Table 1.
Reference | Focus | N participants | Age | Input data/device used | Method used | Dataset |
---|---|---|---|---|---|---|
Samson et al.22 | fMRI to study the neural bases of complex non-social sound processing | 15 ASD, 13 TD |
ASD: 24.3 ± 6.25 TD: 23.5 ± 7.42 |
fMRI scans/3 T TRIO MRI system | Image processing/ICBM152 (MNI) space and 3D Gaussian Filtering | Own dataset |
Abdelrahman et al.23 | MRI for diagnosis | 14 ASD, 28 TD | 7-38 years | MRI scans/1.5 T Sigma MRI scanner | Mesh processing | Own dataset |
Durrleman et al.24 | MRI for biomarker detection | 51 ASD, 25 TD and developmentally delayed children | 18-35 months | MRI, 1.5-T GE Signa MRI scanner | 122 | |
Ahmadi et al.25 | fMRI for biomarker detection | 24 ASD, 27 TD | MRI scans/3T MRI scanner | Machine learning, independent component analysis | Own dataset | |
Chaddad et al.26 | MRI for biomarker detection | 34 ASD, 30 TD | 4-24 years | MRI scans/3T MRI scanner | Texture analysis | ABIDE I dataset |
Chaddad et al.27 | MRI for biomarker detection | 539 ASD, 573 TD |
ASD: 17.01 ± 8.36 TD: 17.08 ± 7.72 |
MRI scans | Texture analysis | ABIDE I dataset |
Eslami and Saeed28 | fMRI for diagnosis | 187 ASD, 183 TD | fMRI scans | Deep learning, MLP with 2 hidden layers + SVM | Four datasets (NYU, OHSU, USM, UCLA) from ABIDE-I fMRI dataset | |
Li et al.29 | fMRI for diagnosis | 149 ASD, 161 TD | rs-fMRI scans | Deep learning/SSAE | 4 datasets (UM, UCLA, USM, LEUVEN) from ABIDE MRI dataset | |
Crimi et al.30 | fMRI for diagnosis | 31 ASD, 23 TD | Imaging data, GE 3T MR750 scanner | Machine Learning/Constrained Autoregressive Model | San Diego State University cohort of ABIDE II dataset | |
Chanel et al.32 | fMRI for diagnosis | 15 ASD, 14 TD |
ASD: 28.6 ± 1.87 TD: 31.6 ± 2.61 |
fMRI/3T MRI scanner | Machine learning/SVM | Own dataset |
Zheng et al.34 | MRI for biomarker detection | 66 ASD, 66 TD | MRI scans | multi-feature-based networks (MFN) and SVM | 4 datasets (NYU, SBL, KUL, ISMMS) from ABIDE database |