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Abstract

Advances in single-cell RNA sequencing (scRNA-seq) technologies in the past 10 years have had 

a transformative effect on biomedical research, enabling the profiling and analysis of the 

transcriptomes of single cells at unprecedented resolution and throughput. Specifically, scRNA-seq 

has facilitated the identification of novel or rare cell types, analysis of single-cell trajectory 

construction and stem or progenitor cell differentiation, and comparison of healthy and disease-

related tissues at single-cell resolution. These applications have been critical in advances in 

cardiovascular research in the past decade, as evidenced by the generation of cell atlases of 

mammalian heart and blood vessels and the elucidation of mechanisms involved in cardiovascular 

development and stem or progenitor cell differentiation. In this Review, we summarize the 

currently available scRNA-seq technologies and analytical tools and discuss the latest findings 

using scRNA-seq that have substantially improved our knowledge on the development of the 

cardiovascular system and the mechanisms underlying cardiovascular diseases. Furthermore, we 

examine emerging strategies that integrate multimodal single-cell platforms, focusing on future 

applications in cardiovascular precision medicine that use single-cell omics approaches to 
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characterize cell-specific responses to drugs or environmental stimuli and to develop effective 

patient-specific therapeutics.

ToC blurb

Single-cell RNA sequencing (scRNA-seq) technologies have helped to identify rare cell 

populations and allowed the comparison of healthy and diseased tissues at single-cell resolution. 

This Review discusses the available scRNA-seq tools and summarizes the scRNA-seq findings that 

have contributed to our understanding of cardiovascular development and disease.

Introduction

The use of traditional gene-expression analysis techniques, such as quantitative PCR [G], 
microarray [G] and bulk RNA sequencing [G], involves pooled populations of cells, in 

which gene-expression levels are averaged among a heterogeneous population and reported 

as a single data point1. Such measurements can be misleading, especially in populations 

with a high degree of cellular and transcriptomic heterogeneity consisting of different cell 

types or indiscriminate states. In the analyses of samples comprising multiple cell types 

defined by established surface-membrane protein markers, target-cell populations can first 

be sorted using fluorescence-activated or conjugated magnetic bead-assisted methods and 

analysed individually2. Although these methods have indeed produced important findings, 

they are laborious and expensive and are not capable of completely discerning the full 

spectrum of cell heterogeneity, leaving some subpopulations of cells uncharacterized. The 

advent of single-cell RNA sequencing (scRNA-seq) technologies has addressed this 

limitation by facilitating the analysis of the transcriptome [G] of every cell in a given sample 

at a high resolution and depth3,4. Of note, scRNA-seq allows the unbiased assessment of 

cellular heterogeneity, identification of new cellular states and populations, and elucidation 

of dynamic cellular transitions during development and differentiation at unprecedented 

resolution and accuracy5 (Figs 1,2). For these reasons, scRNA-seq technology has had an 

immediate and profound effect on the field of cardiovascular research.

Applications of scRNA-seq technology in cardiovascular research are wide-ranging (Fig. 2). 

Beyond the identification of rare subpopulations of cells, scRNA-seq also enables cellular 

trajectory analysis [G] on the basis of each cell’s transcriptome, which has proven to be 

particularly useful in elucidating cell state transitions during development and progenitor or 

stem cell differentiation. Furthermore, scRNA-seq has enabled the generation of 

transcriptomic and epigenetic atlases of important tissues in adult mice6–8 and human 

fetuses9–12, including those from the heart and the coronary vessels. With such datasets, 

organ-specific or tissue-specific transcriptomic features of common cardiovascular cell 

types, such as endothelial cells, vascular smooth muscle cells and fibroblasts, can be 

assessed to shed light on the functional heterogeneity of ubiquitously present cell types that 

underlie their organ-specific roles. Given the capacity of scRNA-seq to cross-analyse the 

single-cell transcriptome of multiple cell types present in a given sample, intercellular 

communication via ligand-to-receptor binding can also be predicted on the basis of gene 

expression13. These types of analyses are expected to be further complemented by advances 

in spatial transcriptomics14–18, notably by the use of RNA-seq with spatially barcoded 
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primers on a fixed and permeabilized section of tissue to map the transcriptomic information 

from the known coordinates of the tissue. Importantly, the combination of single-cell 

genomics, transcriptomics, epigenomics and proteomics will be critical in evaluating cell 

population heterogeneity and its contributions to patient-specific drug responses and adverse 

effects.

In this Review, we explore the experimental workflow and applications of scRNA-seq, 

discuss relevant data analysis strategies and summarize published findings using scRNA-seq 

in cardiovascular research. In addition, we describe the potential of integrating multimodal 

single-cell omics platforms, which is expected to improve our ability to interrogate the gaps 

in our knowledge in the cardiovascular field and accelerate the advancement of precision 

medicine.

Single-cell RNA sequencing techniques

Experimental workflow

A variety of single-cell methods have been developed in the past 10 years with divergent 

approaches for cell capture and amplification, as well as differences in mRNA transcript 

length, number of target-cell captured and read depth per cell19. Each method has unique 

advantages and disadvantages, but generally, all scRNA-seq techniques developed to date 

share a common workflow (listed in order): sample preparation, single-cell capture, reverse 

transcription and amplification, library preparation, sequencing and analysis5 (Fig. 1).

Adequate sample preparation is a prerequisite in generating robust single-cell transcriptome 

data. Given that every biological sample has its own set of characteristics, the protocol 

should be optimized depending on a broad range of factors, including tissue or cell types, 

culture conditions (for example, suspension versus adherent), extracellular matrix content 

and cell viability. A critical step during sample preparation, particularly for dense tissues and 

3D organoid models, is single-cell dissociation that is typically achieved enzymatically 

under gentle mechanical agitation (and in some cases with tissue perfusion) to limit 

excessive cell lysis and background noise. The choice of proteolytic enzyme (such as 

trypsin, collagenase and liberase) and the duration of digestion should also be carefully 

optimized to maximize single-cell yield while minimizing cell death. When the cells are 

fully dissociated, they are isolated into single cells using a variety of cell-capture techniques 

that range from plate-based separation of cells to microdroplet-based approaches. The 

maintenance of a high number of isolated viable cells, typically in the order of ≥10,000 

cells, is key to improving data quality, and the method of cell capture is often determined by 

the properties of the sample of interest (such as cell size).

When the single cells are successfully captured, they are lysed and processed to create first-

strand cDNA by reverse transcription and subsequently undergo second-strand synthesis and 

PCR amplification. Some scRNA-seq methods (such as the Fluidigm C1 system) require as 

many PCR amplification reactions as the number of cells profiled, but other techniques (such 

as droplet-based approaches) allow for pooled PCR using cell barcoding techniques (for 

example, the 10× Genomics Chromium Single Cell 3ʹ platform), which substantially reduce 

costs and improve throughput20. After PCR amplification and library preparation, the 
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samples are processed for sequencing. Gene expression within single cells can be quantified 

by sequencing either the 3ʹ-end, the 5ʹ-end or the full-length transcript, which can retain 

information on splice variants and immune cell antigen repertoire diversity. Data generated 

from sequencing are then analysed beyond simple quantification of gene expression to 

include in-depth examination of cell heterogeneity, lineage transitions and intercellular 

communication.

Plate-based or microwell-based methods

Current scRNA-seq techniques can be categorized according to the method of single-cell 

isolation and capture (Table 1), which determines the throughput, depth and scale of the 

analysis. Plate-based or microwell-based protocols use either automated micropipettes or 

fluorescence-activated cell sorting [G] (FACS) to isolate individual cells into 96-well or 384-

well plates containing a lysis buffer and other processing reagents. A major advantage of this 

method is the possibility for long-term storage of the cell sample before analysis, which 

provides flexibility in experimental planning and coordination. Furthermore, full-length 

transcript sequencing facilitates the identification of isoform splicing in single cells, and this 

approach also allows for the profiling of all cells independent of type or size, permitting 

analysis of large and rod-shaped cells, such as adult cardiomyocytes21. Plate-based 

platforms generally have high sensitivity and can reliably quantify up to 10,000 genes per 

cell. One downside of this approach, however, is that reverse transcription must be 

performed in individual wells, which can slow down the workflow, limit throughput and 

increase noise in downstream analyses.

Microfluidic-based methods

Automated microfluidic-based platforms, such as the Fluidigm C1 system using Smart-seq 

(Switching Mechanism At the 5ʹ-end of the RNA Transcript sequencing)22–24, were among 

the earliest scRNA-seq techniques to be introduced and widely commercialized. The C1 

system separates and isolates single cells using narrow parallel microfluidic channels, where 

cell capture, lysis, reverse transcription and multiplexing take place within an integrated 

fluidic circuit chip. A key feature of this approach is the option of viewing captured cells 

under the microscope before reverse transcription and amplification25. In addition, the small 

volumes (<150 nl per well) of cell suspension required for the technique help to reduce the 

risk of external contamination25. These methods are high in sensitivity and use full-length 

transcript sequencing, allowing the characterization of isoform slicing, single-nucleotide 

variants and transcription start sites, and the detection of monoallelic and imprinted genes24. 

However, in many cases, microfluidic-based platforms require the input of >10,000 cells and 

are often limited in terms of scale and throughput (~100 to ~1,000 cells per analysis) owing 

to the limited number of single-cell capture sites per microfluidic array. Furthermore, this 

approach also requires homogeneity in cell size and is costlier than other techniques, 

limiting its use for large-scale experiments. On the basis of the cell expression by linear 

amplification and sequencing (CEL-seq) method that combines linear amplification by in 

vitro transcription and pooling of barcoded samples to facilitate analysis of many samples in 

parallel26, a CEL-seq2 protocol was implemented on the Fludigm C1 platform to enable a 

single library construction and to increase the sensitivity of transcript and gene detection27. 

Compared with Smart-seq methods that can capture full-length transcripts22–24, CEL-seq2 is 
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limited to 3ʹ-end reading and, therefore, cannot detect alternative splice forms, microRNAs 

or other non-polyadenylated transcripts.

Droplet-based methods

Droplet-based methods involve the analysis of single cells encapsulated in oil droplets using 

DNA barcoding technology, which substantially reduce the time and cost needed per 

analysis. Massive parallelization increases the number of cells profiled for a given run to up 

to ~10,000 cells per sample20,28. Of note, the commercial Chromium system (10× 

Genomics) enables 3ʹ-end or 5ʹ-end sequencing of single cells with increased scale and 

throughput compared with plate-based or microfluidic-based methods, albeit with a trade-off 

in sensitivity and read depth. Droplet-based methods quantify transcripts by 3ʹ-end or 5ʹ-end 

sequencing and have reduced transcript recovery rates (3–10%) compared with other 

existing methods (10–20%)29, with target read depth per cell ranging from 104 to 105 

reads25. Nevertheless, the sensitivity of these protocols remains sufficient for large-scale 

profiling of complex heterogeneous samples and is expected to improve with continued 

protocol optimization and reductions in cost.

Single-cell capture and sequencing

Cell-capture and quality-control strategies as well as widely used data-analysis approaches 

are discussed below, as are unique features and limitations in the use of scRNA-seq for 

cardiovascular cells. Technical details of data-analysis pipelines and algorithms have been 

reviewed previously25,30.

Single-cell dissociation and preparation—Cell-capture methods differ depending on 

the scRNA-seq technique used and the origin of the cells. To ensure high-quality scRNA-seq 

data, proper tissue disaggregation into single cells before cell capture is critical. The main 

challenges of single-cell preparation include the fragility of the starting sample, physical 

stress, choice of buffers, duration of cell dissociation and yield of single cells31. Minimum 

handling while preserving sample integrity and standardization between experiments and 

runs are key to reducing data variability. Reduction in ‘hands-on’ time minimizes human 

error and improves consistency and quality of data. For microdroplet-based scRNA-seq, live 

populations of single cells need to be prepared before single-cell capture, and aggregates or 

clumps of cells, dead cell debris and free-floating mRNA must be eliminated. From our own 

experience, we believe that separation of cultured cells is fairly straightforward, given that 

conventional cell-dissociation methods are sufficient for single-cell preparation. By contrast, 

enzymatic digestion of primary tissue to single viable cells must be optimized to avoid 

losing populations of cells that might be more fragile or prone to cell death. Digestion 

methods should also be optimized according to the tissue of origin, given that the 

extracellular matrix composition and mechanics of the tissue type might profoundly 

influence the choice of digestion enzyme, as well as the temperature and duration of 

digestion32. The labelling of live cells with dyes such as calcein acetoxymethyl (calcein 

AM), followed by FACS for positive selection of live single cells, is recommended 

immediately after dissociation. Conversely, nucleic-acid-binding dyes, such as propidium 

iodide or 7-aminoactinomycin D (7-AAD), bind to free-floating, double-stranded nucleic 

acid, allowing the use of FACS to isolate live cells by negative selection. In our experience, 
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the use of commercially available cell-debris removal solutions during single-cell 

preparation can help to increase sample cleanliness and the accuracy of target cell count, 

especially for cell preparations with <70% viability.

At present, microdroplet-based scRNA-seq cannot be performed in adult cardiomyocytes 

that measure 120–200 μm in the long axis, because the microdroplets have a diameter of 40 

μm. Single-cell nuclei isolation and sequencing are alternative approaches for the analysis of 

adult cardiomyocytes33–35, although the diploid or multiploid nature of these cells should be 

taken into account. However, human fetal cardiomyocytes, which are smaller in size, can 

easily be captured on microdroplet-based platforms. Unlike droplet-based methods, plate-

based or microfluidic-based scRNA-seq can accommodate cells of all sizes and shapes, but 

are limited by laborious and expensive single-cell selection and isolation12. At present, adult 

cardiomyocytes are typically isolated by FACS using a commercial cell sorter with a 130 μm 

microfluidic channel36. However, this method might induce terminal damage to the live 

cardiomyocytes. To that end, the isolation of viable single cardiomyocytes via large-particle 

FACS (using a sorter with nozzle diameter of 500 μm) has been shown to preserve the RNA 

quality of the adult isolated single cardiomyocytes better than with the conventional sorter 

(with a nozzle diameter of 70–130 μm)36.

Quality control and normalization—When single-cell capture, library preparation and 

sequencing are complete, read alignment can be applied to raw sequencing data to generate 

feature-barcode matrices with publicly available platforms (such as the Cell Ranger by 10× 

Genomics) using the universal RNA-seq read aligner STAR. Cell Ranger can also filter and 

count barcodes and unique molecular identifiers, as well as normalize data from multiple 

experiments to the same sequencing depth. Other pre-processing pipelines, such as dropEst, 

Dr.seq2 and scPipe, are also available for expression matrix generation. Existing tools used 

for bulk RNA-seq data for the removal of cells with low-quality reads, such as FastQC or 

RNA-SeQC37, can be useful in processing scRNA-seq data. Detailed quality control and 

normalization methods have been previously published30,38.

After alignment, a number of R packages [G] or python packages [G] can be used for 

quality control, visualization and analysis of data. To date, Monocle39, Scanpy40, Scater41, 

Scell42, Seurat43 and SINCERA44 packages are the most frequently used for user-driven, 

unsupervised single-cell gene-expression analyses. Using Seurat, various quality-control 

parameters, such as mitochondrial gene percentage, total gene count and number of unique 

molecular identifiers per cell, can be visualized43. Cells can subsequently be filtered on the 

basis of user-defined thresholds of these parameters for downstream analysis. Of note, 

cardiomyocytes have an exceptionally high mitochondrial gene content (58–86% of total 

transcripts) compared with all other cell types (5–20%)21.

Dimensionality reduction—The multidimensional nature of scRNA-seq data, in which a 

single dimension represents the expression of a single gene, must be reduced for 

interpretable visualization and analysis. To date, various algorithms for dimensionality 

reduction and unsupervised clustering have been developed. The computational and 

biological advantages and disadvantages in selecting the optimal algorithm for a dataset of 

interest must be considered, because no single approach is considered the gold standard. 
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Additional details on differences and the specific nature of various algorithms have been 

previously published45,46.

With the advent of droplet-based scRNA-seq, datasets with ever-increasing size are 

generated from a greater number of cells captured, providing greater power and improving 

the capacity to identify rare cell populations. In addition, linear transformation such as 

principal component analysis [G] (PCA) cannot capture cellular relationships owing to high 

levels of dropout and noise46. Nonlinear dimensionality reduction algorithms, such as t-

distributed stochastic neighbour embedding [G] (tSNE)47 and uniform manifold 

approximation and projection [G] (UMAP)48 are consequently becoming more popular 

given their flexibility and capacity to generate visually interpretable results.

Accordingly, publicly available packages allow for the projection and visualization of both 

tSNE and UMAP from the user-defined PCAs43. The resolution of nonlinear dimensionality 

reduction, or the k-means value, can be set and adjusted by the user. No single k-means 

value or the resolution, which is directly related to the number of clusters generated, is 

impartially correct, requiring the researcher to verify in biological and physiological terms 

whether the number and the types of clusters obtained from a chosen resolution are indeed 

valid.

Data analysis

Unsupervised cell population clustering

A prominent advantage of scRNA-seq over traditional bulk analyses is the identification and 

characterization of heterogeneous cell populations present in a given sample. In biological 

terms, cell populations in the heart represent different cell types, such as cardiomyocytes, 

endothelial cells, fibroblasts and immune cells, but they can also represent different 

functional states of identical cell types, such as ventricular, atrial or pacemaker 

cardiomyocytes, or angiogenic versus quiescent endothelial cells. Therefore, unsupervised 

clustering approaches must be performed to define cell populations and to confirm 

empirically whether the cell populations defined by mathematical clustering indeed 

represent biologically relevant or correct cell types or states (Fig. 3).

In single-cell studies, supervised clustering refers to the machine learning approach that 

dictates whether a cell belongs to a cluster on the basis of exemplary cell-to-cluster pairs. 

For example, MetaNeighbor allows users to assess how cell-type-specific transcriptional 

signatures are replicated across independent datasets49. Conversely, unsupervised clustering 

involves machine learning of the structure within the data itself without any intervention 

from other datasets.

A number of clustering strategies based on machine learning algorithms have been 

established50. One popular strategy is the k-means approach that iteratively identifies the 

closest k cluster centre to which each cell is assigned. This strategy is an example of 

unsupervised clustering, given that the number of clustering k is a parameter arbitrarily 

defined by the users and not learned from any previous datasets. This approach is generally 

used after feature selection and dimensionality reduction and does not require heavy 
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computing power. The main disadvantage of the k-means approach is that it assumes a 

predetermined number of round, equally sized clusters, which when violated results in 

failure to detect possible rare cell populations.

Another widely used method is hierarchical clustering, which combines individual cells into 

larger clusters or divides clusters into smaller subclusters46. This strategy involves 

calculation of the distance between cells using measurements such as Euclidean distance 

tools [G]. The hierarchical clustering approach is slower than k-means, but allows the 

identification of relationships among clusters of different granularities. Hierarchical 

clustering methods include clustering through imputation and dimensionality51, 

pcaReduce52 and SINCERA44.

Graph clustering is a third approach involving community detection-based algorithms that is 

widely used for analysis of larger datasets. The advantage of community detection methods 

is its scalability to millions of cells. The Louvain algorithm is currently one of the most 

popular community detection algorithms used in scRNA-seq data analysis46. This approach 

first treats each individual cell as an independent cluster, then performs modularity 

optimization in a stepwise manner. For each cell, the algorithm checks if the network 

modularity can be increased by moving the cell from its current cluster to another cluster. 

Subsequently, the cells belonging to the same cluster are aggregated as a ‘super’ cell to form 

a new network. These two steps are repeated iteratively until the modularity cannot be 

increased any further. The Louvain algorithm can be performed using the PhenoGraph53 and 

Seurat43 methods. Other independent unsupervised clustering approaches include Bayesian 

Information Criterion and Akaike Information Criterion, which can be applied to estimate 

the optimal number of clusters54.

Lineage reconstruction—Cell-trajectory analysis tools enable temporal ordering of cell 

lineage or biological states of populations of cells from multiple time points during 

development or stem or progenitor cell differentiation, in the notion of ‘pseudotime’, a scalar 

measure of a cell’s path along time in an unsupervised manner55. In the past 5–6 years, four 

main types of lineage reconstruction algorithms have been developed on the basis of 

dimensionality reduction, the nearest neighbour graph, cluster networks and RNA velocity. 

The computational and biological details of each approach and how the combination of 

single-cell transcriptomics and genetic lineage tracing can advance our understanding of 

development, tissue homeostasis and disease have been described previously56. Lineage 

reconstruction tools have been particularly useful in delineating coronary artery 

development57, first and second heart field progenitor specification58, and gene-expression 

changes in all major cell types involved in human heart development12.

In the past year, lineage tracing beyond expression-based computational reconstruction has 

been made possible by tracking somatic mutations in mitochondrial DNA (mtDNA), using 

either scRNA-seq or an analogous method for assessing chromatin accessibility (such as a 

single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq))59,60. 

Mutation rates for mtDNA are typically 10-fold to 100-fold greater than those for nuclear 

DNA, and investigators in numerous studies have exploited this difference to demonstrate 

that the accumulation of mtDNA mutations could be used as endogenous genetic barcodes to 
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trace cell lineages both in vitro and in vivo59,60. mtDNA sequence variations have been 

tracked for the reconstruction of cellular relationships in clonal mixtures of haematopoietic 

cells and solid tumours59. This approach enabled a 1,000-fold increase in clonal tracking 

scale compared with that by nuclear genome sequencing. A similar method formed on the 

basis of scATAC-seq (epigenome and mitochondrial barcode of lineage from endogenous 

mutations, or EMBLEM) was developed concurrently to facilitate the analysis of clonal 

evolution of haematopoietic stem cells and their progenies in patients with acute myeloid 

leukemia60. These single-cell methods complement the existing genetic lineage-tracing 

technology and extend clonal tracking studies to virtually any cell or tissue type in any 

eukaryotic organism, including human cardiovascular tissues.

Prediction of intercellular communication—Paracrine signalling pathways are 

virtually impossible to analyse and interpret among different cell and tissue types using 

traditional bulk analysis tools. The development of informatics tools for analysing scRNA-

seq data offers a promising solution for the investigation of intercellular communication and 

signalling within a given sample. For example, a list of >2,000 mouse ligand–receptor pairs 

has been constructed on the basis of an existing human database13 to analyse the expression 

patterns of ligand–receptor pairs in each cell type in the adult mouse heart61. Surprisingly, 

the analysis revealed a dense communication network among the non-cardiomyocyte 

populations; cardiac fibroblasts were identified as the most trophic cell population, with 

intimate multicellular connections that support the survival of specific neighbouring cell 

populations. In the fetal mouse heart, intercellular communication analysis was performed to 

identify epicardium-secreted and endocardium-secreted paracrine factors that regulate 

cardiomyocyte proliferation and the transition of trabecular-to-compact myocardium during 

heart formation62. scRNA-seq of human induced pluripotent stem cells [G] (iPSCs) 

subjected to endothelial cell differentiation similarly revealed extensive intercellular 

interactions and molecular crosstalk among various cell types generated during 

differentiation63. However, these interaction networks do not take into account the actual 

anatomical positions or boundaries of cell types, nor do they provide definitive evidence of 

cellular crosstalk. Adequate in vivo or in vitro experiments, including but not limited to 

FACS, immunohistochemistry [G], in situ hybridization [G] or enzyme-linked 

immunosorbent assay [G] (ELISA) should be performed on the corresponding biological 

samples to validate in silico cell-type identification and ligand–receptor pair prediction 

analysis. Nevertheless, these aforementioned tools are powerful for large-scale, unsupervised 

prediction of multicellular signalling pathways within a heterogeneous population of cells. 

Intercellular communication prediction analyses using scRNA-seq can therefore 

complement various orthogonal methods (such as proteomics) and imaging modalities for 

the discovery and elucidation of new mechanisms of cellular crosstalk.

Generation of cardiovascular cell atlases

Cardiac development

scRNA-seq has been used to profile a broad range of tissues and cell types of the 

cardiovascular system (Table 2). In 2016, two groups independently generated single-cell 

maps of all major cardiac cell types at various stages of development by profiling 
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anatomically defined regions of the embryonic heart64,65. Li and colleagues used a random 

forest algorithm to analyse the transcriptional profiles of E8.5–E10.5 mouse hearts and were 

able to predict with >91% accuracy the anatomical locations of individual cardiomyocytes 

during development, including lineage-traced cells marked by islet 1 (ISL1; also known as 

insulin gene enhancer protein ISL1) that populate the outflow tract and right ventricle64. 

DeLaughter and colleagues used a similar approach, profiling cells from E9.5 to postnatal 

day 21 hearts to uncover stage-specific cardiomyocyte transcriptional programmes during 

embryonic and postnatal maturation65. Both studies found that a deficiency in homeobox 

protein Nkx-2.5 resulted in severe defects in cardiomyocyte maturation and described 

substantial heterogeneity of known cardiac cell types in the developing embryo52,53.

scRNA-seq has also proven exceptionally useful for the identification of mechanisms that 

regulate the emergence and segregation of early cardiac lineages that form the heart. Single-

cell transcriptome profiling of mouse wild-type and Mesp1-negative cardiovascular 

progenitor cells (CPCs) has shown, for example, that Mesp1 is required for progenitor cell 

exit from pluripotency and induction of cardiac gene-expression programmes during early 

gastrulation66. Distinct Mesp1 CPC populations were found to correspond to progenitors 

that give rise to different lineages and anatomical regions of the heart, and key molecular 

fingerprints associated with lineage commitment and diversification during early 

cardiogenesis were identified, as previously shown by Cre–loxP-mediated lineage-tracing 

studies67. scRNA-seq of Nkx2–5+/– and Isl1+/+ CPCs has also led to the identification of 

previously unknown progenitor subpopulations during the early phase of cardiac fate 

decision-making68. Analysis of developmental trajectories also revealed that prolonged 

expression of Nkx-2.5 commits CPCs to a unidirectional cardiomyocyte fate, whereas 

Isl1+/+ CPCs pass through an attractor state before diverging into multiple developmental 

branches68. Similarly, scRNA-seq of cells isolated from Nkx-2.5 and ISL1 lineage-tracing 

embryonic mouse hearts to assess differentiation of first and second heart field progenitors 

led to the identification of differences in differentiation kinetics between the two progenitor 

cell types and revealed the presence of intercellular communication among CPCs and the 

terminally differentiated cardiovascular cells69. Likewise, scRNA-seq analysis of 

cardiopharyngaeal development in tunicate Ciona intestinalis revealed distinct molecular 

signalling pathways in first and second heart lineages58. A network-based computational 

method has also been used to predict lineage-specifying transcription factors, from which 

Hand2 was identified as a marker of the presence of outflow tract cells, but not right 

ventricular cells70. Interestingly, the right ventricle was not properly formed in Hand2-

negative mouse embryos, and subsequent scRNA-seq analysis showed that the failure of 

outflow tract myocardium specification, not right ventricular myocardium specification, was 

responsible for the congenital heart defect phenotype. These findings show that 

understanding the pathogenic mechanisms of congenital heart disease at the single-cell level 

is critical in accurately defining and locating subpopulations of cells that underlie 

phenotypic presentation of the disease. Moreover, future applications of single-cell 

sequencing will help to identify unique patient-specific aetiologies, which might vary in 

pathobiology owing to differential cell heterogeneity and gene-expression patterns that 

nonetheless elicit a shared disease phenotype.
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Adult cardiac homeostasis and disease

In addition to embryonic and postnatal hearts, single-cell transcriptomics have been used to 

characterize cell subpopulations in the hearts of adult mice. Through scRNA-seq of non-

cardiomyocyte cells from uninjured adult mouse hearts, an extensive network of intercellular 

communication was identified among endothelial cells, cardiac fibroblasts and immune cells 

that is potentially involved in the maintenance of cardiac homeostasis61. Furthermore, 

cardiac cell-type-specific and sex-specific differences in gene expression might also be 

involved in cardiac homeostasis and remodelling. Single-nucleus RNA sequencing of 

postnatal mouse hearts led to the discovery of cell-type-specific defects in a mouse model of 

paediatric mitochondrial cardiomyopathy34. Furthermore, analysis of adult hearts under both 

homeostatic conditions and after ischaemic injury using SORT sequencing71 revealed 

multiple subpopulations within known cell types21. All cells in the adult mouse heart, 

including cardiomyocytes, were isolated using FACS through a large nozzle measuring 130 

μm in diameter; the use of a high forward scatter width led to enriched isolation of large and 

irregularly shaped adult cardiomyocytes, as confirmed using a tdTomato reporter lineage-

tracing approach. Two independent groups were able to obtain viable adult cardiomyocytes 

by Langendorff-free, enzymatic dissociation of ventricular tissue21,72, whereas another 

research group reported difficulties in isolating viable and unfragmented ventricular 

cardiomyocytes without using a Langendorff apparatus72. Gladka and co-workers 

demonstrated that ischaemia–reperfusion triggered the emergence of a previously unknown 

cell subpopulation within various cell types and identified an increase in Ckap4 in activated 

fibroblasts21. Using Langendorff perfusion and chunk-based methods73 to dissociate mouse 

and human ventricles, respectively, Nomura and colleagues performed scRNA-seq of adult 

cardiomyocytes on the Smart-seq2 platform to identify gene modules of hypertrophic 

cardiomyocytes at the single-cell level74. Notably, Monocle-based cellular-trajectory 

analysis of cardiomyocytes at various time points from mice that had undergone transverse 

aortic constriction revealed the critical role of the p53–myocyte-specific enhancer factor 2–

nuclear factor erythroid 2-related factor 2 signalling axis in promoting the activation of 

pathogenic gene programmes in a subpopulation of hypertrophic cardiomyocytes after 

accumulation of oxidative DNA damage. These findings were corroborated by data obtained 

by scRNA-seq of cardiomyocytes from patients with heart failure74. scRNA-seq of border-

zone cardiomyocytes in cryoinjured zebrafish hearts revealed that the single-cell 

transcriptome of border-zone cardiomyocytes after injury resembled that of embryonic 

cardiomyocytes, which explained the observed switch of trabecular cardiomyocytes to 

cortical cardiomyocytes during zebrafish cardiac regeneration, giving rise to both trabecular 

and cortical cell types75.

To investigate endothelial cell heterogeneity in newly formed blood vessels after myocardial 

infarction (MI), Li and colleagues performed droplet-based scRNA-seq of endothelial cells 

isolated from endothelial-specific lineage-tracing mouse hearts at baseline and 7 days after 

MI76. Among the ten endothelial cell clusters identified by PCA, five clusters were 

substantially enriched in the hearts after MI compared with controls, together with an 

upregulation in genes associated with cardiac remodelling, endothelial cell–extracellular 

matrix interaction, proliferation and cell-cycle regulation. Plasmalemma vesicle-associated 

protein (PV1) was highly expressed in three of the five clusters in both mouse models of MI 
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and human hearts after MI77. Interestingly, this increase in expression of PV1 was localized 

to the endothelial cells in the infarct border zone, a molecular pattern shared by the 

localization of growth factors that promote endogenous cardiac tissue repair after MI. 

Similar analyses in cardiac fibroblasts and immune cells 7 days after MI revealed a dynamic 

flux of these non-cardiomyocyte cell populations, each with their own intermediate 

transition states and unique transcriptional signatures78.

Taken together, an increasing number of studies have used scRNA-seq to shed light on the 

roles of various non-cardiomyocyte cell populations after MI, advancing our understanding 

of microenvironment changes during ischaemic tissue remodelling. Future studies would 

benefit from a more in-depth mechanistic investigation of the specific functions of these cell 

types and transition states, particularly at various stages after injury, such as during early 

acute inflammation (1 day after MI) and late remodelling (30 days after MI). Such an 

investigation would allow for better characterization of the dynamics of endothelial-to-

mesenchymal transition during pathological cardiac fibrosis79,80 or mesenchymal-to-

endothelial transition during neovascularization81. For now, transcriptomic investigation and 

subsequent validation of intercellular communication between non-cardiomyocyte cells and 

cardiomyocytes during tissue repair and remodelling have not been adequately studied, and 

filling in these gaps in our knowledge is critical to improving our understanding of the 

cellular responses involved in the different phases of cardiac injury and repair.

scRNA-seq has also been performed to profile the gene-expression landscape of cardiac cells 

from human embryos12. Approximately 4,000 anatomically defined cardiac cells from 18 

human embryos (ranging from 5 to 25 weeks of gestation) were profiled by single-cell 

tagged reverse transcription sequencing to map the developmental trajectory of the human 

heart. Four major cardiac cell types (cardiomyocytes, endothelial cells, fibroblasts and valve 

interstitial cells) were identified, and both cardiomyocytes and fibroblasts were shown to 

undergo stepwise changes in gene expression during development12. Importantly, a 

comparative analysis between human and mouse hearts revealed several features unique to 

human heart development, suggesting the presence of interspecies differences that might not 

be evident in bulk analyses, but which might be discernible at the single-cell transcriptome 

level. Cui and co-workers compared four major cell types in the developing heart 

(cardiomyocytes, endothelial cells, fibroblasts and epicardial cells) between mouse and 

human scRNA-seq datasets and reported that among the cell types studied, cardiomyocytes 

from humans and mice were the most transcriptionally similar12. Further transcriptome 

analysis revealed that cardiomyocytes at E10.5 in mice and 7 weeks in humans were the 

most similar, whereas 5-week-old fibroblasts from humans were most similar to those in 

mice at E9.5, indicating an asynchronous timeline between mice and humans in 

differentiation and maturation of cardiac cell types during development. Furthermore, 

RNASE1 was found to be specifically expressed in human endothelial cells, THY1 in human 

fibroblasts, and CFB and ITLN1 in human epicardial cells, which were all expressed at low 

levels in the mouse heart. By contrast, Icam2 was specifically expressed in mouse 

endothelial cells and Rnf213 in mouse epicardial cells, highlighting both interspecies 

similarities and differences in the gene-expression profiles of different cell types. Efforts to 

generate a large-scale, single atlas of human adult hearts are currently underway, notably 

with the use of single-nuclei RNA-seq of cardiomyocytes and scRNA-seq of non-
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myocytes82. Altogether, these studies demonstrate the utility of scRNA-seq in providing 

insight into cell–cell variability and in identifying key transcriptional programmes in cardiac 

development and disease.

Vascular and haematopoietic cells

Coronary vessel formation is a highly dynamic and well-orchestrated developmental 

process. Although the development of arteries and veins is governed by transcriptional 

programmes that are antagonistic to each other, pre-existing veins can often give rise to neo-

arteries through an unknown cell-fate conversion during development and regeneration83,84. 

scRNA-seq technology has been critical in elucidating these dynamic cell transitions in 

vascular development. For example, combining scRNA-seq with lineage-tracing transgenic 

mice has revealed that coronary arteries are formed by a specific pre-artery population 

derived from vein cells during development57. Vein cells were found to switch gradually 

from a venous to an arterial phenotype, until a subpopulation of cells overcame a 

transcriptional threshold to transition into the pre-artery state. The vein-specifying 

transcription factor COUP transcription factor 2 (COUP-TF2) was established as a key 

mediator of this fate switch, providing molecular insight into the mechanisms of vein-

derived artery formation. A single-cell atlas of the aorta in healthy adult mice identified all 

cell types of the aorta and its subpopulations85, and a comparison of aortas from young (8 

weeks) and old (18 months) mice showed substantial transcriptomic differences in the 

endothelial cell populations86.

scRNA-seq has also been used to characterize cell states and fate decisions in major vascular 

diseases. Atherosclerotic arteries are composed of a broad range of cell types, including 

endothelial cells, vascular smooth muscle cells (VSMCs) and immune cells, which all show 

varying levels of plasticity and sensitivity to extracellular cues87–90. In particular, VSMCs 

are known to be highly plastic despite being a terminally differentiated cell type, and the use 

of single-cell analysis has been instrumental in delineating the cellular phenotypic 

modulation of VSMCs to a unique fibroblast-like cell (termed ‘fibrocytes’)91. Furthermore, 

single-cell analysis has facilitated the identification of specific histone variants that direct 

VSMC differentiation states in human atherosclerotic vessels92. Atherosclerotic arteries are 

also typically characterized by a large number of immune cells, including several 

macrophage subsets whose function and phenotype are poorly characterized, in part owing 

to a restricted number of markers. To this end, the application of unsupervised clustering 

analysis of scRNA-seq data involving macrophages in healthy and atherosclerotic aorta can 

allow the identification of myeloid subpopulations enriched in the diseased aorta compared 

with healthy controls93. These subsets included monocytes, monocyte-derived dendritic cells 

and two macrophage populations enriched in inflammatory molecules that activate 

triggering receptor expressed on myeloid cells 2 (TREM2) and IL-1β seen almost 

exclusively in atherosclerotic aorta. Similarly, a single-cell profiling approach was used in 

combination with mass cytometry [G] (CyTOF) to generate a broader atlas of the immune-

cell repertoire in mouse atherosclerotic plaques94. In total, 11 distinct leukocyte populations 

were identified in diseased aorta, including three principal B cell subpopulations, in addition 

to several cell-type-specific pathways that were enriched in aortic leukocytes. Importantly, 

the composition of aortic leukocytes was predictive of clinical events in patients with 
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atherosclerosis, indicating the translational potential of single-cell analyses. scRNA-seq of 

aortic endothelial cells from the descending aortas of mice aged 6–8 weeks revealed three 

major cell populations: mature vascular endothelial cells, endothelial cells with 

mesenchymal signatures and endothelial cells with inflammatory signatures95.

Organ atlases

In addition to characterization of specific tissues or organ systems, single-cell transcriptome 

profiling has also been performed on a larger scale to establish a comprehensive cell atlas of 

various major organs6,7. Using combinatorial indexing [G], a mouse organogenesis cell atlas 

was generated from 2 million cells in 61 mouse embryos at day 9.5–13.5 of gestation, 

allowing the visualization of developmental trajectories of all cell types96. A compendium of 

single-cell transcriptomic data named ‘Tabula Muris‘ that involved 100,000 cells from 20 

different adult mouse organs and tissues was also generated using both FACS-based and 

droplet-based scRNA-seq methods6. The dataset has been particularly useful for determining 

gene-expression differences in cell types that are present in many tissues, such as endothelial 

cells, cardiac fibroblasts and tissue-resident immune cells (such as macrophages). The 

identification of gene-expression fingerprints and unique surface marker proteins can 

improve the isolation and characterization of these cells, opening doors for novel targeted 

therapy. The Tabula Muris compendium is publicly available, allowing researchers in all 

fields not only to use it as a biological reference, but also to contribute further to its analysis 

in greater detail. A similar atlas of single-cell chromatin accessibility has been constructed 

on the basis of combinatorial indexing (sci-ATAC-seq) to assess 13 different adult mouse 

tissues8. Pairing of sci-ATAC-seq data with the aforementioned scRNA-seq atlases has 

revealed remarkably concordant cell-type assignments for most overlapping organs, 

although some discrepancies were found in the lung and brain. These integrative approaches 

hold great promise for unravelling complex mechanisms of epigenetic and transcriptional 

regulation across different tissues and cell types. Multi-institutional consortia have been 

formed and are currently working to generate human cell atlases, including the Human Cell 

Atlas consortium97 by the Chan Zuckerberg Initiative and The Human BioMolecular Atlas 

Program (HuBMAP)98 by the NIH, which will enable characterization of changes in all cell 

types within the human adult heart during natural ageing and in response to disease (Fig. 4). 

Finally, publicly accessible databases of scRNA-seq studies, such as PanglaoDB, 

scRNASeqDB and Single Cell Portal, are available online, where scRNA-seq datasets can be 

sorted and identified according to the originating tissue or cell type, including those of 

human and mouse hearts, blood vessels and iPSC derivatives99.

Pluripotent stem cell models

Human iPSC models have proven to be useful in patient-specific disease modelling and 

regenerative therapies but major challenges, such as immaturity and unresolved 

heterogeneity of iPSC-derived cardiovascular cells, remain100,101. Therefore, a number of 

studies have used scRNA-seq to determine the signalling pathways involved in 

transcriptional regulation of differentiation, to identify all cell types arising from 

differentiation, and to optimize and modify protocols for generating specialized subtypes of 

cardiac and vascular cells (Table 3).
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Human iPSC-derived cardiomyocytes (iPSC-CMs) generated using currently available 

methods embody fetal-like characteristics with regard to morphology, size, 

electrophysiological properties, calcium handling, contractility and metabolic function102. 

Friedman and colleagues performed scRNA-seq of >40,000 cells at various stages of iPSC-

CM differentiation and reported that dysregulation of non-DNA-binding homeodomain 

protein HOPX leads to a persistent immature state of iPSC-CMs103. In a separate study, 

cardiac transcriptional regulators were identified during iPSC-CM differentiation from 

droplet-based scRNA-seq of >10,000 cells; iPSC-CMs expressing COUP-TF2 and T-box 

transcription factor TBX5 had a more immature and atrial-like profile, whereas the 

expression of hairy/enhancer-of-split related with YRPW motif protein 2 (HEY2), iroquois-

class homeodomain protein IRX4 and myosin regulatory light chain 2, ventricular/cardiac 

muscle isoform (MYL2) was enriched in ventricular-like iPSC-CMs104. Genome-editing of 

COUP-TF2 and HEY2 in isogenic iPSC lines confirmed the distinct regulatory roles of the 

transcription factors NR2F2 and HEY2 in generating atrial-like and ventricular-like 

electrophysiological and gene-expression profiles of iPSC-CMs, respectively. Together, 

findings from these studies have highlighted the heterogeneous nature of iPSC-CMs and 

revealed specific cardiac transcription factors that govern cellular maturation and 

specification of chamber-specific human iPSC-CMs79,80.

Human iPSC-derived endothelial cells (iPSC-ECs) have also been used to model vascular 

diseases and are effective in recapitulating the effects of genetic and environmental factors 

on vascular dysfunction in vitro105. However, as with iPSC-CMs, iPSC-ECs that are 

currently available are limited by cellular immaturity and heterogeneity. Droplet-based 

scRNA-seq of iPSC-ECs during differentiation led to the identification of four major 

subpopulations of iPSC-ECs that were marked by enriched gene expression of APLNR, 

CLDN5, ESM1 and GJA5; the CLDN5+ cluster represented metabolically active iPSC-ECs, 

the GJA5+ cluster represented arterial-like iPSC-ECs, the APLNR+ cluster represented 

inflammation-responsive iPSC-ECs and the ESM1+ subpopulation represented activated 

cells63. In a separate study, McCracken and colleagues performed longitudinal droplet-based 

scRNA-seq analysis of two independent human embryonic stem cell-derived endothelial cell 

(ESC-EC) differentiation protocols106. Pseudotime trajectory analysis of the ESC-EC 

product protocol showed bifurcation to endothelial and mesenchymal cell types beginning at 

day 6 of differentiation, with both cell types undergoing maturation at day 8 of 

differentiation, which was marked by decreased expression of SNAI2 in the mesenchymal 

cell population and increased expression of ANGPT2, ESM1 and GNG11 in the endothelial 

cell population107. Despite further maturation of the ESC-ECs after initial endothelial 

commitment, no further markers of a commitment to an organ-specific endothelial 

phenotype were observed. Future studies should focus on identifying organ-specific 

transcriptomic signatures and further optimizing differentiation protocols to generate 

anatomically defined pluripotent stem cell-derived endothelial cells.
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Single-cell multiomics approaches

Combinatorial indexing

At present, a major limitation of scRNA-seq technology has been the high cost of preparing 

RNA-seq libraries from isolated single cells. The cost increases linearly with the number of 

cells processed, which has created a substantial hurdle for individual laboratories and multi-

institutional consortia. To address this challenge, novel multiplexing methods have been 

developed to increase throughput while also reducing the cost per cell. One such approach is 

combinatorial indexing, which involves the use of two independent yet conceptually 

identical methods of single-cell combinatorial indexing RNA sequencing108 and split pool 

ligation-based transcriptome sequencing109, in which single cells or nuclei are separated, 

barcoded, pooled and then subsequently split again for additional barcoding. Multiple 

rounds of cell splitting and barcode indexing, as opposed to single barcodes used in droplet-

based or microwell-based platforms, enable unique labelling of transcriptomes with large 

numbers of single cells or nuclei. These combinatorial indexing strategies can increase the 

number of cells analysed by 10-fold to 1,000-fold, without the need for physical isolation of 

individual cells. The latest iteration of this technology has enabled profiling of as many as 

~2 million cells from >60 embryos in a single run96. However, despite the impressive 

increase in throughput, combinatorial indexing often yields shallow sequencing depths and 

might not identify extremely rare cell populations, which is often the main objective of 

performing scRNA-seq analyses. Therefore, this trade-off between breadth and depth should 

be carefully considered when optimizing the experimental design and set-up.

Combinatorial single-cell technologies

In addition to scRNA-seq techniques, a myriad of other single-cell omics techniques are also 

under development or in use55,110. These technologies include single-cell chromatin 

accessibility (such as scATAC-seq), DNA methylomics and proteomics, which all carry 

unique information that cannot be captured fully by scRNA-seq alone, even at its maximal 

depth and throughput (Fig. 5). For example, global or local changes in chromatin 

organization and accessibility can precede major transcriptional events before they are 

detectable at the level of mRNA expression and might represent a more stable fingerprint of 

cell phenotype or state. scATAC-seq has been developed to allow probing of chromatin 

accessibility profiles of tens of thousands of cells simultaneously8,111–113 and to identify 

regulatory elements that govern transcription. The technique has already begun to uncover 

novel regulatory landscapes in Drosophila embryogenesis114, human haematopoiesis115,116 

and T-cell receptor specificity116. One point of consideration with scATAC-seq is that it 

typically requires additional steps to physically isolate single nuclei, a process that demands 

extra care given the fragility and semi-permeability of the nuclear membrane during multiple 

rounds of centrifugation and resuspension117,118. As with scRNA-seq, tailoring the isolation 

protocol to the sample of interest is critical to ensure the preservation of nuclear integrity 

and sensitivity. With continued optimization of these workflows, scATAC-seq is expected to 

alter the way in which we interrogate epigenomic regulatory mechanisms, particularly when 

analysing parallel scRNA-seq gene-expression profiles. An earlier study has shown that the 

two omics platforms can be integrated either algorithmically or concurrently by a novel 

indexing-based co-assay119.
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As with chromatin accessibility, DNA-methylation landscapes can also provide unique 

insights into the differentiation potential and transcriptional activity of various cells in ways 

that might not be reflected by or inferred from RNA expression. A wide variety of strategies 

have been developed for the analysis of single-cell DNA methylomes120, some of which 

have already been paired with scRNA-seq or chromatin accessibility data121–124 in an effort 

to uncover the coordinated mechanisms of epigenetic and transcriptional regulation. 

However, despite progress in the integration of multiomics data, our understanding of how 

these regulatory processes layer upon themselves to manifest as downstream cell phenotypes 

and behavioural states remains limited. One technical bottleneck seems to be the lack of a 

comparable single-cell method that can interrogate cell proteomes at similar sensitivity and 

throughput. Integrative methods allowing the simultaneous interrogation of single-cell 

transcriptomes along with tens of proteins have been developed using oligonucleotide-

conjugated antibodies, known as cellular indexing of transcriptomes and epitopes by 

sequencing (CITE-seq)125 or TotalSeq, but these approaches are currently limited to a few 

surface proteins and rely on the availability of custom-designed antibodies. Ongoing efforts 

are being made in this emerging field of single-cell proteomics126 to develop alternative 

protein-detection methods that improve sensitivity and scope (such as variations of Edman 

degradation127), refine sample preparation pipelines and improve mass CyTOF-based 

platforms. Optimization and standardization of the workflow might be critical to achieving a 

truly holistic multiomics analysis at single-cell resolution, one that can connect upstream 

gene regulatory mechanisms to observed downstream phenotypes at the protein level.

Finally, spatial transcriptomics is rapidly emerging as a powerful technology that offers an 

entirely new dimension to the aforementioned omics techniques at a near single-cell 

resolution (Fig. 2). For example, barcoded oligo-dT microarray slides have been 

successfully used to map RNA to specific XY-positions on tissue sections at ~100 μm 

resolution128. A novel method called Slide-seq was developed and involves the transfer of 

RNA from tissue samples onto a surface covered with DNA-barcoded beads with known 

positions to allow the spatial locations of RNA to be determined by sequencing129. This 

method substantially improves the spatial resolution of transcriptome mapping to ~10 μm, 

roughly matching the average length of a cell in vivo, and holds great promise for high-

dimensional structural analysis of tissues and complex organoid models. Lundeberg and 

colleagues generated a spatiotemporal atlas of the developing human heart in the first 

trimester by integrating spatial transcriptomics, scRNA-seq and in situ sequencing to create 

a 3D spatial cellular map18. Analogous methods for other omics techniques (such as spatial 

mapping of chromatin accessibility) are also expected to emerge in the near future, opening 

doors for high-dimensional multiomics analyses with localization coordinates that are 

traceable to single cells.

Cardiovascular precision medicine

One of the major challenges in health care is that patients do not respond uniformly to 

treatment. At present, approximately 90% of drugs on the market are ineffective for >50% of 

treated patients130. The mechanisms underlying these patient-specific drug responses remain 

elusive, with a broad range of genetic and environmental factors seeming to contribute. 

Among these factors, patient-specific cell-to-cell heterogeneity is increasingly understood to 
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be a fundamental contributor and driver of differential drug responses among individuals, 

highlighting the growing importance of single-cell techniques in advancing precision 

medicine.

Early clinical applications of scRNA-seq have focused mainly on cancer131. Primary kidney 

tumours, as well as their lung metastases, show considerable cellular heterogeneity, and 

combination therapy targeting two independent pathways has been shown to be more 

effective than monotherapy132. In parallel, other studies have demonstrated that multiple 

non-malignant tumour-associated cells, including stromal and immune cells, have critical 

roles in tumour progression and maintenance133,134. Not surprisingly, the composition of 

cells in a given tumour tissue varies greatly from patient to patient, with important 

implications for diagnosis and therapeutic response. Likewise, treatment of cardiovascular 

disease is also suboptimal given the substantial patient-specific differences in drug 

response135. For instance, bulk transcriptomic profiling of iPSC-CMs derived from different 

individuals revealed interpersonal differences in cellular and molecular responses to 

common cardiovascular drugs136,137. However, these bulk analyses cannot detect the 

individual-specific differences in cellular heterogeneity that are likely to contribute to 

differential drug responses. Single-cell multiomics analysis will be critical in uncovering 

such information.

As demonstrated by cell atlases generated by scRNA-seq, the heart and surrounding 

vasculature are composed of a multitude of cell types, including cardiomyocytes, fibroblasts, 

endothelial cells, VSMCs, valvular interstitial cells and resident immune cells, each of 

which can be further categorized into subtypes. The functional contributions of the different 

cell types — in particular the non-myocytes — to cardiac development, homeostasis and 

disease are becoming increasingly appreciated, which has motivated a rapid surge in the 

number of single-cell studies in recent years focusing on new cell populations and subtypes 

in various cardiovascular disease contexts. However, as with cancer, the composition and 

behaviour of cardiovascular cell populations vary considerably between individuals, which is 

likely to contribute to the non-uniform responses to treatment.

One way to address these challenges in the future would be to create patient-specific cell 

atlases before clinical intervention. Conceivably, scRNA-seq-based assessment of cell 

numbers, gene-expression profiles and cell heterogeneity would complement existing 

diagnostic tests and inform physicians in determining the most effective, personalized 

therapeutic option. Profiling of patient plasma biomarkers that were previously discovered 

using scRNA-seq, or in some rare cases direct profiling of patient heart samples obtained 

through biopsies or septal myomectomy, could in principle be used to monitor disease states 

and select the optimal time point for treatment. In certain scenarios, an abnormally high 

number of immune cells or elevated cytokine expression might encourage co-treatment with 

immunomodulatory drugs to limit prolonged inflammation after intervention. Given its high 

sensitivity, scRNA-seq might also prove useful in the clinic for detecting rare cells 

associated with disease, which could enable more efficient targeting and delivery of drugs.

Despite these potential benefits, numerous technical, logistical and financial hurdles must be 

overcome before scRNA-seq can be routinely implemented in the clinic138. Given its 
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inherent complexity, scRNA-seq might not be feasible as a stand-alone technology for 

therapeutic decision-making, and its future integration into clinical settings is likely to 

require further development of combinatorial assays and parallel diagnostic tests. In 

addition, the implementation will require not only a standardized protocol for sample 

preparation and data analysis, but also a physician-friendly interface and software. Other 

substantial financial and logistical considerations might hinder the immediate integration of 

the technology into current health-care systems. However, these challenges are likely to be 

addressed given the momentum that scRNA-seq technologies have gained in just its first few 

iterations. With continued improvement of scRNA-seq pipelines, decreasing costs of 

sequencing and the advancement of data-driven precision medicine, translational single-cell 

applications will continue to grow and will more than likely redefine how patients are treated 

in the future.

Conclusions

Transcriptomics in the past few years has made a giant leap from bulk-averaged population 

studies to analyses of individual cells. Despite its short history, scRNA-seq has already 

begun to fuel new discoveries across disciplines that would not have been possible with 

traditional bulk analysis methods. In the cardiovascular field alone, scRNA-seq has been 

used by numerous groups and has been instrumental in identifying novel cell populations, 

elucidating lineage trajectories and characterizing intercellular communication in various 

developmental and disease contexts. In addition to its use in unravelling cell-type-specific 

changes in development and disease, scRNA-seq technology has also been used to generate 

single-cell atlases of various tissues, such as those of the cardiovascular system (Table 2), 

and these atlases can now be openly accessed both as a reference database and as a source of 

further analysis by researchers from all fields.

Although some technical limitations remain, the application of scRNA-seq in both basic and 

translational research is expected to grow exponentially with continued improvement and 

standardization of experimental and analytical pipelines. In particular, the combination of 

scRNA-seq with other omics techniques (such as single-cell genomics and scATAC-seq) is 

currently under investigation and holds promise for the elucidation of gene regulatory 

mechanisms at single-cell resolution. Integration of multiomics approaches into current 

workflows presents many challenges, but is also expected to synergize with existing methods 

in the laboratory and in the clinic. Therefore, scRNA-seq technology has the potential not 

only to transform basic science but also to advance precision medicine.
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Glossary terms

Quantitative PCR
A polymerase chain reaction that records product expression in real time.
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Microarray
A chip containing thousands of wells with a bound DNA of known sequence, which can be 

used to bind and measure the expression of transcriptome mRNA.

Bulk RNA sequencing
Bulk resolution, next-generation sequencing which reveals RNA presence and quantity in a 

sample of cells during time of measurement.

Transcriptome
All RNA molecules expressed in a cell or cell population.

Cellular trajectory analysis
Computational analysis technique used to track and group cells on the basis of their course 

through a dynamic process, such as cell differentiation or cell cycle.

Fluorescence-activated cell sorting
(FACS). Technique in which target cell types in suspension are separated and sorted by flow 

cytometry on the basis of fluorescence information.

R packages
Single-cell gene-expression analysis software package written in R that can be run in 

integrated development environments, such as RStudio.

Python packages
Single-cell gene-expression analysis software package written in Python that can be run in 

integrated development environments, such as Sublime Text or Visual Studio.

Principal component analysis
(PCA). A linear statistical technique that reduces the number of experimental variables to 

the minimum amount.

T-distributed stochastic neighbour embedding
(tSNA). Non-linear variable reduction method that displays high-dimension data points, 

such as cell transcriptome data, on 2D or 3D graphs, primarily separating points on the basis 

of (dis)similarity to each other.

Uniform manifold approximation and projection
(UMAP). Non-linear variable reduction method that displays high-dimension data points on 

2D or 3D distance-dependent graphs, which can be used to reveal information such as cell 

differentiation trajectory and cell state.

Euclidean distance tools
Software package that calculates feature differences between a specific cell to a preselected 

cell cluster.

Induced pluripotent stem cells
(iPSCs). Induced pluripotent stem cells reprogrammed from adult somatic cells.
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Immunohistochemistry
Antibody-based detection method of protein in samples of tissue.

In situ hybridization
Labelling technique that uses hybridization of labelled cDNA to locate specific nucleic acid 

sequences in tissue sections.

Enzyme-linked immunosorbent assay
(ELISA). Plate-based antibody detection assay for biomolecules in which enzyme–antibody 

conjugates attach to specific antigens anchored to a surface, and then subsequent incubation 

in a substrate reveals the antigen presence.

Mass cytometry
(CyTOF). Variant of flow cytometry using metal-ion-labelled antibodies and read-out using 

time-of-flight mass spectrometry.

Combinatorial indexing
Single-cell RNA sequencing method using transposase nuclei barcoding, fluorescence-

activated nuclei sorting and PCR to index subpopulations of cells from tissues or organs.
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Key points

The advent of single-cell RNA sequencing (scRNA-seq) technologies has facilitated the 

profiling and analysis of the transcriptomes of single cells at unprecedented resolution 

and throughput.

scRNA-seq allows the identification of rare subpopulations of cells, as well as cellular 

trajectory analysis of each cell’s transcriptome, which has helped to identify cell-state 

transitions during development and progenitor or stem cells differentiation.

In addition to characterization of specific tissues or organ systems, scRNA-seq has also 

been performed on a larger scale to establish comprehensive cell atlases of various major 

organs, including the heart.

Multimodal single-cell platforms can be integrated and used to evaluate cell population 

heterogeneity and its contributions to patient-specific drug responses and adverse effects.
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Fig. 1 |. Workflow of single-cell RNA sequencing.
The general experimental workflow of single-cell RNA-sequencing begins with dissociation 

of the organ or tissue of interest to live single cells, which requires a fine-tuned digestion 

protocol that maximizes cell number and cell quality while minimizing the duration of 

digestion and cell death. Cultured cells are likewise detached and prepared as single cells. 

Prepared cells are then captured by various methods of single-cell capture. Reverse 

transcription of single-cell RNA is performed, followed by PCR amplification and library 

preparation of the resulting cDNA. Next-generation sequencing is subsequently performed 

to generate the readouts, which are aligned to a reference genome, processed for quality 

control and analysed by the user.

References for Fig. 1B

CEL-seq with UMI (Grün et al., 2014)

SCRB-seq (Soumillon et al., 2014)

MARS-seq (Jaitin et al., 2014)
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Drop-seq (Macosko et al., 2015)

CEL-seq2 (Hashimshony et al., 2016)

SORT-seq (Muraro et al., 2016)

DroNc-seq (Habib et al., 2017)

Seq-Well (Gierahn et al., 2017)

SPLiT-seq (Rosenberg et al., 2018)

sci-RNA-seq (Cao et al., 2017)

STRT-2i (Hochgerner et al., 2018)

Quartz-seq2 (Sasagawa et al., 2017)

10× Genomics Chromium (Zheng et al., 2017)

Wafergen ICELL8 (Gao et al., 2017)

Illumina ddSEQ SureCell

inDrops (Zilionis et al., 2017; Klein et al. 2015)

mcSCRB-seq (Bagnoli et al., 2018)

CEL-seq (Hashimshony et al., 2012)
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Smart-seq (Ramskold et al., 2012)

Smart-seq2 (Picelli et al., 2013)
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Fig. 2 |. Applications of scRNA-seq in cardiovascular research.
Single-cell RNA sequencing (scRNA-seq) technologies have a wide-range of advantages 

over conventional bulk gene analysis techniques. In cardiovascular research, scRNA-seq is 

especially useful for detecting rare cell populations, reconstructing cardiovascular cell 

trajectory, identifying cell-to-cell interactions, understanding organ-specific or tissue-

specific characteristics of vascular cells, spatial transcriptomic mapping of cardiovascular 

organs and for developing more effective precision medicine tools for better prediction of 

patient-specific drug responses. All the aforementioned applications are critical to improving 

our understanding of cardiovascular development, organ homeostasis and disease 

mechanisms by deciphering cellular heterogeneity at an unprecedented resolution. GRN, 

gene regulatory network; t-SNE, t-distributed stochastic neighbour embedding.
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Fig. 3 |. Comparison of cell population clustering methods.
a | Simulated 2D single-cell RNA-sequencing data representing circular (top left), linear (top 

right), curved (bottom right) and noisy (bottom left) distribution of cells. Colours indicate 

clusters identified by different clustering methods. Four original clusters are shown. Clusters 

of the same dataset can change depending on b | hierarchical clustering on Euclidean 

distance, c | hierarchical clustering on Canberra distance, d | k-means (k = 4), e | Louvain 

clustering after converting to a 20-nearest neighbour (NN) graph and f | Louvain clustering 

after converting to a 40-NN graph. In our simulation, hierarchical clustering based on 

Canberra distance incorrectly subdivided a noisy cluster and merged two distinct clusters. 

The k-means approach improperly unified the linear trajectory cluster and the ascending part 

of curve trajectory cluster. The Louvain algorithm incorrectly divided a large cluster into 

several subclusters when performed with an insufficient number of NNs, whereas the 

algorithm provided correct clustering when performed with the sufficient number of NNs. 

Consequently, a universally optimal clustering method for all datasets does not exist, as 

different types of datasets possess intrinsically unique patterns of cell populations, such as 

trajectory shape, complexity and noise. Although graph-based algorithms (such as Louvain) 

show the best performance in general, other clustering methods are still encouraged for 

comparison. Biological validation must subsequently be performed for verification of the 

obtained results.
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Fig. 4 |. Single-cell characterization of the human adult heart.
a | Single-cell sequencing enables characterization of tissue maturation changes in the 

human adult heart during the course of natural ageing, as well as in response to cardiac 

disease, such as structural and ischaemic cardiomyopathies. b | All cell types in the human 

heart can be analysed by single-cell sequencing, including but not limited to chamber-

specific cardiomyocytes, vascular and immune cells within the coronary vessels and 

microvessels, nodal cells that constitute the cardiac conduction system, stromal cells such as 

fibroblasts and valvular epithelial cells, and rare cell populations resident in the adult heart 

such as melanocytes, neurons, and cardiac stem or progenitor cells.
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Fig. 5 |. Single-cell multiomics approaches for cardiovascular precision medicine.
To date, single-cell RNA sequencing (scRNA-seq) has been used most effectively to identify 

novel or rare cell populations, to confirm the cellular heterogeneity of the tissue or organ of 

interest, and to construct cell trajectory of developmental or differentiation processes. The 

increasing and expected technical advances in single-cell analyses of other macromolecules 

present a unique opportunity to combine multiple single-cell omics approaches149 to 

advance cardiovascular precision medicine. In addition to single-cell genomics and 

transcriptomics, single-cell chromatin accessibility, DNA methylome and proteomics will 

improve our ability to understand cellular heterogeneity unique to each individual, allowing 

us to better predict the individual-specific responses to cardiovascular drugs and therapies. 

CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing; iPSC, induced 

pluripotent stem cell; LC-MS, liquid chromatography–mass spectrometry; MS, mass 

spectrometry; scATAC-seq, single-cell assay for transposase-accessible chromatin using 

sequencing; WES, whole-exome sequencing; WGS, whole-genome sequencing.
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Table 1 |

Most common scRNA-seq techniques

Technique UMI 
length 
(bp)

Number of 
genes or cells 
analysed

Sensitivity Dropout Amplification 
noise

Cost per 
cell

Single-cell 
capture 
method

Year Refs

Full-length transcript

Smart-seq/C1 0 ++ ++ ++ ++++ +++ Plate 2012 22

Smart-seq2 0 +++ ++++ + +++ +++ Plate 2014 23

3ʹ-end counting

MARS-seq 8 + + +++ ++ +++ Microfluidic 2014 139

Drop-seq 8 + +++ +++ + ++ Droplet 2015 20

CEL-seq2/C1 6 +++ ++ ++ + +++ Microfluidic 2016 27

SORT-seq 4 +++ +++ ++ ++ ++ Plate 2016 71

10× Genomics 10 +++ ++ +++ + + Droplet 2017 28

mcSCRB-seq 10 ++ ++ ++ + +++ Plate 2018 140

5ʹ-end counting

WaferGen 10 +++ ++ ++ +++ +++ Nanowell 2017 141

CEL-seq, cell expression by linear amplification and sequencing; MARS-seq, massively parallel single-cell RNA-sequencing; mcSCRB-seq, 
molecular crowding single-cell RNA barcoding and sequencing; scRNA-seq, single-cell RNA sequencing; Smart-seq, switching mechanism at the 
5′ end of the RNA template sequencing; SORT-seq, sorting and robot-assisted transcriptome sequencing; UMI, unique molecular identifier.
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Table 2 |

scRNA-seq studies of cardiovascular organs

Organ system Developmental stage Species (genotype) Disease Single-cell capture and 
scRNA-seq method

Refs

Heart Embryonic (E6.75, 
E7.25)

Mouse (Mesp1-rtTA/
tetO-H2B-GFP)

NA Smart-seq2 66

Embryonic (E7.5, E8.5, 
E9.5)

Mouse (Nkx2–5+, Isl1+ 

cells only)
NA Fluidigm C1, ICELL8 68

Embryonic (E8.5–E10.5) Mouse NA Fluidigm C1 64

Embryonic (E7.75–
E9.25)

Mouse (ISL1 and 
Nkx-2.5 lineage tracer)

NA Smart-seq2 69

Embryonic (E9.5 to 
postnatal)

Mouse NA Fluidigm C1 65

Embryonic (E10.5) Mouse NA Fluidigm C1, 10× 
Genomics 3ʹ

62

Embryonic (conduction 
system)

Mouse NA 10× Genomics 3ʹ 142

Embryonic Mouse (Hand2-null) Congenital heart 
defect

10× Genomics 3ʹ 70

Embryonic (5–25 weeks 
of gestation)

Human NA STRT-seq 12

Postnatal Mouse Paediatric 
mitochondrial 
cardiomyopathy

sNucDrop-seq 34

Adult (ventricle, non-
myocyte cells)

Mouse NA 10× Genomics 3ʹ 61

Adult Mouse Ischaemia–
reperfusion

SORT-seq 21

Adult Mouse Myocardial infarction 10× Genomics 3ʹ 143

Adult Mouse Myocardial infarction 10× Genomics 3ʹ 78

Adult Zebrafish Cryoinjury SORT-seq 75

Adult Human NA 10× Genomics 3ʹ 82

Blood vessels Embryonic (E12.5–
E14.5)

Mouse NA Smart-seq2 57

Adult Mouse NA 10× Genomics 3ʹ 85

Adult Human Coronary artery 
disease

MultiSample 
NanoDispenser, WaferGen

92

Adult Mouse and human Coronary artery 
disease

10× Genomics 3ʹ 91

Adult (vascular cell types 
in femoral artery)

Mouse (Sca1+) NA 10× Genomics 3ʹ 144

Haematopoietic cells Adult (aortic 
macrophages)

Mouse (CD45+ 

macrophages from 
Ldlr–/–)

Atherosclerosis 10× Genomics 3ʹ 93

Adult (aortic leukocytes) Mouse (CD45+ 

leukocytes from 
Apoe–/–)

Atherosclerosis 10× Genomics 3ʹ 94

Adult (cardiac immune 
cells)

Mouse (CD45+ immune 
cells)

Transverse aortic 
constriction

10× Genomics 3ʹ 145
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Organ system Developmental stage Species (genotype) Disease Single-cell capture and 
scRNA-seq method

Refs

Organ atlas Larval Caenorhabditis elegans NA sci-RNA-seq 108

Adult (10–15 weeks) Mouse NA 10× Genomics 3ʹ, Plate-
seq

6

Adult (6–10 weeks) Mouse NA Microwell-seq 7

Adult Mouse NA sci-ATAC-seq 114

GFP, green fluorescent protein; NA, not applicable; rtTA, reverse tetracycline-controlled transactivator; sci-ATAC-seq, single-cell combinatorial 
indexing assay for transposase-accessible chromatin using sequencing; sci-RNA-seq, single-cell combinatorial indexing RNA sequencing; scRNA-
seq, single-cell RNA sequencing; Smart-seq, switching mechanism at the 5′ end of the RNA template sequencing; sNucDrop-seq, single-nucleus 
droplet-based RNA sequencing; SORT-seq, sorting and robot-assisted transcriptome sequencing; STRT-seq, single-cell tagged reverse transcription 
sequencing.
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Table 3 |

scRNA-seq studies of pluripotent stem cell models

Cell type Differentiation cell type Species Pluripotent stem cell type scRNA-seq method Refs

Pluripotent stem cells Reprogramming of CD19+ pre-B cells to 
iPSCs

Mouse iPSC reprogramming MARS-seq 146

Undifferentiated iPSCs Human iPSC 10× Genomics 3ʹ 147

Differentiated cells Cardiomyocytes Human iPSC 10× Genomics 3ʹ 104

Cardiomyocytes Human iPSC 10× Genomics 3ʹ 103

Endothelial cells Human ESC (KhES1) Smart-seq 148

Endothelial cells Human iPSC 10× Genomics 3ʹ 63

Endothelial cells Human ESC (H9 and RC11) 10× Genomics 3ʹ 106

ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; MARS-seq, massively parallel single-cell RNA-sequencing; scRNA-seq, single-
cell RNA sequencing; Smart-seq, switching mechanism at the 5′ end of the RNA template sequencing.
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