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Abstract

We propose Nonlinear Dipole Inversion (NDI) for high-quality Quantitative Susceptibility 

Mapping (QSM) without regularization tuning, while matching the image quality of state-of-the-

art reconstruction techniques. In addition to avoiding over-smoothing that these techniques often 

suffer from, we also obviate the need for parameter selection. NDI is flexible enough to allow for 

reconstruction from an arbitrary number of head orientations, and outperforms COSMOS even 

when using as few as 1-direction data. This is made possible by a nonlinear forward-model that 

uses the magnitude as an effective prior, for which we derived a simple gradient descent update 

rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage 

the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient 

descent rule from NDI and learns the network parameters during training, hence requires no 

additional parameter tuning. Further, we evaluate NDI at 7T using highly accelerated Wave-CAIPI 

acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-

direction data.
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Introduction

Quantitative Susceptibility Mapping (QSM) provides exquisite gray/white matter contrast 

[1] and enables accurate quantification of iron in the brain [2]. It is also utilized to 
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differentiate dia- and paramagnetic sources of contrast [3], detect tissue changes related to 

neuro-degenerative diseases [4]–[6] and estimate vessel oxygenation [7], [8]. However, it 

entails a difficult image reconstruction pipeline with several pre-processing steps, which are 

briefly summarized at the beginning of this contribution. This work will focus on the dipole 

inversion step, which aims to estimate the desired magnetic susceptibility from the acquired 

gradient echo phase information. Several benchmark and state-of-the-art techniques are 

described, and finally a new method for robust dipole inversion is introduced which 

mitigates some of the drawbacks of previous approaches.

Typically, the first step of the QSM reconstruction is the coil combination [9]–[12] of 

multichannel receive data. Hereby, phase offsets between the different coil images are 

estimated to prevent destructive interference between complex signals. The resulting coil-

combined phase images are initially wrapped into an interval of [−π, π]. To recover the 

underlying phase distribution of interest, a spatial image unwrapping technique (path-

following: [13]–[16]; Laplacian: [17]–[19]) is applied, which usually relies on the 

assumption that the phase signal varies slowly from voxel to voxel. After unwrapping, the 

phase images are dominated by background phase effects which are commonly one to two 

orders of magnitude larger than those caused by the desired tissue susceptibility [20]–[22]. 

Several filtering techniques have been proposed [23]–[27] to remove unwanted phase 

contributions such as those caused by inhomogeneities of the static main magnetic field, 

macroscopic currents (MRI shim coils), or magnetic susceptibility variations outside the 

ROI (e.g. air-tissue interfaces) [28], [29]. In a final step, the tissue phase ϕ needs to be de-

convolved with a known dipole kernel d(k) = 1/3 − kz
2/k2 to obtain the desired susceptibility 

χ. Since the dipole kernel is not invertible, this inverse problem ϕ(k) = d(k)χ(k) cannot be 

solved using a simple division in k-space but requires more sophisticated reconstruction 

techniques.

Truncated k-space Division (TKD) [30] inverts the dipole kernel directly χ(k) = d(k)ϕ(k)
where small absolute values in d(k) are replaced by a constant number.

d(k) = d(k)−1 if d(k) > δ

sgn(d(k)) ⋅ δ−1 otherwise

However, the modification of the dipole kernel may result in systematic underestimation of 

the tissue susceptibility [31] as well as streaking artifacts and noise amplification.

In COSMOS [32], gradient echo data are acquired under multiple head rotations (r∈[2…N]) 

with respect to the main magnetic field. This allows the optimization problem to be 

formulated in matrix form.

d1(k)
⋮

dN(k)
χ(k) =

ϕ1(k)
⋮

ϕN(k)
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It also admits the closed form solution χ = ∑rdr
Tdr

−1∑rdr
Tϕr by multiplying the above 

equation by ∑rdr
T (k). With increasing number of head orientations, the conditioning of 

∑rdr
Tdr

−1
 improves since the dipole kernel also rotates and diminishing values around the 

magic angle do not overlap. This enables high image quality but comes at the cost of long 

scan time as multi-orientation data need to be acquired. This drawback was partly mitigated 

using fast imaging techniques such as EPI [33]–[35] or Wave-CAIPI [36]; nevertheless, 

unnatural head positions/orientations remain a challenge for clinical translation.

Over the last decade, several single-orientation QSM reconstructions were proposed where 

additional regularization R(χ ) ℓ is used to improve the image quality. Commonly 

encountered regularizers utilize ℓ1 or ℓ2 penalties (such as in MEDI [1] or L2 [37]), which are 

either applied on the image itself or on its representation using a custom transform. Note that 

the optimization problem shown below is posed in image space where D = FHdF applies the 

forward and inverse Fourier transform F.

min
χ

‖Dχ − ϕ ‖2
2 + λ‖R(χ )‖ℓ

However, this formulation assumes that the linear susceptibility-to-field relationship is 

governed by Gaussian noise, whereas the phase noise distribution deviates from this 

especially in low-SNR regions [38]. This was recognized in nonlinear-MEDI [39], where a 

nonlinear fidelity term was utilized.

min
χ

W eiDχ − eiϕ
2

2
+ λ‖MGχ ‖1

Here the magnitude W serves as a noise-weighting factor as well as allowing the derivation 

of a binary mask M that weights the gradient G. This approach efficiently mitigates artifacts 

and improves the image appearance. However, the image quality strongly depends on the 

choice of the regularization parameter λ which balances accuracy (data consistency) vs. 

image smoothness. Another drawback is the time-consuming reconstruction using complex 

optimizers. This issue was addressed by the recently proposed FANSI algorithm [40] which 

presents a rapid alternative to nonlinear-MEDI by employing parameter splitting [41], [42]. 

This provides up to 10-fold computational speed-up but comes at the cost of two additional 

regularization parameters that need to be tuned manually.

Alternative approaches employ Total Variation (TV) to promote image smoothness and 

reduce streaking artifacts [43]. However, as TV only takes the first derivative into account, it 

neglects higher order smoothness and hence assumes that images are piecewise constant, 

which may lead to over-smoothing and unnatural image appearance. Total Generalized 

Variation (TGV) lifts this assumption by balancing both first and second derivatives, which 

is demonstrated to improve the image quality and prevent staircase artifacts [33].
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Further improvement in image quality was achieved using single-step reconstruction 

algorithms [44] which were proposed to mitigate potential error propagation between 

subsequent procedures along the QSM pipeline. As demonstrated in [44], operators for 

Laplacian unwrapping and spherical mean value (SMV) background filtering can be directly 

integrated into the optimization problem. While this increases the computational footprint, it 

further reduces reconstruction errors when compared to multi-step reconstruction 

algorithms.

Recent advances in deep learning gained wide-spread attention in the MRI research 

community. Convolutional neural networks (CNN) were trained to perform the 

deconvolution based on single-orientation phase data (QSMNet [45]) and provided similar 

outcome as multi-orientation COSMOS reconstructions. DeepQSM [46] further 

demonstrated that the mathematical principle of dipole inversion can be learned entirely 

using synthetic images, and this network generalized to unseen patient data. As such, 

DeepQSM could potentially circumvent the demand for large amounts of patient training 

data.

In this contribution, we develop a simple gradient descent optimizer - Nonlinear Dipole 

Inversion (NDI) - and demonstrate how magnitude weighting and nonlinear formulation act 

as inherent priors, thus obviating the need for manual parameter tuning. We then expand 

NDI to learn variational regularizers from training data to further improve the image quality. 

Ultimately, we leverage Wave-CAIPI encoding to acquire highly accelerated high-resolution 

data at 7T and evaluate the performance of NDI at 0.5 mm isotropic resolution.

Code/data: https://bit.ly/2RHeiF0

Method

Nonlinear Dipole Inversion (NDI)

NDI is based on the nonlinear-MEDI [39] approach, but additional regularization terms are 

entirely removed and magnitude weighting and nonlinear formulation are exploited as 

inherent regularizers for the NDI reconstruction.

f(χ ) = W eiDχ − eiϕ
2

2

This allows an analytical derivation of the gradient ∇χ f(χ ) (see Appendix for details) and 

the application of gradient descent optimization.

∇χ f(χ ) = 2DTW TW sin(Dχ − ϕ )

With this, the tth update of the reconstruction becomes

χ t + 1 = χ t − 2∑r = 1
N DrTW rTW rsin(Drχ t − ϕ r)
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where we generalized the formula for multi-orientation reconstruction from N-directions, 

with Wr, ϕ r and Dr denoting the magnitude, tissue phase and dipole kernel belonging to the 

rth head rotation. Also, this framework can be easily expanded to allow for Tikhonov 

regularization by subtracting 2λχ t from the above equation.

Data acquisition and preparation

We used the QSMNet dataset [45] where 3D-GRE data were acquired on nine subjects using 

five head orientations with 1 mm isotropic resolution, 256×224×192 matrix, TE/TR=25/33 

ms, flip-angle=15°, bandwidth=100 Hz/px and R=2×2 GRAPPA acceleration [47] at 3T.

On a 7T research system (Siemens Healthcare, Erlangen, Germany), we acquired 3D-GRE 

data at 0.5 mm isotropic resolution on one healthy volunteer using a prototype Wave-CAIPI 

[36] sequence (3 head orientations, 480×480×360 matrix, TE/TR=19/29 ms, flip angle=25°, 

bandwidth=100 Hz/px, R=5×3 acceleration, acquisition time TA=5:13 min per orientation). 

A custom tight-fitted 31-channel head coil [48] (non-product) was used to achieve high-

quality imaging; however, this limited the feasible head rotations to shallow angles (0°, 7°, 

13°). Additional low-resolution GRE reference scans were acquired for each head 

orientation to compute coil sensitivity maps using ESPIRiT [49]. The parallel imaging 

reconstruction was performed offline using MATLAB, where gradient imperfections were 

corrected in an entirely data-driven fashion using AutoPSF [50] which obviates the need for 

time-consuming calibration scans.

All multi-orientation data were processed offline using BET brain masking [51], FLIRT 

registration [52], Laplacian unwrapping [53], and SMV filtering [54]. In order to increase 

the number of training samples for our deep learning reconstructions, the following data 

augmentation strategy was performed on the QSMNet dataset: For each of the nine subjects, 

the multi-orientation tissue phase was first registered to the neutral head orientation, and 5-

direction NDI and COSMOS were computed. The resulting ground-truth images were then 

registered back to each of the four rotated head directions of the original QSMNet dataset. 

This increased the number of input/ground-truth pairs by a factor of five resulting in a total 

of 45 datasets from nine subjects.

Tikhonov regularization in NDI

The NDI optimization may start to fit noise and artifacts to further reduce the cost function if 

too many iterations are performed. As an alternative to early-stopping, we investigate the 

effect of Tikhonov regularization. It provides a framework to stabilize the solution of ill-

conditioned linear equations and has been successfully applied to related problems such as 

parallel imaging [55]. We examine the convergence of single- and multi-orientation NDI 

reconstructions with Tikhonov regularization (λ=0.0%, λ=0.1%, λ=1.0%) by computing the 

RMSE with respect to 5-direction NDI for different number of iterations throughout the 

optimization (Fig. 1).
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NDI vs. COSMOS, TKD, L2 and FANSI

Non-regularized NDI and COSMOS were compared for single- and multi-orientation 

reconstructions (Fig. 2). To prevent over-fitting in NDI, the optimization was stopped after 

400 iterations (compare results of Fig. 1). Moreover, single-orientation NDI with Tikhonov 

regularization (λ=0.1%) was compared against TKD, L2 and FANSI where the parameters 

of the latter three were tuned to minimize RMSE with respect to the 5-direction COSMOS 

data (Fig. 3). In Table 1, RMSE and SSIM are reported with respect to 5-direction COSMOS 

and NDI. Moreover, the QSM data consistency ( Dχ − ϕ 2) and the computation time in 

MATLAB are provided for each algorithm.

Learning a variational regularizer for NDI (VaNDI)

We introduce VaNDI to further improve the reconstruction quality of NDI using a 

Variational Network (VN) [56] which combines deep learning elements with the nonlinear 

QSM data model (Fig. 4). This network architecture acts as an unrolled gradient descent 

algorithm with learned regularizers, where the step sizes, nonlinearities and convolutional 

filters are estimated during the training phase. We used an L2 loss function to minimize the 

difference between 1-direction VaNDI and 5-direction NDI reference data, with T=10 

iterations, 24 filter kernels (9×9×9), batch size of 1, and 800 epochs. As benchmark of 

comparison, we used a 3D UNet [57] with the same input/ground truth data as in VaNDI and 

the following network parameters: depth= 4, 32 filter kernels of size 3×3×3. Both networks 

were trained on eight volunteers (five head orientations per subject, 40 3D datasets in total), 

the ninth subject was used for testing. The results of the image quality comparison are 

summarized in Fig. 5 and Table 2.

High-resolution NDI at 7T with Wave-CAIPI encoding

We also assessed the performance of NDI on high-resolution GRE data from three head 

orientations acquired at 7T. To facilitate such high-resolution acquisition in a reasonable 

timeframe, Wave-CAIPI encoding at R=15-fold acceleration was used. For benchmark of 

comparison, 3-orientation COSMOS was computed and compared to single- and multi-

orientation NDI (see Fig. 6).

Results

In Figure 1, the effect of early-stopping and Tikhonov regularization is assessed. We 

computed the RMSE of 1–4-direction NDI with respect to 5-direction NDI for different 

Tikhonov regularization values. Both for single- and multi-orientation reconstructions, NDI 

was over-fitting the data when no regularization was used (λ=0.0%, blue line). While the 

optimal stopping iteration with the smallest RMSE (blue dashed) varied between the 

different reconstructions, a fixed small amount of Tikhonov regularization (λ=0.1%, red 

line) prevented over-fitting for all observed numbers of directions and subjects (see 

Appendix).

Figure 2 compares NDI and COSMOS for single- and multi-orientation reconstructions. For 

small number of head orientations, COSMOS is subject to artifacts as ∑rdr
Tdr

−1
 is poorly 
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conditioned. NDI could address this and improved the reconstruction quality dramatically 

even from a single-orientation input. At five head directions, both techniques provided 

comparable image quality and contrast.

Figure 3 compares single-orientation NDI against parameter-optimized TKD, L2 and 

FANSI. The regularization in L2 and FANSI leads to blurring and over-smoothing when 

compared to NDI and TKD, which is also reflected in a larger data consistency error (see 

Table 1). In contrast, TKD provided sharper images but suffered from more streaking 

artifacts and contrast reduction, a consequence of the k-space underestimation around the 

magic angle (see k-space picture). A good trade-off between mitigation of artifacts and 

image sharpness was achieved by NDI, which led to a medium data consistency error. The 

RMSE/SSIM metrics computed with respect to 5-direction COSMOS (Table 1) yielded 

overall comparable results for all algorithms under consideration and did not seem to reflect 

artifacts and loss of sharpness. Only when compared to 5-dir NDI, the contending 

algorithms demonstrated inferior RMSE/SSIM.

Figure 5 compares the results of 1-direction VaNDI (deep learning + nonlinear data-fidelity) 

and UNet. Both approaches overall improved the image quality when compared to single-

direction NDI which resulted in better RMSE/SSIM, but increased data consistency error 

due to the additional regularization. Moreover, slight underestimation of the susceptibility 

signal in the single direction NDI input data was mitigated by both techniques (e.g. in the 

basal ganglia). However, while UNet achieved better GM/WM contrast and overall crisper 

images, it introduced additional artifacts (marked with red arrows), an effect not observed in 

any of the VaNDI reconstructions.

The performance of NDI and COSMOS was also evaluated at 7T using high-resolution data 

(0.5 mm isotropic) acquired with the Wave-CAIPI GRE sequence. While 3-direction 

COSMOS resulted in poor image quality with streaking artifacts (max. head rotations was 

13°), 1-direction NDI provided better reconstructions. Further improvement was achieved 

using 3-direction NDI, where small anatomical features such as blood vessels and U-fibers 

(zoom-in) were more conspicuous.

Discussion

We developed a robust and simple dipole inversion technique and demonstrated high-quality 

reconstructions from an arbitrary number of head orientations.

NDI does not use complicated regularizers (no spatial gradient penalty, TV, etc.) but relies 

on the inherent regularization effect introduced by magnitude weighting and nonlinear 

formulation. In addition, either early-stopping or a small amount of Tikhonov regularization 

can be employed to improve the convergence. A suitable Tikhonov regularization parameter 

was empirically determined, and robustness among different subjects and number of head 

orientations was observed (compare Fig. S1). In practice, this enables high-quality NDI 

reconstructions with small computational footprint and without the need for manual 

parameter tuning.
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In our experimental validation, NDI outperformed COSMOS for small number of head 

orientations (1–3) where the COSMOS reconstruction is poorly conditioned and numerically 

unstable. Towards larger number of head orientations, NDI and COSMOS provided 

comparable image quality and contrast.

Moreover, we demonstrated that NDI matches the RMSE/SSIM metrics from FANSI 

without the need for parameter tuning, and without the vulnerability of over-smoothing the 

images. This was mainly observed when RMSE/SSIM was compared to 5-direction 

COSMOS, as the magnitude weighting imposed a bias in favor of NDI. In terms of model 

agreement, TKD and NDI achieved better data consistency than L2 and FANSI, as only little 

regularization was applied which also lead to sharper images. Nevertheless, a caveat of NDI 

is its longer reconstruction time (~2 min); however, we anticipate further speed-up using 

more advanced optimization techniques (e.g. non-linear conjugate gradient with 

backtracking line search [58]). This should result in much faster convergence and reduced 

reconstruction time.

We also investigated a novel deep learning approach to further refine the image quality by 

expanding NDI to admit variational regularizers learned from training data. Our VaNDI 

technique was compared to a UNet architecture, where comparable RMSE/SSIM was 

observed. However, while UNet achieved slightly better contrast/sharpness, the VaNDI 

approach was less susceptible to artifacts (“hallucination”), which we believe is a result of 

the integrated data-fidelity term. While this issue may be mitigated using more training data, 

VaNDI seems to be a robust alternative in the presence of limited training data availability.

Ultimately, NDI was applied to 7T where GRE data was acquired at 0.5 mm isotropic 

resolution with Wave-CAIPI encoding (R=15x acceleration) and a custom tight-fitted coil to 

achieve high-quality imaging. This, however, limited the achievable head rotations to 

shallow angles which created a difficult dataset for QSM reconstruction, resulting in 

streaking artifacts in the COSMOS technique. In contrast, the inherent regularization of NDI 

enabled much better quality even at a single orientation, which further improved with more 

directions. This – as far as we know – may have revealed iron content in the U-fibers for the 

first time using in-vivo QSM. In contrast to previous publications [36], we also corrected for 

imperfections of the Wave gradients in an entirely data-driven fashion (using AutoPSF [50]) 

without the necessity for time-consuming calibration scans. This enabled high-resolution 

QSM to become feasible in a much shorter acquisition/reconstruction time and should help 

pave the way for more frequent usage in the neuroscientific research community.

In conclusion, we developed a simple gradient descent optimizer to perform robust QSM 

without the need for parameter tuning. We then combined NDI synergistically with deep 

learning where variational regularizers were learned from training data (VaNDI) to improve 

the image quality. We further demonstrated feasibility of high-resolution NDI at 7T where 

Wave-CAIPI was utilized to facilitate highly accelerated acquisitions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Analytical gradient derivation for NDI optimization

NDI is based on nonlinear MEDI, where additional regularization terms were removed 

(α=0). This allows an analytical gradient derivation which is provided in this section. NDI 

aims to minimize the following cost function

f(χ ) = W eiDχ − eiϕ
2

2

which can be rewritten as

= eiDχ − eiϕ H
W TW eiDχ − eiϕ

Since Dχ  is constrained to real values, we can use (Dχ )H = (Dχ )T

= e−i(Dχ )TW TW eiDχ − e−i(Dχ )TW TW eiϕ − e−iϕ T
W TW eiDϕ + e−iϕ T

W TW eiϕ

Rewriting matrix multiplications using index notation yields

= ∑
c

wcc2 2 − ei ∑bDcbχb − ϕc − e−i ∑bDcbχ − ϕc

Applying a trigonometric relation further simplifies the term

= 2∑
c

wcc2 1 − cos ∑
b

Dcbχb − ϕc

Differentiating f(χ) with respect to χn yields

∂f
∂χn

= 2∑
c

wcc2 Dcn ⋅ sin ∑
b

Dcbχb − ϕc

Ultimately, we return to matrix notation and obtain

∇χ f(χ ) = 2DTW TW sin(Dχ − ϕ )
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Abbreviations

CNN convolutional neural network

MEDI morphology enabled dipole inversion

NDI nonlinear dipole inversion

QSM quantitative susceptibility mapping

SMV spherical mean value

TGV total generalized variation

TKD truncated k-space division

TV total variation

VaNDI variational nonlinear dipole inversion

VN variational network

w.r.t with respect to
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Figure 1: 
NDI over-fits the data (λ=0.0%, blue line), if not stopped early (blue dashed line). A small 

amount of Tikhonov regularization (λ=0.1%, red line) mitigated this issue robustly for all 

observed number of directions and subjects (see Appendix).
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Figure 2: 
Comparison of NDI vs. COSMOS for various numbers of head directions. NDI significantly 

reduced streaking artifacts and provided good results even at a single head orientation.
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Figure 3: 
Comparison of NDI vs. optimized TKD, L2 and FANSI. NDI mitigated streaking artifacts 

(observed in TKD) while preventing large blurring and over-smoothing as observed in L2 

and FANSI.
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Figure 4: 
VaNDI acts as an unrolled gradient descent algorithm combining deep learning and 

nonlinear data-fidelity. In the CNN part of the network, 3D convolutions (green) and 

nonlinear activation (blue) are learned for each gradient descent step GDt. Moreover, a data-

fidelity term (orange) is integrated into the network to ensure agreement with the QSM 

model.
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Figure 5: 
VaNDI and UNet further improved the image quality of single-direction NDI by reducing 

artifacts and improving the image contrast. However, while UNet better preserved the image 

sharpness, it introduced additional artifacts (red arrow) which was not observed in any of the 

VaNDI reconstructions.
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Figure 6: 
High-resolution QSM data was generated from multi-orientation GRE scans at 0.5 mm 

isotropic resolution and R=15x acceleration using Wave-CAIPI encoding. 3-direction 

COSMOS resulted in streaking artifacts, which was much improved using NDI even at a 

single orientation. The zoom-ins reveal fine anatomical features such as the U-fibers which 

are best seen in the 3-direction NDI reconstruction.

Polak et al. Page 19

NMR Biomed. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Polak et al. Page 20

Table 1:

RMSE/SSIM was computed w.r.t. 5-direction NDI and COSMOS. Moreover, the data consistency and 

reconstruction times are reported.

NDI TKD L2 FANSI

RMSE w.r.t. 5-dir NDI 0.567 0.680 0.710 0.639

RMSE w.r.t. 5-dir COSMOS 0.599 0.607 0.626 0.568

SSIM w.r.t. 5-dir NDI 0.948 0.921 0.900 0.916

SSIM w.r.t. 5-dir COSMOS 0.940 0.942 0.925 0.941

Data consistency Dχ − ϕ 2
0.505 0.464 0.562 0.563

Reconstruction time [s] 133 0.12 0.14 17
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Table 2:

RMSE/SSIM (w.r.t. 5-direction NDI) and data consistency are provided for single-direction NDI, VaNDI and 

UNet.

NDI VaNDI UNet

RMSE w.r.t. 5-dir NDI 0.712 0.575 0.578

SSIM w.r.t. 5-dir NDI 0.845 0.927 0.910

Data consistency Dχ − ϕ 2
0.533 0.663 0.673
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