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BACKGROUND: Microsatellite instability (MSI) predicts
oncological response to checkpoint blockade immuno-
therapies. Although microsatellite mutation is patho-
gnomonic for the condition, loci have unequal diagnos-
tic value for predicting MSI within and across cancer
types.

METHODS: To better inform molecular diagnosis of
MSI, we examined 9438 tumor-normal exome pairs and
901 whole genome sequence pairs from 32 different
cancer types and cataloged genome-wide microsatellite
instability events. Using a statistical framework, we
identified microsatellite mutations that were predictive
of MSI within and across cancer types. The diagnostic
accuracy of different subsets of maximally informative
markers was estimated computationally using a dedi-
cated validation set.

RESULTS: Twenty-five cancer types exhibited hypermu-
tated states consistent with MSI. Recurrently mutated
microsatellites associated with MSI were identifiable in
15 cancer types, but were largely specific to individual
cancer types. Cancer-specific microsatellite panels of 1
to 7 loci were needed to attain �95% diagnostic sensi-
tivity and specificity for 11 cancer types, and in 8 of the
cancer types, 100% sensitivity and specificity were
achieved. Breast cancer required 800 loci to achieve
comparable performance. We were unable to identify re-
current microsatellite mutations supporting reliable MSI
diagnosis in ovarian tumors. Features associated with in-
formative microsatellites were cataloged.

CONCLUSIONS: Most microsatellites informative for MSI
are specific to particular cancer types, requiring the use
of tissue-specific loci for optimal diagnosis. Limited
numbers of markers are needed to provide accurate MSI

diagnosis in most tumor types, but it is challenging to
diagnose breast and ovarian cancers using predefined
microsatellite locus panels.

Introduction

Microsatellite instability (MSI) is a molecular tumor
phenotype that is indicative of genomic hypermutabil-
ity, usually reflecting inactivation of the mismatch repair
(MMR) system (1, 2). MSI is marked by spontaneous
gains or losses of nucleotides from repetitive DNA
tracts, resulting in new alleles of differing length that
serve as the basis for its clinical diagnosis (2, 3).
Although classically associated with colorectal and endo-
metrial tumors (4–6), MSI has now been recognized in
most cancer types with varying prevalence (7–10) and is
accompanied by a generally increased rate of mutations
genome-wide (11, 12). Testing for MSI has subse-
quently emerged as a pan-cancer biomarker of therapeu-
tic response to PDL-1 and PD-1 immune checkpoint
inhibitors (13–15), where the MSI positive (microsatel-
lite high, or MSI-H) phenotype is believed to serve as
an indicator of mutation-associated neoantigens that en-
able a more robust T lymphocyte response than for MSI
negative (microsatellite stable, or MSS) cases (12, 13,
16).

Molecular diagnosis of MSI in clinical practice is
most commonly achieved using multiplexed PCR of de-
fined microsatellite loci, followed by capillary electro-
phoresis to detect new alleles (MSI-PCR) qualitatively
(17, 18). Alternatively, we and others have developed
quantitative next-generation sequencing (NGS) meth-
ods to identify MSI by assessing overall microsatellite
mutation frequency at repetitive loci that are either di-
rectly targeted or incidentally captured by targeted gene
enrichment oncology panels (7, 19–27). Nevertheless,
both conventional and NGS approaches interrogate
markedly limited subsets of the millions of microsatellite
markers available in the human genome: only 5 loci are
included in standard MSI-PCR (17, 18), whereas doz-
ens to hundreds of sites are examined by typical NGS
approaches (7, 19–26).

Recent studies have revealed tissue-specific signa-
tures of microsatellite mutation, such that alterations in
specific loci can occur with disparate frequencies in
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tumors from different tissues (7, 8). Consequently,
microsatellites that are diagnostic for MSI potentially
have unequal prognostic value within (3) and across tu-
mor types (7), such that loci useful in one cancer type
may not yield accurate diagnoses in others. Supporting
this hypothesis, standard MSI-PCR markers were devel-
oped for use in colon cancers (2, 18) and can exhibit
poor performance in other malignancies (23, 28–30).

The choice of markers is therefore critical to maxi-
mize sensitivity and specificity of molecular MSI diag-
nosis (3), regardless of whether testing is performed by
conventional or NGS methods. Nevertheless, little effort
to date has focused on using systematic, genome-scale
analysis to identify optimal microsatellite loci for diag-
nosing MSI (7, 8). Here, we systematically evaluated
tumor-normal pairs of exome and whole genome data
from 32 different cancer types to ascertain the most in-
formative microsatellites for predicting MSI.

Methods

SEQUENCE DATA AND IDENTIFICATION OF MICROSATELLITE

LOCI

Genomic microsatellite loci were identified as previously
(7), with some modifications. Briefly, microsatellites
were defined in the human genome (GRCh37/hg19) as
repeating subunits of 1–5 bp in length and comprising
�5 repeats using MISA (31). Adjacent microsatellites
within 10 base pairs of each other were termed ‘com-
plex’ (c*) single loci if comprised of tracts with different
repeating subunit lengths or ‘compound’ (c) single loci
for those having the same repeat length. This analysis
defined 19 035 602 loci, of which the 18 882 838 pre-
sent on autosomes and chromosome X were retained.
Repeat features were annotated using ANNOVAR (32)
(24 February 2014 release).

Sequence alignments of tumors and patient-
matched normal specimens from exome and whole ge-
nome sequencing projects were obtained from The
Cancer Genome Atlas (TCGA) Research Network (33).
Alignments were standardized prior to analysis by con-
verting alignments to FASTQ files using PICARD
v1.98, re-aligning to GRCh37/hg19 using BWA-MEM
v0.7.12, and indexing with SamTools v1.1.

CATALOGING MICROSATELLITE INSTABILITY EVENTS

The process used for cataloging microsatellite instability
events is diagrammed in Supplemental Fig. 1.

For each tumor and normal specimen we quantified
the number of sequence reads supporting different tract
lengths at each locus using mSINGS (Git Commit ID
a7e9ea9) (19).

To identify instability events, we compared multi-
nomial distributions of allele lengths for tumor at each

locus to the joint multinomial distribution of allele
lengths across tumor and normal at the site by:

ðXwildtypeallele ;
Xalternativeallele1; . . . Xalternativeallele iÞ � Multðn; pÞ

where n refers to the number of reads at a site, p the pro-
portion supporting each alternative allelic length, and
Mult indicates sampling from a multinomial distribu-
tion with those parameters. “Unstable” microsatellites
(those evidencing somatic mutations) were defined as
those with nominally significant differences (P< 0.05)
by likelihood ratio (G) tests without continuity correc-
tion. We estimated rates for calling false positive insta-
bility at this heuristic threshold as <3% at all sites
having �2 reads in tumor and �1 read in its paired nor-
mal by simulating and comparing two distributions of
1000 normal sites with median observed multinomial
distributions of allele lengths by:

Multðn ¼ readdepth;P ¼ 0:9wildtypeallele
; 0:1alternativealleles

Þ

To confidently define “stable” sites in tumor (those
lacking somatic mutations), we simulated from empiri-
cally observed multinomial read distributions for highly
unstable sites in cases having >30 read coverage in both
tumor and normal by:

Multð1000; p ¼ 0:4wildtypeallele
; 0:6alternativealleles

Þ

Down-sampling analyses estimated that �18 reads
per site yielded 95% power for identifying an unstable
locus, providing strong evidence to conclude that a site
was “stable” if no difference in allelic distribution was
observed at that coverage. Sites with 5–18 reads in both
tumor and paired normal but no indication of instability
(P> 0.05), and those covered by fewer than 5 reads in
either tumor or normal samples were marked as
“missing data.”

As a quality control measure, we excluded samples
having �75% missing data, leaving 9438 tumor-normal
exome pairs and 901 whole genome pairs for subsequent
analysis. We similarly excluded individual loci for which
�75% of specimens evidenced missing data.

GAUSSIAN MIXTURE MODEL TO CLASSIFY MSI STATUS

We quantified the overall frequency of microsatellite
mutations for each tumor as the fraction of unstable
sites over total callable sites, and given the skewed na-
ture of the data, performed log10 transformation. For
each cancer type, we then fit a Gaussian mixture model
to these values using Mclust v5.4.5 with one or two
mixture components with equal variance. If the two-
component model could be validly applied to a cancer
type, individual tumors were classified as MSS (lower
mode), MSI-H (higher mode), or indeterminate (uncer-
tainty value > 0.1). If distributions were instead
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consistent with a single component, all tumors of that
cancer type were classified as MSS.

IDENTIFYING AND MODELING PREDICTIVE ABILITIES OF

INFORMATIVE MARKERS

After excluding “intermediate” MSI classifications, 80%
of tumors in each cancer type were randomly assigned
into training sets and 20% into validation sets. Using
the training sets for each tissue type, we identified
microsatellites that were most frequently mutated in
MSI-H relative to MSS tumors by Fisher’s exact test.
The proportions of stable and unstable sites between
MSS and MSI-H tumors were compared (excluding
missing data), allowing loci to be rank-ordered by P
value. For each tissue type, we then selected subsets of
the top n most informative loci (ranging from 1 to 2000
markers) and calculated the percentage of unstable loci
for each sample (excluding missing data from both nu-
merator and denominator). We used these values to cal-
culate the area under the receiver operating
characteristic (AUROC) using pROC v1.15.3. The op-
timal percentage on the receiver operating characteristic
curve was identified by Youden’s J statistic. This value
was subsequently used as the threshold to assign MSS or
MSI-H classification to each sample based on the frac-
tion of mutated markers identified from the simulated
panel and to determine sensitivity and specificity for
each tissue type.

To account for the possibility of more complex
trans-genomic interactions between sites not captured
by an additive model of instability, we explored
machine learning approaches including random
forest and boosted trees. Iterative reduction of marker
features was performed using both Fisher exact test
P values and Shapley feature importance values in
the training dataset. However, these approaches did
not meaningfully outperform the simpler additive
model.

IDENTIFICATION OF MSI-ASSOCIATED MICROSATELLITE

MUTATIONS COMMON TO MULTIPLE TISSUE TYPES

The top 2000 loci most strongly associated with MSI-
H status for each tissue type were examined for cross-
performance across tissue types by hierarchical cluster-
ing of normalized P values. Normalization was re-
quired to account for differences in the uneven sample
sizes, and was accomplished by log10-transformation
of raw P values, followed by scaling on a per-tissue ba-
sis from a range of 0 (least significant) to 1 (most sig-
nificant). A heatmap was generated using superheat
v0.1.0, and pairwise and cophenetic distances between
tissue types were subsequently calculated and com-
pared using the base-R dist, cophenetic, and cor
functions.

FEATURES OF INFORMATIVE MICROSATELLITES

We examined enrichment of particular locus features
(annotated genic context of the repeat, repeat class, and
number of repeat subunits in deciles) among individual
microsatellite associations with MSI-H status using lin-
ear regression. Intergenic annotation, pentanucleotide
repeats, and a length of 5–11 repeats, respectively, were
arbitrarily selected as reference levels for these analyses.
Whole genome data were used for this analysis, as they
more comprehensively represented feature annotations
across coding and noncoding regions than exome data.

Results

PREVALENCE OF MICROSATELLITE MUTATION AND MSI-H

TUMORS VARY ACROSS CANCER TYPES

To ascertain the relative degree of genomic instability
within and across cancer types, we assessed the overall
frequency of microsatellite mutations within each of 32
cancer types using publicly available paired tumor-
normal exome sequencing data. For each cancer type,
we used Gaussian mixture modeling to circumscribe
subpopulations of tumors having high burdens of mi-
crosatellite mutation, corresponding to MSI-H cases (7,
8, 19, 21, 34) (Fig. 1, Table 1, Supplemental Table 1).
Comparison of MSI classifications established by this
approach showed high agreement with determinations
made by “gold-standard” MSI-PCR (accuracy 97.8%,
95% CI 95.5%–98.35%) or MOSAIC genome-scale
analysis (7) (accuracy 98.8%, 95% CI 98.5%–99.1%),
supporting their validity.

Twenty-five of 32 cancer types evidenced one or
more hypermutated tumors consistent with an MSI-H
phenotype, ranging in incidence from 0.2% to 40%,
similar to other reports (7–9). The total fraction of mu-
tated microsatellites in MSI-H tumors varied consider-
ably across cancer types, with the greatest microsatellite
mutation burdens occurring in stomach, colon, and en-
dometrial tumors (Fig. 1).

Parallel analyses were performed using whole ge-
nome data (Supplemental Fig. 2, Supplemental Table 2,
Supplemental Table 3), which included intergenic
regions but had lower sequencing read depths and were
available for fewer cases and cancer types. Although data
were sparser, results from whole genome analysis were
consistent with those from exome data.

INFORMATIVE MICROSATELLITE MARKERS DIFFER BETWEEN

CANCER TYPES

We next sought to identify microsatellite mutations
most predictive of MSI by cataloging events occurring
significantly in MSI-H relative to MSS tumors of each
cancer type. This analysis was restricted to cancers for
which locus performance could be evaluated in both
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testing and validation sets, permitting examination of
15 cancer types by exome data alone (Supplemental
Table 4).

Hierarchical clustering (Fig. 2) revealed that cancer
types displayed markedly different, and largely non-
overlapping subsets of informative microsatellites from
across the genome. Correlation between measurements
of pairwise (Supplemental Table 5) and cophenetic (on-
line Supplemental Table 6) distance matrices of locus
informativity was 0.82, indicating that clustering accu-
rately represents a large degree of variation in patterns of
MSI-associated mutation across cancers. Endometrial
and colon tumors were most similar by these metrics,
sharing 34.6% of sites (4767 loci) nominally associated
with MSI-H diagnosis (at uncorrected P< 0.05),
whereas esophageal carcinoma and brain lower grade gli-
oma were most disparate, having only 5% informative
microsatellites (79 loci) in common. Similarities in mi-
crosatellite mutation patterns were apparent among rec-
tal, stomach, colon, and uterine corpus endometrial
tumors, as well as between lung adenocarcinoma and
squamous cell carcinoma (Fig. 2, Supplemental Table 4).
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Fig. 1. Relative burden of microsatellite instability events
across cancer types. Percentage of total microsatellite loci
found to be mutated are reported per tumor specimen, as
stratified by cancer type. Each point corresponds to an indi-
vidual tumor, and its coloration indicates the correspond-
ing MSI classification. TCGA abbreviations for cancer types
are as described in the Table 1 footnote.

Table 1. Summary of inferred MSI diagnoses from tu-
mor exome sequencing.

Cancer type
(TCGA code)a

Fraction of Cases (Count)

MSS Intermediate MSI-H

BLCA 0.99 (375) 0.01 (4) 0 (0)

BRCA 0.9 (866) 0.04 (43) 0.06 (53)

CESC 0.97 (206) 0.005 (1) 0.02 (5)

CHOL 0.98 (49) 0 (0) 0.02 (1)

COAD 0.79 (309) 0.02 (8) 0.19 (74)

DLBC 0.77 (36) 0 (0) 0.23 (11)

ESCA 0.98 (145) 0 (0) 0.02 (3)

GBM 0.95 (356) 0.01 (4) 0.04 (14)

HNSC 0.99 (506) 0.004 (2) 0.01 (4)

KICH 1 (64) 0 (0) 0 (0)

KIRC 0.97 (321) 0.02 (5) 0.02 (5)

KIRP 0.99 (248) 0.004 (1) 0.004 (1)

LAML 0.92 (113) 0.07 (8) 0.02 (2)

LGG 1 (494) 0 (0) 0.004 (2)

LIHC 0.99 (329) 0.003 (1) 0.01 (4)

LUAD 0.97 (525) 0.01 (7) 0.02 (10)

LUSC 0.96 (436) 0.01 (4) 0.03 (12)

MESO 0.98 (59) 0.02 (1) 0 (0)

OV 0.87 (339) 0.09 (34) 0.05 (18)

PAAD 1 (174) 0 (0) 0 (0)

PCPG 1 (184) 0 (0) 0 (0)

PRAD 0.99 (455) 0 (0) 0.01 (3)

READ 0.94 (133) 0.01 (2) 0.05 (7)

SARC 0.99 (186) 0.01 (1) 0.01 (1)

SKCM 0.99 (439) 0.005 (2) 0.002 (1)

STAD 0.79 (328) 0.005 (2) 0.2 (84)

TGCT 1 (156) 0 (0) 0 (0)

THCA 1 (454) 0.002 (1) 0 (0)

THYM 0.99 (118) 0 (0) 0.01 (1)

UCEC 0.57 (255) 0.04 (17) 0.4 (179)

UCS 0.96 (55) 0.02 (1) 0.02 (1)

UVM 1 (80) 0 (0) 0 (0)

aBLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervi-
cal squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangio-
carcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large
B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma;
LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepato-
cellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carci-
noma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD,
prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM,
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ
cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus en-
dometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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However, most cancer types evidenced distinct profiles of
microsatellite mutations.

We conclude that the great majority of loci whose
mutation correlates with an MSI-H phenotype are spe-
cific to particular cancer types.

PREDICTIVE VALUE OF MICROSATELLITES FOR MSI DIAGNOSIS

WITHIN AND ACROSS CANCER TYPES

Subsets of 1 to 2000 of the most highly informative loci
identified per cancer type were used to computationally
evaluate their performance for diagnosing MSI within
their tumor type of origin, using an independent set of
tumor samples for validation (Fig. 3). Specimens were
classified as MSS or MSI-H based on the fraction of
mutated microsatellites observed in a given panel, with
optimal thresholds for discriminating these classifica-
tions determined empirically (Table 2). These classifica-
tions were compared against determinations made from
exome-wide analysis (Supplemental Table 1) to assess
their accuracy.

We initially determined the number of markers
needed to achieve MSI diagnosis with at least 95% sen-
sitivity and specificity (Fig. 3; Table 2). The number of
requisite markers varied considerably across tumor
types. For 11 of the 15 cancer types, 7 or fewer markers
provided the requisite performance characteristics, and
in 8 cancers, MSI could be diagnosed with 100% specif-
icity and sensitivity. Diagnosis of MSI in endometrial
tumors required 20 markers, while 65 were needed for
classification of kidney renal clear cell cancers. In con-
trast, MSI determination in breast cancer required 800
markers to achieve comparable performance. MSI diag-
nosis in ovarian tumors, while favorable for the training
set (Fig. 3A), did not enable reliable diagnosis in the val-
idation set using any number of markers considered
(Fig. 3B; Table 2).

The desired balance of sensitivity and specificity
may vary by clinical application, and relates to the num-
ber of markers examined. We therefore additionally de-
termined the predictive capacity of various numbers of
markers as measured by the AUROC and the number
of makers required to achieve an area under the curve
(AUC) of 0.9 or greater (Table 2). Although the num-
ber of markers required for most cancers by this metric
remained similar, decreases for breast (from 800 to 50),
kidney renal clear cell (65 to 55), endometrial (20 to 2),
and stomach (2 to 1) were observed.

A small number of loci were informative for MSI
across multiple cancer types. We therefore examined in-
formative microsatellites in endometrial, colon, rectal,
and stomach cancers, which collectively showed closely
related mutational patterns, to determine whether a
common marker panel could be used to diagnose MSI
in those tumors. After Bonferroni correction, 37 shared
microsatellites were independently associated with MSI-
H status in each of those four cancer types
(Supplemental Table 7). The 37-marker panel demon-
strated favorable performance characteristics for the 4
specific cancer types (0.98 AUC, sensitivity 94.3%, spe-
cificity 97.7%), but did not outperform respective
tissue-type specific marker panels (Table 2) and func-
tioned poorly when applied to other cancers. For exam-
ple, AUC was 0.45 when the panel was applied to lung
squamous cell carcinoma and lung adenocarcinoma,
compared with AUC 0.95 for a similarly sized panel
specific to those cancer types.

PROPERTIES OF INFORMATIVE MICROSATELLITES

We examined the sequence composition and genic fea-
ture annotations that were enriched in microsatellites
having globally high informativity for MSI-H tumors
(Fig. 4, Supplemental Table 8). Whole genome data
were examined in order to allow exploration of coding
and noncoding regions but showed agreement with

Fig. 2. Informative markers for diagnosing MSI vary across
cancer types. The 2000 most informative microsatellites
(rows) for discriminating MSI positive from MSI negative
tumors from each of the indicated cancer types (columns)
are displayed. Heatmap coloration indicates the association
of individual loci with the MSI-H phenotype, normalized on
a per-cancer type basis from zero (least significant) to one
(most significant). Hierarchical clustering of cancer types
according to similarity in microsatellite mutation patterns
is indicated at top. TCGA abbreviations for cancer types are
as described in the Table 1 footnote.
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Fig. 3. Performance characteristics of variously sized tissue-specific panels for MSI diagnosis. Area under the receiver operating
characteristic (AUROC) is shown as a function of the number of most highly informative markers examined for various cancer
types. Results are shown for a) the training set from which informative microsatellites were initially identified and b) an inde-
pendent validation set for each tumor type. TCGA abbreviations for cancer types are as described in the Table 1 footnote.

Table 2. Performance characteristics of tissue-specific microsatellite panels for MSI diagnosis in validation set.

Cancer Type
(TCGA Code)

Smallest panel achieving sensitivity and specificity of �95% Smallest panel achieving AUROC of 0.9

Number
of

markers

Minimum
unstable
markers

for MSI-H
classification

(%)

Area
under

the
curve Sensitivity Specificity

Number
of

markers

Minimum
unstable

markers for
MSI-H

classification
(%)

Area
under

the
curve Sensitivity Specificity

COAD 1 50.0% 0.98 100.0% 95.8% 1 50.0% 0.98 100.0% 95.8%

ESCA 1 50.0% 1.00 100.0% 100.0% 1 50.0% 1.00 100.0% 100.0%

GBM 1 50.0% 1.00 100.0% 100.0% 1 50.0% 1.00 100.0% 100.0%

LUAD 1 50.0% 0.99 100.0% 97.1% 1 50.0% 0.99 100.0% 97.1%

LUSC 1 50.0% 0.99 100.0% 97.1% 1 50.0% 0.99 100.0% 97.1%

READ 2 50.0% 1.00 100.0% 100.0% 2 50.0% 1.00 100.0% 100.0%

STAD 2 25.0% 1.00 100.0% 100.0% 1 50.0% 0.92 84.2% 100.0%

LGG 5 12.5% 1.00 100.0% 100.0% 5 12.5% 1.00 100.0% 100.0%

PRAD 5 16.7% 1.00 100.0% 100.0% 5 16.7% 1.00 100.0% 100.0%

CESC 7 45.8% 1.00 100.0% 100.0% 7 45.8% 1.00 100.0% 100.0%

DLBC 7 25.0% 1.00 100.0% 100.0% 7 25.0% 1.00 100.0% 100.0%

UCEC 20 12.9% 0.98 97.0% 97.9% 2 25.0% 0.95 90.3% 97.2%

KIRC 65 7.5% 0.99 100.0% 98.5% 55 4.6% 0.93 100.0% 86.6%

BRCA 800 3.6% 1.00 100.0% 99.5% 50 4.3% 0.92 100.0% 81.1%

OVa 2000 2.0% 0.63 100.0% 47.8% 2000 2.0% 0.63 100.0% 47.8%

aDid not achieve cutoff for test-characteristic threshold with the maximum number of loci tested.
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analyses of exome sequencing where direct comparisons
were possible (not shown). Of the different types of re-
peat sequence classes examined (Fig. 4A), mononucleo-
tide microsatellite mutations correlated most highly
with MSI-H, followed by complex repeats (which them-
selves may be composed of multiple mononucleotide
repeats). MSI-informative markers were most signifi-
cantly enriched in splice sites (Fig. 4B), and conversely,
intergenic regions and noncoding intronic annotations
contained the fewest informative microsatellite ele-
ments. Notably, we found a nonlinear correlation be-
tween the length of mononucleotide markers and their

informativity (Fig. 4, C and D). Tracts comprised of 12
to 13 repeats proved most informative, with longer or
shorter loci showing a decrease in informativity propor-
tional to their distance from this maximum.

Conclusions

Here we used genomic analyses to prioritize microsatel-
lite markers that are most informative for diagnosing
MSI by molecular methods. Whereas prior work has
cataloged loci that are frequently mutated in MSI-H
tumors from the 3 (8) or 4 (7) cancer types where the
phenotype occurs most often, here we have more
broadly examined microsatellite mutation occurrence
across cancer types and have also evaluated the perfor-
mance of variously sized marker subsets for classifying
MSI-H tumors in clinical practice.

We previously reported that cancer types exhibit
distinct patterns of microsatellite mutation overall (7),
and in this work similarly found that microsatellites that
are informative for diagnosing MSI also vary across can-
cer types (Fig. 2). Our results strongly argue that MSI
diagnostic panels developed for particular tumor types
should not be considered generally applicable across all
cancers (23, 28–30). Although a small subset of markers
were cross-informative across a limited group of cancer
types that shared similar mutational profiles (Table 2),
microsatellites tailored to a specific cancer type provided
maximal diagnostic accuracy. This phenomenon poten-
tially reflects different selective pressures underlying tu-
mor evolution, wherein mutation of specific
microsatellites may alter gene expression or gene func-
tion and are therefore recurrently subjected to positive
or negative selection in cancer types for which those
changes are relevant (7).

Accordingly, in determining markers with the high-
est diagnostic utility (Fig. 4), we observed that microsat-
ellite mutations within functional elements including
splice sites and exons were significantly enriched, further
supporting the notion that biological pressures are in-
volved in selecting microsatellite mutations associated
with MSI (7). We also observed that mononucleotide
microsatellites, loci occurring in splicing regions, and
microsatellites comprised of 12 to 13 repeat subunits are
expected to provide the greatest diagnostic benefit, with
microsatellites of 18 or greater repeats being significantly
associated with stability. This latter finding argues that,
unlike in in vitro systems (35), MSI phenotypes in vivo
preferentially involve tracts of specific lengths.

We evaluated the performance of variously sized
subsets of the most informative loci per cancer type in
data sets withheld from those used to identify informa-
tive loci (Fig. 3; Table 2). We note that due to the de-
gree of missing microsatellite calls inherent to our
dataset, existing performance estimates are likely to be
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conservative. Even so, 8 of the 15 cancer types achieved
100% sensitivity and specificity using 7 or fewer loci,
and in 2 of those cancer types only a single marker was
required. These modest testing requirements are com-
patible with MSI diagnosis by highly focused methods
including conventional MSI-PCR or targeted NGS.
Endometrial and kidney renal clear cell tumors required
slightly more markers (20 and 65, respectively). In 2 ex-
treme cases, breast cancer required 800 markers,
whereas reliable MSI diagnosis could not be achieved in
ovarian cancer using predefined subsets of microsatellite
markers. These findings are consistent with microsatel-
lites following less stereotyped patterns of mutation for
breast and ovarian cancers, possibly owing to instability
events having more neutral fitness effects for breast and
ovarian tumors and subsequently resulting in fewer re-
currently mutated loci. In these cancer types, and possi-
bly others, a measurement of overall genome-wide
microsatellite mutation burden may be required to es-
tablish MSI diagnosis reliably (7) (Fig. 1).

Although MSI status is currently the diagnostic
marker approved by the United States Food and Drug
Administration to indicate eligibility for PDL-1 and
PD-1 inhibitor treatments (13, 14), alternative methods
for testing tumor susceptibility to those immunothera-
pies are now available. The most widely used of these al-
ternative approaches is tumor mutation burden (TMB),
a biomarker based on estimating the total substitution
and indel lesions present in a cancer genome (36).
Nevertheless, TMB determination requires sequencing
large gene panels (37) and is of contested clinical utility
(36, 38–41). Because immunotherapy response is par-
ticularly associated with insertion-deletion mutational
load (12), MSI is considered a more reliable positive
predictor of treatment outcomes even though it is un-
able to identify all cancers for which a favorable response
can be achieved (11). Although MSI and TMB determi-
nations frequently overlap, they provide distinct infor-
mation (11). Given these considerations, MSI and
TMB can be considered complementary (11, 12), and
we envision that dedicated testing for MSI will continue
to provide utility as an inexpensive, primary screening
method for immunotherapy response.

Our analyses define useful tissue-specific diagnostic
panels for MSI, but their power and utility could be im-
proved by future efforts. Although most cancer types in-
clude some fraction of cases that are distinguishable as
MSI-H [Fig. 1 and (7–10)], existing data do not encom-
pass enough MSI-H representatives to enable identifica-
tion of informative loci from all cancer types, and in
other cases the paucity of such specimens may limit the
robustness analysis. Focused efforts to sequence MSI-H
tumors from these cancer types would enable their more
thorough characterization. Separately, extant sequence
data provides variable coverage across genomic regions

and among tumors, such that the instability of specific
microsatellites cannot consistently be assessed within or
across tumor types. This results in “missing” data that
negatively affects the statistical power of our analyses
and potentially obscure the identification of otherwise
diagnostically useful markers, but could be remedied by
greater read depths. Relatedly, we were unable to di-
rectly compare the tissue-specific diagnostic perfor-
mance of loci identified in this study to microsatellite
loci commonly included in clinical MSI assays (17, 18)
due to both the unknown sensitivity of NGS relative to
MSI-PCR for detecting microsatellite mutations and in-
adequate read depths for those markers in both exome
and whole genome data. It is noteworthy that the most
informative markers identified by our analyses do not
overlap with those utilized in standard clinical assays for
MSI (17, 18). Lastly, although informative microsatel-
lites are enriched in splice sites and other transcribed
features (Fig. 4) that are largely recovered by exome se-
quencing, the availability of high-depth, whole genome
sequence data from MSI-H tumors would enable a
more comprehensive search for rare, diagnostically use-
ful loci present in noncoding regions. As additional
higher quality sequencing data are generated that meet
these needs, they will enable further refinement of opti-
mally informative MSI markers across different
malignancies.
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