic,
climatic or geographical differences. We analyse these
countries in the next section.

3.3.2 Lockdown policies and mortality in Europe and
the USA

As outlined above, looking at population, normalised
mortality statistics allows us to compare the progres-
sion of the epidemic across countries: in particular,
we can quantify what is the shift in time needed to
best make comparable the mortality curves of various
countries. The analysis here can be understood as top-
down complementary to studies such as [42–45], which
are subject to additional assumptions and do not allow
for a straightforward comparison across countries. The
value of this time-shifted dataset is to allow us, for
instance, to analyse the potential efficiency of interven-
tion and lockdown policies across a number ofWestern
countries.
Stringency index

The authors in [46] collect and update an exhaustive
list of government responses to COVID-19. In partic-
ular, they calculate a Stringency Index as a daily time

Fig. 4 Mortality statistics
for Italy until July 12
(Median age: 82years) and
the population structure of
Italy and India
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Fig. 5 Cross plot showing the relationship between life
expectancy and mortality expressed as deaths/mil. As reference
time,we use datum=1 death/mil and calculate deaths in an inter-
val of 97days. Lower panel is corrected for potential underreport-
ing according to [33], see Sect. 3.2.2 for details

series of numbers in [0, 100], based on an average of
the following policies:

1. School closure,
2. Workplace closure,
3. Canceling public events,
4. Closing public transport,
5. Public info campaigns,
6. Restrictions on internal movement,
7. International travel controls.

For a detailed explanation and weighting of various
policies, we refer to [46]. Note that, this index does
not cover personal non-pharmaceutical interventions
such as increased personal hygiene or voluntary social
distancing.

Cumulative mortality and lockdown
A first pass examination of this data is to look at

cumulative mortality in a range of countries and their
relation to the stringency index. For this, we fix a
date t = 2020/04/20 and compare the cumulative
deaths per 1million population on this date. Using
the results from [47,48], who report an average time
from infection to death of roughly 20 days,4 we cal-
culate the average Stringency Index on a time interval
[2020/03/01, t − 20] and plot against total deaths at
t , see Fig. 7. Here, the initial time point is chosen ad
hoc. It would seem that the stringency index has little
influence on the number of deaths in a country. How-
ever, as we have discussed above, the epidemic arrived
in various countries at different times, so one needs to
carefully account for this time lag.

To get amore robust result on efficiency of lockdown
strategies, we conduct the following steps to transform
the data, as recorded in Table 1:

1. For each country, we choose the beginning of the
epidemic to be at

datum=1 deaths per million (1)

and record for each country the time where this
number was reached (to be precise, we choose the
day where the reported number was closest to 1
deaths per million)

2. Next, we choose some time frame T , restricted by
the country being the latest to have reached 1 deaths
per million. In our example below, we set T =
20days.

3. For each country, we calculate the number of deaths
in a time interval [datum, datum + T ].

4. Finally, we calculate the average stringency index
in a time interval shifted backwards by 20 days to
account for the average time of infection to death
[47,48].

Figure 8 shows the number of cumulative deaths
with respect to lockdown strategies in European coun-
tries, using the methodology outlined above. We note
a rather convincing negative correlation between strin-
gency during the beginning of the epidemic and the
logarithm of the number of deaths in a subsequent time

4 Below we consider averages on intervals, and the exact distri-
bution is not essential here.
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Fig. 6 Regressions of the
data shown in figure 5 for
groups A–C using an
exponential fit

Fig. 7 Cumulative deaths
(log scale) on 2020/04/20
and average stringency of
lockdown over a time
horizon [2020/03/01,
2020/03/26]

interval. To complement Fig. 8, we present a country-
specific analysis in “appendix A.2”, which shows a sig-
nificant reduction in mortality growth rates around the
time we expect to see an impact of intervention mea-
sures.

We can thus take our analysis in the last section
a step further to arrive at the following classification
along two axes:

(a) To explain the vast differences in severity of the
epidemic, which seems to have taken its most dev-
astating course inWestern developed countries, we
noted that demographics is a key driver, with poten-
tial (but minor) geographic, cultural and climatic
influences (Sects. 3.2.1 and 3.3.1), while

(b) within Europe, the (comparably) smaller differ-
ences in per-capita mortality can, to some extend,
be explained by severity and timing of intervention
measures (which could either be effective in itself

or lead to increased awareness and personal non-
pharmaceutical interventions).
Some countries seem to have been hit exception-
ally hard, which could potentially be related to an
inadequate dealing with the spread of the epidemic
in elderly care homes [49] and calls for a further
investigation. In [50], the authors collect early evi-
dence on the number of care home deaths.5 Recent
information from the UK office for national office
statistics (as documented in [50]) suggests a signif-
icant amount of uncounted deaths in care homes.

5 In Belgium, 46% of the general practitioners-patient encoun-
ters are home visits. This is the highest percentage in the
world [51]. Most of these general practitioners are mobile
entrepreneurial nurses who do home visits via several rounds
a day. Thus, they have high incentives to do what their
clients/patients at home demand, whether or not it is reasonable
from a professional point of view [52].

123



Interpreting, analysing and modelling COVID-19 mortality data 1761

Table 1 First column: country names; second column: datum
defined as the date of reaching 1 death per million (datum);
third column: cumulative deaths at datum; fourth column: cumu-

lative deaths in a time interval of size T = 20; fifth col-
umn: average stringency index on a time interval shifted by
−20days

Country Datum Deaths on datum Deaths in [datum.datum+20] Average stringency

Albania 2020-03-22 0.7 7.3 50.0

Austria 2020-03-21 0.9 35.2 40.4

Belgium 2020-03-17 0.9 141.9 21.3

Bosnia & Herzegovina 2020-03-26 0.9 11.4 57.8

Bulgaria 2020-03-28 1.0 4.8 55.9

Canada 2020-03-26 1.0 26 2 39.7

Croatia 2020-03-28 1.2 7.6 56.3

Czechia 2020-03-28 1.0 15.2 66.7

Denmark 2020-03-19 1.0 35.6 37.5

Estonia 2020-03-28 0.8 28.0 39.4

Finland 2020-03-26 0.9 12.1 41.8

France 2020-03-13 1.2 79.3 24.1

Germany 2020-03-21 1.0 324 35.4

Greece 2020-03-21 1.2 7.4 41.0

Hungary 2020-03-25 1.0 11.5 48.8

Ireland 2020-03-22 0.8 64.9 29.2

Italy 2020-03-02 0.9 89.5 42.3

Latvia 2020-04-07 1.0 5.7 62.3

Lithuania 2020-03-24 0.7 7.9 47.4

Moldova 2020-03-30 0.7 24.0 64.4

Netherlands 2020-03-16 1.2 94 7 11.1

Norway 2020-03-18 1.1 15.6 27.6

Poland 2020-03-31 0.9 9.1 55.1

Portugal 2020-03-21 1.2 41.1 30.8

Romania 2020-03-25 0.9 17.2 54.0

Russia 2020-04-13 1.0 7.8 81.6

Serbia 2020-03-26 0.6 12.9 52.9

Slovakia 2020-04-16 1.1 3.5 78.4

Slovenia 2020-03-22 1.0 23.1 33.2

Spain 2020-03-11 1.2 179.7 15.1

Sweden 2020-03-18 1.0 57.1 7.3

Switzerland 2020-03-13 1.3 61.7 19.2

Ukraine 2020-04-07 1.0 3.9 89.8

United Kingdom 2020-03-16 1.0 87.3 11.3

United States 2020-03-20 1.1 62.1 29.3
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Fig. 8 Cumulative deaths
(log scale) in an interval
aligned at 1 deaths per
million and lasting 20days
plotted and regressed
against average stringency
index

3.4 A short discussion of other factors

In addition to the factorswe have identified above, there
have been a range of reports and articles that note other
elements influencing mortality.

Co-morbidities have been identified as a significant
factor for both older and younger COVID-19 patients
[5–7,53,54], where coronary heart disease, cancer,
diabetes and respiratory disorders like asthma were
most common. Underlying health conditions reported
among patients with COVID-19 and admitted to ICU
include hypertension, diabetes, cardiovascular disease,
chronic respiratory disease and immune compromised
status. Data from the European Surveillance System
(TESSy) for 21 European countries show that out of
5378 deaths, only 7.3% cases do not have underlying
known health conditions [8]. Out of 1890 deaths in
Italy, 3.7% of the sample presented no comorbidities,
14.4% with a single comorbidity, 21.2% with 2, and
60.7% with 3 or more. [55]. Additionally, obesity has
been noted to have a high prevalence among patients
with COVID-19 admitted to ICU [56–58], especially
severe obesity (BMI > 35). The effect of obesity was
reported to be evenmore significant in younger patients
[59].A recent study [60] confirmsmany of these factors
in a large study with COVID-19 patients in the UK.

Studies document that daily smokers have a lower
likelihood of developing symptomatic or severe SARS-
CoV-2 infection compared to the general population

[61,62]. But smokers, if infected, may have a greater
risk of complications fromCOVID-19 disease and thus
smoking is suspected to be a risk factor in developing
serious illness fromCOVID-19, see themeta-study [63]
and references therein.

Finally, a series of preprints has identified a potential
link between BCG vaccination practice for Tuberculo-
sis andCOVID-19mortality; see, for example, [64,65].
However, accounting for confounding factors such as
age or testing policies, this correlation seems to be
rather weak [66,67]; cf. a recent overview [68].

4 Logistic projections of ultimate mortality in
selected countries

4.1 Models

Three ingredients are necessary for an epidemic to
develop: 1) Source: pathogens and their reservoirs; 2)
Susceptible personswith away for the virus to enter the
body; 3) Transmission: a path or mechanism by which
viruses moved to other susceptible persons. Numer-
ous mechanistic models have been utilised to study the
COVID-19 epidemic, based on different assumptions
about these three types of variables, including some that
have broken down the population by age cohorts in par-
ticular to account for the age-dependence of epidemic
characteristics, as well as adding the risk management
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policies such as lockdown strategies discussed in Sect.
3.3.2 (e.g. [42]).

Although mechanistic models are useful in under-
standing the effect of different factors on the transmis-
sion process, they are highly sensitive to the assump-
tions on the many often subtle microscopic processes.
Giving an illusion of precision, mechanistic models
are in general quite fragile and require an in-depth
understanding of the dominating processes, which are
likely to be missing in the middle and confusion of
the pandemic, with often inconsistent and unreliable
statistics and studies performed under strong time pres-
sure. There is thus space for simpler and, we argue,
more robust phenomenological models, which have
low complexity but enjoy robustness. This is the power
of coarse-graining, a well-known robust strategy to
model complex system [69–71].

In this section, we thus use a basket of phenomeno-
logical models to describe the dynamics of the daily
deaths and provide predictions for different future sce-
narios, as we have done for the confirmed cases in [72]
and the real-time daily predictions in [73]. This simple
and top-down approach can provide transparent inter-
pretation and straightforward insights regarding the sta-
tus of the epidemic and future scenarios of the outbreak,
by simply calibrating the phenomenological models to
the empirical reported data.

Usually, an epidemic follows an exponential or
quasi-exponential growth at an early stage (following
the law of proportional growth with multiplier equal
to the basic reproduction number R0), then the growth
rate decays as fewer susceptible people are available to
be infected and countermeasures are introduced to hin-
der the transmission of the virus. Therefore, an expo-
nential or generalised exponential model can be used
to describe the data at the early stage of an outbreak,
which is intuitive and easy to calibrate. We use a gen-
eralised growth model (GGM) to describe the data in
this stage:

dC(t)/dt = rC p(t), (2)

where C(t) represents the cumulative number of cases
(confirmed or deaths) at time t , p ∈ [0, 1] is an expo-
nent that allows the model to capture different growth
profiles including constant incidence (p = 0), sub-
exponential growth (0 < p < 1) and exponential
growth (p = 1). In the later case for which the solution
is C(t) = C0ert , r is the growth rate. For 0 < p < 1,

the solution of equation (2) is C(t) = C0(1 + r t
A )b,

where b = 1
1−p and A = C1−p

0
1−p , so that r controls the

characteristic time scale of the dynamics. The (quasi)
exponential model essentially provides an upper bound
for the future scenario by assuming that the outbreak
continues to grow following the same process as in the
past. However, an outbreak will slow down and reach
its limit with decaying transmission rate in the end.

When the growth rate gradually decays and the daily
incidence curve approaches its inflection point, the
trajectory usually departs from a simple exponential
growth, and a logistic-type model could have a better
performance.We thus use three types of logisticmodels
when the outbreak is leaving the early growth stage:

– Classical logistic growing model:

dC(t)/dt = rC(t)

(
1 − C(t)

K

)
(3)

– Generalised logistic model (GLM):

dC(t)/dt = rC p(t)

(
1 − C(t)

K

)
(4)

– Generalised Richards model (GRM):

dC(t)/dt = rC p(t)

(
1 −

(
C(t)

K

)α)
(5)

The pure logistic equation (3) has the same number of
parameters as the pure growth model (2), trading the
exponent p for thefinal capacity K ,which is the asymp-
totic total number of infections over the whole epi-
demic. In the generalised logistic model (4), the expo-
nent p ∈ [0, 1] is introduced to capture different growth
profiles, similar to in the generalised growth model (2).
In the generalised Richards model, the exponent α is
introduced to measure the deviation from the symmet-
ric S-shaped dynamics of the simple logistic curve. The
GRM recovers the original Richards model for p = 1,
and reduces to the classical logistic model for α = 1
and p = 1. Therefore, theGRM ismore pertinent when
calibrating data from a region that has entered the after-
peak stage, to better describe the after-peak trajectory
thatmayhave deviated from the classical logistic decay.
However, this more flexible model leads to more unsta-
ble calibrations if used on early stage data.
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4.2 Methodology

Scenarios. As we have demonstrated in [72], logistic-
type models tend to under-estimate the final capacity
K and thus could serve as lower bounds for the future
scenarios.We define thepositive scenario as themodel
with the second lowest predicted final total deaths K
among the three logistic models, and themedium sce-
nario as the model with the highest predicted final
total deaths among the three logisticmodels. Both posi-
tive and medium scenarios could underestimate largely
the final capacity. The negative scenario is described
by the generalised growth model, which should only
describe the early stage of the epidemic outbreak and is
therefore least reliable for countries in the more mature
stage as it does not include a finite population capacity.

Calibration. For the calibration, we use the standard
Levenberg-Marquardt algorithm to solve the non-linear
least square optimisation. To estimate the uncertainty of
our model estimates, we use a bootstrap approach with
a negative binomial error structure N B(μ, σ 2), where
μ and σ 2 are the mean and variance of the distribution,
estimated from the empirical data.

Data. The reported death data are from the European
Centre for Disease Prevention and Control (ECDC)[8]
up to July 17.

4.3 Results

We define the outbreak progress as the latest cumu-
lative number of deaths per million divided by the pre-
dicted final total death toll. As the epidemic progresses,
the outbreak progress increases and finally saturates to
1 when the epidemic ends. Note that, in a classical
logistic curve, an outbreak progress of 50% indicates
that the total number of deaths has reached its inflection
point, which is also the time of the peak of the daily
incidence curve. If the inflection point has been passed,
the worst of the outbreak is over. The fitted trajectory,
and thus the position of the inflection point and the
predicted final death toll depends on country-specific
factors identified in Sect. 3,most notably demographics
and (early) intervention measures. Therefore, the out-
break progress can measure how mature the outbreak
is in a country, and is more conservative than the same

analysis based on confirmed cases, as the number of
deaths is a lagging indicator behind confirmed cases.

In Table 2, we list the cumulative numbers of deaths
per million population as of July 17, 2020, and the out-
break progress (death) in positive and medium scenar-
ios. In Fig. 9, we plot the ensemble distribution of the
final total number of deaths per million population for
each country, which are based on the aggregation of the
simulations in positive and medium scenarios. Those
countries with a non-converged distributions are dis-
played in the left panel, while those with a converged
distribution are in the right panel. The left side of each
violin in cyan is based on data up to July 17, while the
right side of each violin in grey is based on data up
to April 24, when the first version of this paper was
submitted. Note that, the logistic-type models are usu-
ally useful for understanding the short-term dynamics
extending over a few days, but may become inadequate
for long-term predictions due to the change of the fun-
damental dynamics resulting from government inter-
ventions, a second wave of outbreaks or other factors,
as showed by large shifts of distributions in several
countries.

To have a view of the performance of short-term pre-
dictions, we present the latest 7-day prediction errors
for the total number of deaths in Fig. 10, based on posi-
tive and medium scenarios. One can see that our 7-day
predictions based on data up to July 10th are correct
in all matured countries and enjoy narrow prediction
intervals. In contrast, our 7-day predictions underesti-
mate the true numbers in immature countries, including
India, Argentina, Iraq and Honduras. Until May 24, we
uploaded a daily update of our projections and an anal-
ysis of forecasting errors online, and then shifted to
a weekly update until July 3 [73]. We have now dis-
continued it as the epidemic enters second waves and
other regimes with highly dependent country-specific
characteristics.

As of July 17, 2020, the epidemic in Italy, Ireland,
Germany, Austria, Turkey, Belgium, the United King-
dom, France, Netherlands, Spain, the USA, Canada,
Switzerland, Portugal and Japan have almost ended,
with the outbreak progress approaching 100%.Most of
these countries have the earliest starts of the outbreaks,
with Italy and Spain being the first two hotspots in
Europe.However, theUSAhas started a secondwave of
outbreak with the daily confirmed cases keeping break-
ing records recently. This is likely due to the easing of
the lockdown and street demonstrations where large
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Table 2 As of July 17, 2020, current deaths per million population and estimated outbreak progress in positive and medium scenarios
(today’s deaths divided by the estimated total final deaths in positive and medium scenario)

Country Deaths per million
population (Jul-17)

Outbreak progress in
positive scenario

Outbreak progress in
medium scenario

Italy 579 100.0% 100.0%

(93.9%, 100.0%) (97.3%, 100.0%)

Ireland 360 100.0% 100.0%

(92.7%, 100.0%) (92.9%, 100.0%)

Germany 110 100.0% 100.0%

(92.7%, 100.0%) (93.9%, 100.0%)

Austria 80 100.0% 100.0%

(90.8%, 100.0%) (91.2%, 100.0%)

Turkey 66 100.0% 100.0%

(93.8%, 100.0%) (97.0%, 100.0%)

Belgium 858 100.0% 99.9%

(97.8%, 100.0%) (95.8%, 100.0%)

United Kingdom 679 100.0% 99.9%

(95.0%, 100.0%) (91.5%, 100.0%)

Europe 274 100.0% 99.7%

(97.1%, 100.0%) (92.3%, 100.0%)

France 450 99.7% 99.4%

(94.4%, 100.0%) (94.8%, 100.0%)

Netherlands 356 100.0% 99.4%

(93.9%, 100.0%) (94.9%, 100.0%)

Spain 608 99.2% 99.2%

(92.9%, 100.0%) (93.0%, 100.0%)

United States 423 100.0% 98.9%

(90.1%, 100.0%) (92.5%, 100.0%)

Canada 238 100.0% 98.0%

(94.1%, 100.0%) (92.1%, 100.0%)

Switzerland 198 97.8% 97.7%

(86.6%, 100.0%) (86.7%, 100.0%)

Portugal 163 97.3% 96.4%

(92.2%, 100.0%) (91.3%, 100.0%)

Japan 8 99.1% 96.4%

(90.0%, 100.0%) (87.6%, 100.0%)

Sweden 549 100.0% 91.3%

(83.1%, 100.0%) (75.0%, 100.0%)

Chile 389 92.4% 90.8%

(78.2%, 100.0%) (74.0%, 100.0%)

Pakistan 26 91.5% 88.3%

(86.7%, 96.6%) (83.7%, 93.2%)

Saudi Arabia 70 81.0% 74.9%

(74.5%, 87.3%) (70.0%, 78.8%)

123



1766 D. Sornette et al.

Table 2 continued

Country Deaths per Million
Population (Jul-17)

Outbreak Progress in
Positive Scenario

Outbreak Progress in
Medium Scenario

Mexico 298 78.3% 70.3%

(70.7%, 85.9%) (45.2%, 90.5%)

Iraq 92 76.5% 65.6%

(61.7%, 87.7%) (60.1%, 70.1%)

Israel 43 82.1% 65.4%

(73.1%, 93.0%) (46.6%, 78.9%)

Azerbaijan 34 77.3% 65.4%

(31.4%, 94.1%) (39.2%, 81.5%)

Armenia 206 72.3% 64.7%

(42.3%, 88.5%) (35.8%, 78.3%)

Peru 394 83.6% 64.0%

(79.1%, 87.8%) (47.6%, 77.4%)

Honduras 87 92.5% 63.3%

(79.4%, 100.0%) (28.7%, 84.9%)

Bolivia 175 93.1% 60.5%

(83.4%, 99.7%) (47.5%, 71.1%)

Brazil 366 92.3% 58.4%

(87.1%, 98.6%) (48.8%, 67.0%)

Russia 83 73.8% 57.7%

(67.5%, 80.7%) (46.9%, 66.8%)

Nigeria 4 72.5% 54.3%

(14.5%, 94.5%) (20.3%, 73.3%)

Panama 239 73.7% 51.5%

(45.4%, 93.3%) (9.1%, 83.3%)

India 19 68.3% 46.9%

(61.0%, 74.5%) (34.8%, 57.2%)

Afghanistan 30 63.7% Not reliable

(10.9%, 100.0%)

Serbia 63 30.4% Not reliable

(4.8%, 85.2%)

Iran 166 58.6% 20.4%

(14.0%, 84.2%) (7.0%, 83.7%)

Argentina 47 46.3% Not reliable

(12.8%, 100.0%)

Guatemala 81 25.6% Not reliable

(8.9%, 89.5%)

The ranking is in terms of outbreak progress in the medium scenario. Numbers in brackets are 80% prediction intervals. As positive
scenarios predict a smaller final number of deaths, the outbreak progress is thus larger in the positive scenario. Note that, the estimated
final death toll tends to underestimate the final results, thus the estimated outbreak progress serves both as a lower bound for future
developments and as a guide of the dynamics of the evolution of the epidemic
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Fig. 9 Violin plot of the distributions of the final total number
of deaths per million derived by combining the distributions of
the positive and medium scenarios. The left side of each violin
in cyan is based on data up to July 17, while the right side of
each violin in grey is based on data up to April 24, when the
first version of this paper submitted. The left panel shows coun-
tries that have a distribution that has not converged, and the right

panel presents countries that have converged. The model setup
in the negative scenario does not incorporate a maximum satu-
ration number and thus cannot be used. The yellow dots indicate
the median prediction for the combined distribution, while the
green and red dots indicate the median of the positive and of the
medium scenarios, respectively

Fig. 10 7-day prediction
error of the forecast
performed on July 10 for the
total number of deaths for
the various
countries/regions. The
horizontal line corresponds
to empirical data on July 17.
The errorbars are 80%
prediction intervals and the
middle dots are the median
predictions based on the
predictions from the
positive and medium
scenarios. A negative value
corresponds to a prediction
that underestimated the true
realised value

numbers of people gather. This is not yet reflected sig-
nificantly in the daily death data as there is usually a two
to four weeks lag between the data of confirmed cases
and deaths. Our model, which assumes a single “wave”
by construction, is unable to characterise the second
wave dynamics as shown in the supplementary figure.

Resurgences of cases are also found in several matured
countries includingGermany, France,Austria, Portugal
and others (mostlyWest European). Sweden, Chile and
Pakistan are also in a matured stage with strong signs
that inflection points have been passed and an outbreak
progress of 85% to 95% in the medium scenario.
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The next less matured group of countries are Saudi
Arabia, Mexico, Iraq, Israel, Azerbaijan, Armenia,
Peru, Honduras and Bolivia, which have their outbreak
progress in the range of 60%-80%. They just have con-
firmed signals that their inflection points have been
passed, and the shapes of their distribution are settling
to the after-peak trajectory. Saudi Arabia and Israel are
also in a second wave of outbreaks, which may change
the previous inflection points and reduce the outbreak
progress.

Brazil, Russia, Nigeria and Panama are in the third
most matured group of countries, which are just at the
inflection points and have higher uncertainties regard-
ing their future scenarios. This is confirmed by the non-
converged (Nigeria and Panama) or highly dispersed
(Brazil and Russia) distribution of final deaths per mil-
lion as shown in Fig. 9.

The remaining group includes India, Afghanistan,
Serbia, Iran, Argentina and Guatemala, whose mor-
tality curves have not significantly departed from the
exponential or sub-exponential growth trajectory, indi-
cating the early stage of the outbreak and high uncer-
tainties for the future projections, as evidenced by their
non-converged distributions of the final deaths in Fig. 9.

5 Discussion

The SARS-CoV-2 / Covid-19 pandemic began in
Wuhan, China, in January 2020. By 25 April 2020,
when we submitted the present paper, it had spread
to every country in the world and killed an esti-
mated ∼ two hundred thousand people worldwide.
As of 19 July 2020, 14.3 million cases of COVID-19
have been reported, including approximately 602,000
deaths. Mortality trends showed that it has been killing
more people (normalised for population size) in West-
ern countries than anywhere else outside of Wuhan.
We set out to solve the riddle of whyWestern countries
with their lavish healthcare systems were hardest hit.
We also set out to understand why the impacts as mea-
sured by deaths per million population varied so much
between the various Western countries.

Contrary to many early media reports, COVID-19
is quite specific about the individuals who are most
susceptible and die. The largest group of casualties is
found in the elderly, specifically the over 65-year-old
cohorts. The mean age of the dead in the UK is about
80 similar to the mean age of the dead in Italy. Many of
the dead are aged 80 or more and arguably were close

to end of life, exhibiting comorbidities such as respira-
tory disorders, cancer and heart disease. In the UK, the
65+ group comprises 87% of all deaths. In the under
65 group that comprises 13% of all deaths, numerous
reports suggest that it is the clinically obese who are
most at risk. The deceased obese are also described as
having comorbidities of diabetes, high blood pressure
and atherosclerosis.

We have presented results on the mortality statistics
of the COVID-19 epidemic in a number of countries.
After drawing attention to many data quality issues,
we have proposed a classification of countries in five
groups, 1) Western countries, 2) East Block , 3) devel-
oped Southeast Asian countries, 4) Northern Hemi-
sphere developing countries and 5) Southern Hemi-
sphere countries. Comparing the number of deaths per
million inhabitants, a pattern emerges in which the
Western countries exhibit the largest mortality rate.
Furthermore, comparing the running cumulative death
tolls at the same level of outbreak progress in different
countries reveals several subgroups within the West-
ern countries and further emphasises the difference
between the five groups. Rationalising the drastic dif-
ferences in performance goes beyond the present arti-
cle, but visualising these differences calls for in-depth
investigations of causative or correlated factors such
as preparedness, development and organisation of the
health-care system (public-private, governance struc-
ture, etc), culture (close physical contacts versus social
distance, hygiene, etc), stringency of the reactions to
control the epidemic, temperature, geography, popula-
tion density, general health and age distribution and so
on.

Inspired by a number of reports, we presented a syn-
thetic plot of the relationship between deaths per mil-
lion and life expectancy in different countries, taken as
a proxy of the preponderance of elderly people in the
population. Our analysis strongly suggests that a main
reason behind the relatively more severe COVID-19
epidemic in the Western countries is their larger pop-
ulation of elderly people, with the exceptions such as
Norway and Japan, for which other factors seem to
dominate. Following the outcomes of the epidemic in
these countries and extending the comparative analysis
that we present will provide important insights to learn
and implement as much as possible the procedures that
have been successful.

Within theWestern countries,we report a large range
of outcomes, despite similar demographics. Our com-
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parison between countries at the same level of outbreak
progress also allowed us to identify and quantify amea-
sure of efficiency of the level of stringency of confine-
ment measures. This delicate and controversial subject
finds here an objective analysis, which confirms that
stronger stringency on confinement measures during
the early stages of the epidemic are significantly neg-
atively correlated with deaths per million. We found
a correlation between mortality and a stringency met-
ric that quantifies 7 different measures such as closure
of schools, bans on large public meetings and locking
down populations.

Looking at Fig. 8 (and extending the time window)
shows that increasing the stringency from 20 to 60
during the onset of the epidemic decreases the death
count by about 50 lives per million within two weeks,
or roughly 350 lives per million until July, i.e. about
20’000-25’000 lives for the UK. Thus, unsurprisingly,
preventing people from meeting and moving around
provides a barrier against the propagation of the virus.
But the effect up to date is arguably small, and largely
depends on when the confinement measures were put
in place. As argued by the epidemiologist behind Swe-
den’s trust-based approach to tackling the epidemic,
closedown, lockdown, closing borders, none of these
measures may have historical scientific basis when the
epidemic is already well advanced 6. Moreover, the
lockdown strategy faces the paradoxical desires of, on
the one hand, having the least number of infected peo-
ple.On the other hand, the governments of locked down
countries worry that only a tiny percentage of the pop-
ulation has been exposed to the virus (at the time of
writing, estimations vary from a few percent to 10 per-
cent), so that any deconfinement may lead immediately
to a second epidemicwave, barring achieving a fraction
of about 60%of the population7 being protected by pre-
vious infections or vaccination. Recent studies suggest
that the herd immunity threshold could be lower, per-
haps even as lowas 20%as a result of partial preexisting
immunity and strong heterogeneity of R0 [74,75].

We have also performed logistic equation analyses
of deaths as a means of tracking the maturity of out-
breaks and estimating ultimate mortality. We use four

6 https://www.nature.com/articles/d41586-020-01098-x.
7 This fraction of 60% is derived from an assumed average
infection factor R0 = 2.5, so that the effective infection fac-
tor Reff when a fraction p of the population is immune becomes
Reff = R0(1 − p). Then, solving for p such that Reff ≤ 1 gives
p ≥ 60%.

different models to identify model error and robust-
ness of results. This quantitative analysis allowed us to
assess the outbreak progress in different countries, dif-
ferentiating between those that are at a quite advanced
stage and close to the end of the epidemic from those
that are still in the middle of it.

Western governments will be judged on two met-
rics. First, they will be judged on the ultimate num-
ber of deaths per million people. Second, they will
be judged on the economic and social costs of their
actions. With only one exception (Sweden), Western
governments have taken extreme actions to combat
COVID-19, with different levels of stringency across
countries (with the case of Asian countries needing a
different discussion). These actions include confining
whole populations at home, shutting down large sec-
tors of their economies, throwing tens ofmillions out of
work and running up massive debts. The common esti-
mationof the economic cost of thesemeasures iswidely
estimated around 10% of GDP, and is likely to grow as
time passes. Strict confinement can also have serious
consequences in terms of mental illness and neglect
of other conditions. The breakdown of supply chains
threatens famines of ‘biblical proportions’, according
to a recent UN report.

Given these conclusions, and with the perspective
and experience of the epidemics of the past, we have to
ask whether the extraordinary response levels, with no
equivalent in history, are justified by the threats posed
by the SARS-CoV-2 virus. Was it worth putting the
prosperity of whole nations at risk in this way? In a col-
umn entitled “Coronavirus, watch out for danger, but
not the one you think”, Professor Gilbert Deray, from
the Pitié-Salpêtrière Hospital in Paris summarises the
problem as follows: For 30 years, from my hospital
observatory, I have lived through many health crises,
HIV, SARS, MERS, resurgence of tuberculosis, multi-
resistant bacteria, we have managed them calmly and
very effectively. None of them have given rise to the
current panic. I have never experienced such a level of
concern for an infectious disease.

This is the first time that people’s health has been put
ahead of economic interests at such a global level. But
was this well thought out? A society cannot save every
life, it has to make reasonable choices. A wise pol-
icy requires intelligent calculations that arbitrate and
balance medical, social, economic, equity and inter-
generational considerations. Have we been collectively
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blinded by short-sighted medical considerations and
been overwhelmed by a pandemic of fear [76]?

What could have been done better? Without doubt,
many studies will be published on this question.
It seems to us that the well-conceived Pandemic
Influenza Plan elaborated by nations in collabora-
tion with the WHO have been superseded by a pan-
demic of fear. For example, translating from the
latest Swiss Pandemic Influenza Plan (2018), we
read that the pandemic management strategies are
designed to reduce at the very least deleterious con-
sequences of the pandemic and the priority objec-
tives are: (i) to protect and preserve the life, well-
being and health of the population; (ii) keep casu-
alties to a minimum and (iii) prevent the occur-
rence of subsequent economic damage. Further, the
Swiss-WHO based plan continues with the follow-
ing statement (www.bag.admin.ch/bag/fr/home/das-
bag/publikationen/broschueren/publikationen-uebert
ragbare-krankheiten/pandemieplan-2018.html): “Pre-
venting aninfluenza pandemic by means of contain-
ment measures seems, according to current knowledge,
unrealistic both nationally and internationally.Applica-
tion of selective measures as part of containment inter-
ventions can be used to prevent the spread of disease,
limit local outbreaks during the initial phase and thus
reduce transmission, and thus providing targeted pro-
tection for vulnerable people. These measures will not
prevent the spread of the pandemic, but they will even-
tually help to slow it down and thus gain time. Contain-
ment measures therefore have local operational objec-
tives and contribute to the mitigation strategy”. These
clear instructions have the further benefit of removing
uncertainty, which has been a major cause of stress in
affected population [77]. The science of epidemics is
well-established and dictates that at the very beginning
of an epidemic, stringent measures must been put in
place to isolate the local clusters and to protect the vul-
nerable. It thus seems to us that the undifferentiated
and unprecedented global and complete lockdown in
many countries has not been rooted in sound scientific
thinking based on the calm assessment based on all pre-
vious knowledge, but has fallen trap to quickly cooked
models that catalysed an atmosphere of fear amplified
by the social media and media machine as sellers of
attention [78].

Acknowledgements Open access funding provided by Swiss
Federal Institute of Technology Zurich. We thank Clive Best,

Peter Cauwels, Katharina Fellnhofer, Pengcheng Li and Yixuan
Zhang for useful feedbacks.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 Choice of reference time

As discussed in Sect. 3.2.2, to allow for a suitable com-
parison of mortality curves for countries of different
population, we align countries at a suitable reference
time of reaching a certain number of deaths/mil. Here,
we need to take the following into account.

1. Due to the considerable variance reported in time
of infection to death and potential early imported
cases, we expect a larger value of deaths/mil to be
more robust towards noise in the early reported data
of COVID-19 deaths.

2. If the reference time is too large, it may be
influenced considerably by country-specific growth
rates, which can lead to spurious results in Sect.
3.3.2 on lockdown policies.

To address this, we look at growth rates before and
after a range of reference times T ∗ ∈ {T0.8, T0.9, T1,
T1.1, · · · , T4}, where Tx , for each country, denotes the
time when x deaths/mil was reached.We then calculate
average weekly growth rates for cumulative mortality
C(t),

1

7
log

(
C(T ∗)

C(T ∗ − 7)

)
and

1

7
log

(
C(T ∗ + 7)

C(T ∗)

)
,

(6)
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Fig. 11 Significance of
non-zero linear relationship
of average weekly growth
rates (6) before and after the
reference times Tx when x
deaths/mil was reached;
using all countries in Table
1 with CT0.8−7 > 0 (n = 20)

and test for a significant linear relationship across coun-
tries, see Fig. 11. We exclude reference times with a
significant correlation and choose 1 death/mil for our
analysis.8

A.2 Impact of lockdown policies in individual coun-
tries.

To complement our analysis in Sect. 3.3.2 above, we
study the potential impact of intervention and lock-
down policies on mortality growth rates. To this end,
we denote by C(t) the cumulative number of COVID-
19 deaths in a fixed country. As discussed in Sect.
4, the growth rate of C can be adequately described
by logistic-type models, which capture the (combined)
influence of lockdown policies, increased awareness
and personal hygiene, a reducing number of suscepti-
ble individuals and other potential factors. While these
models are suitable to capture a full epidemic outbreak,
it has been noted in [72] for the number of confirmed
cases that the reduction in the daily growth rate can
be approximated by a simpler exponential decay on

8 Note that this does not indicate the absence of such correlation
for T1, we merely avoid using reference times where the null of
no correlation can be rejected.

shorter time intervals.9. More specifically, on an inter-
val [t, t], we fit a segmented linear regression

log

(
log

(
C(t + 1)

C(t)

))
= a − γ1(t − t), t ∈ [t, t∗]

log

(
log

(
C(t + 1)

C(t)

))
= a − γ1(t

∗ − t) − γ2(t − t∗), t ∈ [t∗, t]

(7)

with exponential decay parameters γ1 and γ2. To quan-
tify the potential impact of lockdown policies, we com-
pare the decay parameter before and after the time we
expect to see a reduction in mortality growth rates. In
particular, using the Stringency Index of [46] as above,
we set

t∗ = [time Stringency Index of 60 was first reached]

+20days, (8)

and compare the exponential decay parameters before
and after t∗.

As an example, Fig. 12 shows exponential decay
rates for Belgium and Portugal. For Belgium, we find a
significant increase in γ , indicating a decrease in infec-
tivity around the time lockdown policies were imple-
mented. For Portugal, in comparison10, we first note a
substantially larger initial rate of decay, which could
be due to increased awareness and voluntary social

9 Contrary to the analysis in [79], which looks at linear fits to
the growth rate, we find that it is essential to consider log-growth
rates to be able to draw conclusions.
10 For cross-country comparison it is not sufficient to consider
exponential decay rates alone, but in combination with the inter-
cept a of the respective fits as given by 7.
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Fig. 12 Daily growth rate of mortality in Belgium and Portugal (log scale) and linear fits according to 7. The solid and dashed lines
indicate the date where increasing levels of stringency were reached, shifted by 20 days (average time lag of infection to death)

distancing, efficiency of early intervention measures
or other country-specific factors. Moreover, we see a
decrease of the decay parameter at t∗, which one would
expect to see from the evolution of an epidemic with
constant infectivity (as predicted by a standard SIR
model), andwecannot deduce that additional lockdown
measures were particularly effective. Figure 13 shows
the result of this analysis for the countries analysed in
Sect. 3.3.2.Wenote that amajority of countries showan

increasing or approximately constant rate of exponen-
tial decay γ around the time of lockdown (lower right
corner of the figure), indicating a decrease in infectiv-
ity. Plots for individual countries can be found in the
supplements. This analysiswould benefit fromdata col-
lected with actual date of death, see section A.3.
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Fig. 13 Exponential decay
parameters γ in (7) before
and after t∗ defined in (8).
The solid line indicates a
constant rate of decay

Fig. 14 Reported versus
actual mortality in Belgium.
Cumulative mortality C(t)
shows a reporting delay of
around 3 days (left) and
significant reduction in
noise of the daily log
growth rate
log (log (C(t + 1)/C(t)))
(right)

A.3 Reporting delay and additional noise in daily
reported data.

The extensive data base of Johns Hopkins University
collects mortality data as reported by governments and
health agencies worldwide. In most cases, death from
COVID-19 gets reported with several days delay, and
this reporting introduces additional noise to the data. In
Fig. 14, we show cumulative mortality and its growth
rate in the first two months of the epidemic in Belgium,
using both reported data from JHU [37] as well as daily
update data sorted by actual date of death from press
conferences and reports of Belgian officials [80]. We

note a significant delay of roughly 3days in the report-
ing of deaths, as well as a significant reduction of noise
in the data, even after accounting for weekly season-
ality in both time series. Availability of this data for
a wide range of countries would significantly improve
modelling and statistical analysis, for example, detect-
ing change points in the log growth rate of Fig. 12 to
confirm the choice of partition at t∗ in (8).
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