Skip to main content
. 2020 Sep 30;10:333. doi: 10.1038/s41398-020-01015-w

Table 1.

Magnetic resonance imaging (MRI)/functional MRI (fMRI).

Reference Focus N participants Age Input data/device used Method used Dataset
Samson et al.22 fMRI to study the neural bases of complex non-social sound processing 15 ASD, 13 TD

ASD: 24.3 ± 6.25

TD: 23.5 ± 7.42

fMRI scans/3 T TRIO MRI system Image processing/ICBM152 (MNI) space and 3D Gaussian Filtering Own dataset
Abdelrahman et al.23 MRI for diagnosis 14 ASD, 28 TD 7-38 years MRI scans/1.5 T Sigma MRI scanner Mesh processing Own dataset
Durrleman et al.24 MRI for biomarker detection 51 ASD, 25 TD and developmentally delayed children 18-35 months MRI, 1.5-T GE Signa MRI scanner 122
Ahmadi et al.25 fMRI for biomarker detection 24 ASD, 27 TD MRI scans/3T MRI scanner Machine learning, independent component analysis Own dataset
Chaddad et al.26 MRI for biomarker detection 34 ASD, 30 TD 4-24 years MRI scans/3T MRI scanner Texture analysis ABIDE I dataset
Chaddad et al.27 MRI for biomarker detection 539 ASD, 573 TD

ASD: 17.01 ± 8.36

TD: 17.08 ± 7.72

MRI scans Texture analysis ABIDE I dataset
Eslami and Saeed28 fMRI for diagnosis 187 ASD, 183 TD fMRI scans Deep learning, MLP with 2 hidden layers + SVM Four datasets (NYU, OHSU, USM, UCLA) from ABIDE-I fMRI dataset
Li et al.29 fMRI for diagnosis 149 ASD, 161 TD rs-fMRI scans Deep learning/SSAE 4 datasets (UM, UCLA, USM, LEUVEN) from ABIDE MRI dataset
Crimi et al.30 fMRI for diagnosis 31 ASD, 23 TD Imaging data, GE 3T MR750 scanner Machine Learning/Constrained Autoregressive Model San Diego State University cohort of ABIDE II dataset
Chanel et al.32 fMRI for diagnosis 15 ASD, 14 TD

ASD: 28.6 ± 1.87

TD: 31.6 ± 2.61

fMRI/3T MRI scanner Machine learning/SVM Own dataset
Zheng et al.34 MRI for biomarker detection 66 ASD, 66 TD MRI scans multi-feature-based networks (MFN) and SVM 4 datasets (NYU, SBL, KUL, ISMMS) from ABIDE database