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Abstract

Species (ROS) scavenging in response to the salt stress.

Background: Salinity, as one of the main abiotic stresses, critically threatens growth and fertility of main food crops
including rice in the world. To get insight into the molecular mechanisms by which tolerant genotypes responds to
the salinity stress, we propose an integrative meta-analysis approach to find the key genes involved in salinity
tolerance. Herein, a genome-wide meta-analysis, using microarray and RNA-seq data was conducted which resulted
in the identification of differentially expressed genes (DEGs) under salinity stress at tolerant rice genotypes. DEGs
were then confirmed by meta-QTL analysis and literature review.

Results: A total of 3449 DEGs were detected in 46 meta-QTL positions, among which 1286, 86, 1729 and 348 DEGs
were observed in root, shoot, seedling, and leaves tissues, respectively. Moreover, functional annotation of DEGs
located in the meta-QTLs suggested some involved biological processes (e.g., ion transport, regulation of
transcription, cell wall organization and modification as well as response to stress) and molecular function terms
(e.g., transporter activity, transcription factor activity and oxidoreductase activity). Remarkably, 23 potential candidate
genes were detected in Saltol and hotspot-regions overlying original QTLs for both yield components and ion
homeostasis traits; among which, there were many unreported salinity-responsive genes. Some promising
candidate genes were detected such as pectinesterase, peroxidase, transcription regulator, high-affinity potassium
transporter, cell wall organization, protein serine/threonine phosphatase, and CBS domain cotaining protein.

Conclusions: The obtained results indicated that, the salt tolerant genotypes use qualified mechanisms particularly
in sensing and signalling of the salt stress, regulation of transcription, ionic homeostasis, and Reactive Oxygen
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Background

Currently, rice ranks as the most important food crop in
the world before wheat and maize supplying a major
source of calorie for more than 3.5 billion people all over
the world [1, 2]. However, rice is classified as a very
sensitive crop to salinity in both seedling and reproduct-
ive stages, while excess salt in soil is one of the most

* Correspondence: shobbar@abrii.ac.ir

'Department of Systems Biology, Agricultural Biotechnology Research
Institute of Iran (ABRII), Agricultural Research, Education and Extension
Organization (AREEO), PO Box 31535-1897, Karaj, Iran

Full list of author information is available at the end of the article

K BMC

widespread abiotic stresses in Asia and some river deltas
in Europe [3, 4]. Salinity challenge at the seedling stage
causes the growth arrest or death of rice plant, that re-
duces significantly the yield [5, 6]; therefore, increasing
the salinity tolerance at the seedling stage would be ef-
fective to improve the environmental adaptation and
yield maintenance in rice. It is necessary to understand
the mechanisms underlying the salinity stress tolerance
because of increasing the population, limited arable land,
and climate changes that can provide us a better per-
spective regarding how to manage the increasing de-
mand for high-yielding rice [2, 7]. Salinity tolerance is a
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complicated trait both genetically and physiologically
[8]. Rice, as a well-studied model organism, is particu-
larly rewarding to investigate the salinity stress responses
[7]. Many QTLs have been eventually identified in the
rice breeding programs [9-16], including a major locus
on chromosome 1, namely Saltol, involved in Na/K
homeostasis derived from Pokkali and SKC1 (OsHKT1;
5) from Nona Bokra [17]. Isolation of the identified
QTLs related to salt tolerance can be highly beneficial to
improve the global agriculture and food security but it is
also a challenging task [18]. Although, many QTLs have
been found but there is still limited knowledge regarding
the salinity tolerance-related gene networks in rice.
Technologies such as microarray and gene expression
profiling based on sequencing approaches accelerate the
progress toward a comprehensive understanding of the
genetic mechanisms related to responses to environmen-
tal stresses [19, 20]. Fast advances and decreased price of
high-throughput sequencing technology have led to ex-
tensive application of RNA sequencing in various species
in the recent years [21]. Therefore, many differentially
expressed genes (DEGs) have been identified among the
contrasting samples through mentioned technologies.
Researchers have recently used an integration of DEGs
and QTLs as a confident method to identify the poten-
tial candidate genes [22]. Currently, a great and varied
set of genomic data has become publicly available; sub-
sequently, a combination of numerous accessible data
can rise the consistency and generalizability of the re-
sults. Combining the results obtained from the inde-
pendent but associated studies is called “meta-analysis
(MA)”; thus researchers can obtain more exact estima-
tion regarding the differential gene expression by in-
creasing the statistical power in MA [23, 24]. Breeding
by introgression of the identified QTLs is restricted
owing to the conflict of QTLs in different genetic back-
grounds and environments [25]; while meta- QTL ana-
lysis suggests a chance to use QTL data from various
mapping populations with diverse genetic backgrounds
to detect the accurate position of the QTLs [26]. Several
studies have identified the accurate meta-QTLs of with
various traits for mining the candidate genes in rice and
other crop plants [26-30]. However, an integrative
meta-analysis approach was employed in this study that
resulted in finding several promising genes involved in
salinity tolerance, among which, some of the important
genes/gene families with sufficient evidence are listed
and discussed later to support their candidacy in the
rice. All data produced in the previous studies were used
to identify the rice candidate genes related to salt toler-
ance and then, the candidate genes were confirmed
using the meta-analysis. Findings of this study provide
valuable information on the genes and pathways in-
volved in salinity tolerance in rice.
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Results

Salinity tolerance associated Meta-QTLs in rice

A total of 265 QTLs related to 32 traits were collected
in this study using the Simple Sequence Repeats (SSR)
markers (Table S1, S2) among which, 126 and 139 QTLs
were selected for further analysis in normal and salinity
conditions (Table S3). Most of the QTLs belonged to
the salinity tolerance score (STS) (27 QTLs), shoot po-
tassium concentration (KS) (26 QTLs), shoot sodium
concentration (NS) (21 QTLs), chlorophyll content
(CHL)(19 QTLs) and shoot dry weight (DSW) traits (19
QTLs) (Fig.S1). In contrast, the rare QTLs belonged to
the number of sterile spikelets (NSS) [20], dead seedling
rate (DSR), leaf potassium concentration (KLV), reduc-
tion of seedling height (RSH) and reduction of leaf area
(RLA) traits (Fig.S1). The highest number of QTLs were
observed on chromosome 1 (37 QTLs) and 2 (36 QTLs)
followed by chromosome 7 (29 QTLs), while chromo-
some 8 (12 QTLs) and 11 (12 QTLs) had the lowest
number of QTLs (Fig.S2). The phenotypic variance de-
scribed by the original QTLs was different from 0.7 to
33.25% and the confidence interval (CI) of markers was
different from 0.99 to 84.36 cM (Table S3). After the in-
tegration of all the collected QTLs on the consensus
map, 46 meta-QTLs were identified in 12 chromosome
of rice (Fig. 1). There were meta-QTLs with a CI of 95%
based on the lowest Akaike information criterion (AIC)
values. Remarkably, second meta-QTLs on Chr7: M-
QTL2, Chr2: M-QTL2, and Chrl: M-QTL2 included the
highest number of initial QTLs (17,16 and 12, respect-
ively), which covered a relatively narrow CI (4.78, 1.82
and 2.84 cM, respectively) (Table S4). These meta-QTLs
support the important traits; for example, ratio of the
shoot sodium and potassium concentration (NKS), num-
ber of fertile spikelets (NFS), root length (RTL), and
chlorophyll content (Table S4). Chr12: M-QTL4, Chr 9:
M-QTL3 and Chr3: M-QTL2 had the highest mean per-
centage of phenotypic variation (R®), which can be con-
sidered as the main effective QTLs for the involved
traits (Table S4). A total of 9366 genes were detected in
46 meta-QTL positions, among which, Chr8: M-QTL2
contained the highest number of genes (868 genes);
while, Chr12: M-QTL2 contained the lowest number of
genes (14 genes) (Table S4). Moreover, the proportion of
functionally characterized annotated genes (27%) is actu-
ally limited compared to the about 73% of unannotated
genes with allocated putative functions. It is intersting to
note that, 81 genes were identified on Chrl: M-QTL2
which were located in Saltol region.

Expression profiling analyses in the salinity tolerant
genotypes of rice

The DEGs were identified under salinity stress compared
to control conditions in the salinity tolerant genotypes.
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Fig. 1 Meta-QTL positions for traits associated with the salt tolerance (Table S1) on 12 chromosomes of rice. Vertical lines on the left of the
chromosomes show the confidence interval of each QTL. Marker names and positions (in cM on the consensus map) are indicated on the left.
The colors indicate Meta-QTL positions for traits associated with the salt tolerance

A total of 1714 DEGs were observed in the roots of
FL478 as a salinity tolerant genotype, among which, 927
and 787 were up- and down-regulated in the salinity
conditions [31]. DEGs from multiple RNA-seq datasets
were combined and the DEGs were classified into root,
shoot, seedling, and leaves to have a deeper understand-
ing about the salt responsive genes in the salinity toler-
ant rice genotypes. A total of 3030, 396, 703 and 723
DEGs were merely identified in root, shoot, seedling and
leaves, respectively (Fig.S3). Also, raw microarray data
from nine independent experiments were downloaded
(Table S5) and analyzed uniformly. Microarray meta-
analysis suggested 11,694 DEGs, among which, 4121, 13,
6247 and 1199 DEGs were exclusively expressed in root,
shoot, seedling and leaves, respectively (Fig.S4). In

addition, a total of 4763 and 5862 DEGs were merely
up- and down-regulated, respectively, in the salinity tol-
erant genotypes.

Integration of DEGs from two Meta-analysis approaches
Identified DEGs in both RNA-Seq and microarray meta-
analysis were combined to confirm the consistency of
the obtained results. A list of overlapping DEGs were de-
tected in four tissues, separately after removing all the
duplicate genes.

Comparative transcriptome analysis indicated that
227, 2, 311, and 84 DEGs were commonly detected
by the RNA-Seq and microarray respectively in root,
shoot, seedling, and leaves tissues (Fig. 2). A total of
4255 and 10,980 DEGs were merley identified by the
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Fig. 2 The results of comparison between differentially expressed genes under salt stress conditions in the tolerant genotypes revealed by RNA-
Seq and microarray data analysis, or through literature review in (a) root, (b) shoot, (c) seedling and (d) leaves
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RNA-Seq and microarray meta-analysis, while only
156 DEGs were previously reported in the literature
(Fig. 2).

Detection of the DEGs in the meta-QTL positions

There were a total of 1345, 86, 1729, and 552 DEGs in
the meta-QTL positions in root, shoot, seedling and
leaves, respectively (Fig. 3). Among the identified DEGs
in the meta-QTL positions, 664 and 2359 DEGs were
identified by the RNA-Seq and microarray meta-analysis,
respectively while, only 82 DEGs located in the meta-
QTL positions were previously reported in the literature
(Fig. 3).

Functional annotation of DEGs located in the meta-QTL
positions

Gene ontology enrichment analysis was performed to
determine the biological roles of the DEGs located in

the meta-QTL positions. Carbohydrate metabolic
process, regulation of cellular process, regulation of
transcription, response to stress and regulation of ni-
trogen compound metabolic process were indicated as
dominant terms in the biological processes (BP)
(Fig.S5). Moreover, some BP terms including regula-
tion of transcription, inorganic anion transport, anion
transport, ion transport as well as regulation of gene
expression, cell wall organization and modification
were significantly enriched (Fig.S5). The most signifi-
cant over-represented molecular function (MF) terms
were nucleotide binding, ATP binding, anion trans-
membrane transporter activity, inorganic anion trans-
membrane transporter activity, transcription factor
activity and oxidoreductase activity (Fig.S5). In terms
of cellular component (CC) ontology, the most signifi-
cant enriched terms were intrinsic to membrane and
integral to membrane (Fig.S5).
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Fig. 3 The number of differentially expressed genes identified by RNA-Seq and microarray data analysis, or through literature review, which are
located on the meta-QTL positions in each tissue (roots, shoots, seedlings, and leaves)

Mining the potential candidate genes in the meta-QTL
positions

Exploring the meta-QTL regions for the common genes
were resulted in finding 60 potential candidate genes in
the root (Table S6), among which, only four genes were
previously reported associated to the salinity response.
Remarkably, LOC_0s01g20980.1 (coding Pectinesterase)
was found in Chrl: M-QTL2 located in Saltol region
(Table S6). Ion homeostasis related QTLs were also
found in Chrl: M-QTL2 which controling the KLV, NS,
NKS, KS and RN traits (Table S4). Overall, identified po-
tential candidate genes were classified into several terms
in the root tissue, for example, transcription factor (e.g.,
TIFY, GRAS, HOX, WRKY and MYB family), signaling
(e.g., OsWAKI25, pectinesterase,OsMKK1I, and CHITIS5),
transporter (e.g., OsHKTI and some genes coding trans-
membrane transport and anion transporter) and some
other functions (e.g.,, NUDIX family, genes coding the
aspartic protease) (Table S6).

Four genes in meta-regions on Chr2, 3, and 8 were
identified as potential candidate genes in the shoot, as
discussed in the literature; for instance, TIP2-1
(LOC_0s02g44080.1) in Chr2: M-QTL4 (Table S6).
Chr2: M-QTL4 was integrated with seven initial
QTLs controlling RTL and some other related traits
(e.g. S, KS, NKS, SIS, and NS) (Table S4). Moreover,
two transcription factors (LOC_0Os03g08310.1 and
LOC_Os08g15050.1) were identified respectively as
possible candidate genes in Chr3: M-QTL1 and Chr8:
M-QTL2 (Table S6) supporting the root length and
photosynthesis related traits, respectively (Table S4).
It is interesting to note that, LOC_Os03g08310.1

(coding TIFY11A) was identified as common candi-
date gene in the root and shoot (Table S6).

Our results indicated 98 potential candidate genes in
the seedling including 84 DEGs located in the M-QTLs
that were not reported yet. However, 14 genes have been
already considered in the literature (Table S6). Func-
tional classification of these potential candidate genes
further suggested that they were related to the transcrip-
tion regulation (e.g., AP2, WRKY, HOX, and GRAM fam-
ily), signal transduction (e.g., CIPK24, GDSL) and there
were some genes with another functions including kin-
ase, phosphatase, and transporter terms under salinity
stress in seedling tissue (Table S6). Remarkably, LOC_
0s01g20830.1 (coding a transporter protein) and LOC_
0s01g21144.1 (with unknown function) were found in
Saltol region on Chrl: M-QTL2 (Table S6). As well,
there were some potential candidate genes in hotspot-
regions; for example, WRKY70 (LOC_0Os05g39720.1) in
Chr5: M-QTL4 and PP2C (LOC_Os06g48300.1) in
Chr6: M-QTL4 (R*=10.31%) (Table S4, S6). Moreover,
some genes were identified as potential candidate genes
in Chr2: M-QTL1, Chr8: M-QTL1, Chrl10: M-QTL3,
and Chrll: M-QTL1; these meta-regions were inte-
grated the importance of the initial QTLs for photosyn-
thesis, straw dry weight, yield components (e.g. QGW,
DF and NFS) and RTL traits (Table S4, S6).

Totally, 28 potential candidate genes were identified in
the leaves among which, 14 genes were found in the
literature. The LOC_0s01g22249.1 (coding the peroxid-
ase) located in Saltol region in Chrl: M-QTL2 was
identified as another leading candidate gene. Notably,
OsHKTI (LOC_Os06g48810.1) and PP2C (LOC_
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0Os06g48300.1) were found in the hotspot-regions in
Chr6: M-QTLA (Table S4, S6).

The obtained results indicated that, 20 genes were lo-
cated on the hotspot-regions containing original QTLs
for both yield components and ion homeostasis traits
which could be suggested as promising candidate genes
(Fig. 4, Table 1). The promising genes were related to
the following functions: pectinesterase, peroxidase,
transcription regulation, high-affinity potassium trans-
porter, protein serine/threonine phosphatase, cell wall
organization and a CBS domain containing gene, among
which, there were 2 genes in Saltol region (Table 1).

Validation of differential gene expression using qRT-PCR
To further validate the potential candidate genes, 15
genes were selected for qRT-PCR in FL478 as a salt
tolerant genotype (Fig. 5). The qRT-PCR results were
confirmed the outcome of the meta-analysis (Fig.S6).
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v

Removing duplicates

’ Collecting related publications ‘
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the related genes introduced at literature

\’

‘ Collecting related QTLs ‘ Identification of common genes

\’ v

’ Preprocessing data & meta-QTL analysis

Functional
\1/ annotation of

. . the candidates
’ Gene mining in meta-QTL positions ‘
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Fig. 4 Flowchart showing different steps of meta-analysis pipeline
used to identify the promising candidate genes involved in the
salinity tolerance. The differentially expressed genes detected by
more than one approach called common genes in this manuscript.
To find the potential candidate genes, the common genes were
sought in the salinity tolerance associated meta-QTLs regions. The
potential candidate genes that were located on hotspot-regions
overlying original QTLs for both yield components and ion
homeostasis traits were assumed as promising candidate genes
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Discussion

Rice is highly influenced by the salinity stress at seedling
and reproductive stages. High salinity concentrations
lead to the ionic imbalances, dehydration, osmotic stress,
and oxidative damage. Therefore, it is important to iden-
tify the most accurate QTLs and the involved candidate
genes. Herein, a panel of potential candidate genes both
located on the meta-QTL regions and differentially
expressed ones in the salinity stress conditions was pro-
vided in the tolerant genotypes (Fig. 6).

Sensing and signaling
Tolerance of the plants against the abiotic stresses in-
cluding salinity is activated by the complex multicompo-
nent signaling pathways to return the cellular
homeostasis and promote the survival [32]. The plant
cell wall is one of the first layers for biotic and abiotic
stimuli perception, and cell wall remodeling provides a
general response mechanism to stresses [33]. Here were
several genes coding integral components of membrane
and cell wall organization in the hotspot-regions.
OsWAKI125 was found in Chrl2: M-QTL1 and up-
regulated in the roots (Table S6, Fig. 6), belonging to the
wall-associated kinase family and has been mainly inves-
tigated as a potential candidate for the cell wall “sensor”
[34, 35]. The Wall Associated Kinases (WAKs) firmly
bind to the pectic network of the cell wall, protrude the
membrane, and link it to the cytoplasm where a Serine/
Threonine (Ser/Thr) kinase domain is responsible for
further signaling [34, 35]. A drought and salinity respon-
sive class of cell wall-related genes (represented by the
pectinesterase) was also found in Saltol region up-
regulated in the roots (Table S6, Fig. 6). Various crops
such as soybean, wheat, and tomato have been shown to
have higher levels of pectin remodeling enzymes in tol-
erant cultivars than susceptible genotypes under salinity
and drought stress [33]. Several Ser/Thr phosphatase
genes were differentially expressed in the leaves at seed-
ling stage in the hotspot-regions (Table S6). Ser/Thr
phosphatases play significant roles in the regulation of
the adaptive stress responses and signaling pathways in
various crops such as potato, wheat, and rice [36—40].
OsMKK1 in Ché6: M-QTL12 and OsCHIT1S5 in ChrlO0:
M-QTL3 were also detected, which up-regulated in the
roots, and mediating the salinity signaling in rice (Table
S6, Fig. 6) [41]. Plant chitinases play an important role
in the response to abiotic stress; it has also been re-
ported that hydrolysis of the carbohydrate chains by the
chitinases indicates its possible role in signaling or os-
motic adjustment functions [34]. Moreover, seven
hydrolase coding genes involved in the signaling path-
ways were among the DEGs located on the meta-QTL
regions (Table S6), among which two GDSL-like lipase/
acylhydrolase enzymes in Chr5:M-QTL2 and Chr6:M-



Mirdar Mansuri et al. BMC Plant Biology (2020) 20:452

Page 7 of 14

Table 1 The promising genes associated with salinity tolerance. The differentially expressed genes detected by more than one
approach (common genes) and located on meta-QTLs regions overlying original QTLs for both yield components and ion
homeostasis traits were assumed as promising candidate genes in this study (the pipeline is presented in Fig. 4)

Gene ID Gene name/ function Meta Tissue (Expressed
position in)

LOC_ Pectinesterase Chrl: M- Root

0s01g20980.1 QrL2

LOC_ Peroxidase Chrl: M- Leaves

0s01g22249.1 QTL2

LOC_ CBS domain containing membrane protein Chr2: M- Root

05029064101 QTL1

LOC_ Ubiquitin family protein, putative, expressed Chr2:m- Leaves

0502g06640.1 QTL1

LOC_ OsSub38, Putative Subtilisin homologue, expressed Chr4a:M- Root

0s504g03810.1 QTL1

LOC_ Oxidoreductase, aldo/keto reductase family Chr4: M- Seedling

0s04g26870.1 QrTL2

LOC_ Expressed protein Chr4:M- Seedling

0s04g06910.1 QrL1

LOC_ Inorganic phosphate transporter Chr4:M- Seedling

0s04910750.1 QL

LOC_ MOCT,Transcription regulation, GRAS family Chr5: M- Root

0s05g42130.1 QTL4

LOC_ WRKY70, Transcription regulation, Negative regulator of stomatal closure through SA- and ABA-  Chr5: M- Seedling

0s05939720.1 mediated signaling QTL4

LOC_ Aminotransferase, putative, expressed Chr5:M- Leaves

0s05g39770.1 QTL4

LOC_ Expressed protein Chr5:M- Seedling

0s05g38660.1 QTL4

LOC_ LTPL17, Protease inhibitor/seed storage/LTP family protein precursor, Signal domain Chr5:M- Seedling

0s05g40010.1 QTL4

LOC_ Expressed protein Chr5:M- Seedling

0s05g41670.1 QrL4

LOC_ Plant-type cell wall organization Chr5:M- Root

0s505g39990.1 QTL4

LOC_ Phosphatidylethanolamine Chr5:M- Root

05059392501 QTL4

LOC_ OsSAUR28, Auxin-responsive SAUR gene family member, expressed Chre:M- Root

0s506g48860.1 QTL4

LOC_ OsHKT1, Na* transporter, k* transporter,cation transmembrane transporter activity Chré: M- Root and Leaves

0s06g48810.1 QTL4

LOC_ PP2C, protein serine/threonine phosphatase activity Chr6: M- Root, Seedling &

0s506g48300.1 QTL4 leaves

LOC_ LTPL154, Protease inhibitor/seed storage/LTP family protein precursor, Signal domain Chr6:M- Seedling

0s06g49190.1 QTL4

QTL1 were up-regulated in the seedlings under salinity
stress (Table S6, Fig. 6). Furthermore, OsCIPK24 (SOS2)
in Chr6:M-QTL3 and OsCIPK10 in Chr3:M-QTL2 were
up-regulated in the seedlings (Table S6, Fig. 4). CIPK
(CBL- Interacting Protein Kinases) pathway has emerged
as a main signaling pathway and adjusts the salt toler-
ance in rice [42, 43]. A generic signal transduction path-
way starts with signal perception, followed by the
generation of the second messengers)e.g., inositol

phosphates and Reactive Oxygen Species (ROS)) and the
transcription factors controlling the specific sets of
stress-regulated genes [44].

Transcription regulation

Transcription factors are important for emergence of
any phenotype, as they are able to regulate the expres-
sion of all the related genes [32]. HSFA6B (located in
Chr1:M-QTL3, up-regulated in the seedlings) acts as a
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positive regulator downstream of Abscisic Acid (ABA)
signaling directly bound to the promoter of
Dehydration-Responsive Element-Binding (DREB) and
increasing its expression (Table S6, Fig. 6). Upregulation
of the Dehydration-Responsive Element -Binding protein
2A (DREB2A) can activate the various genes related to
stress tolerance in different plant species [45]. It has also
been reported that over-expression of OsTIFY11 (located
in Chr3:M-QTL1, up-regulated in the shoot and root)
increased the tolerance to salinity stress through the Jas-
monic Acid (JA) signaling and through modulating the
potassium homeostasis (Table S6, Fig. 6) [46]. There
were OsHOX22 and OsHOX24 from homeobox familyin
Chr3:M-QTL1 and Chr4:M-QTL3, respectively, which
were both up-regulated in the seedlings (Table S6, Fig.
6). OsHOX24 was the most up-regulated gene under
150 mM NaCl in the salt tolerant genotype (FL478);
while it was highly down-regulated in the salt sensitive
genotype (IR29) [31]. Also, the role of OsHOX24 has
been already found to regulate the abiotic stress re-
sponses through fine tuning the expression of stress-
responsive genes in rice [47]. Moreover, there was
OsWRKY70 in Chr5:M-QTL4 and up-regulated in the
seedlings (Table S6, Fig. 6). It has been stated that
OsWRKY70 as a negative regulator of stomatal closure
through SA- and ABA-mediated signaling, play import-
ant role in the plant tolerance to osmotic stress [48].
Moreover, GRAS (located in Chr5:M-QTL4 and down-
regulated in the roots) proteins belong to a plant-
specific transcription factor family involved in many
plant processes including plant growth and development
as well as abiotic stress responses (Table S6, Fig. 6) [49,
50]. It has also been reported that MOCI encodes a nu-
clear transcription factor from GRAS family. MOCI acts
as a positive regulator of lateral branching or increased
tiller number [51].

ROS inhibition

One of the key mechanisms to increase the plants
adaptation to detrimental environmental conditions
including high salt concentrations is regulation of the
toxic ROS levels [33, 52]. Nudix hydrolase was found
in Chr4: M-QTL3 and was up-regulated in the roots
(Table S6, Fig. 6), generally removing the excess toxic
metabolites or controlling the accessibility of interme-
diates in the metabolic pathways [53]. Also, there was
a peroxidase coding gene belongs to the antioxidant
system in Chr1:M-QTL2 that was up-regulated in the
leaves (Table S6, Fig. 6). Transgenic Arabidopsis
plants expressing the cytosolic peroxidase genes have
been reported to show higher salt tolerance [20]. In
addition, there was a hydrolase coding gene belonging
to the alpha/beta fold family domain containing pro-
tein in Chr3:M-QTL3that was up-regulated in the
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seedling (Table S6, Fig. 6). It has been reported that
overexpression of a gene coding o/f-hydrolase fold
enzyme led to significantly higher salinity tolerance
compared to the wild-type because of protecting the
membrane integrity and increasing the ROS scaven-
ging capacity in the sweetpotato [54].

lonic homeostasis

Regulation of the ion flux under salinity stress is neces-
sary for the cells to keep the concentrations of toxic ions
at low levels and to collect the essential ions. Salinity
stress up-regulates the trasporter encoding genes such as
Na® and K" transporters and vacuolar Na'/H" ex-
changers [55]. Several transporters were observed in the
meta-QTL positions among which, HKTI was found in
Chr6: M-QTL4; down-regulated in the leaves and up-
regulated in the roots (hotspot-region, Table S6, Fig. 6).
High affinity K" transporter known as Na'/K' co-
transporters reduces the transport of Na* to the shoots
and positively regulate the salinity tolerance in rice and
Arabidopsis [56]. Two genes encoding the vacuolar pro-
tein with signal peptide domain were identified in Chrl:
M-QTL3 and Chr3:M-QTL2 (Table S6); up-regulated in
the seedling. The genes coding the sodium/calcium ex-
changer (NCX) in Chr12:M-QTL4; up-regulated in seed-
ling (Table S6, Fig. 6), which play significant roles in
Ca®* signaling and ion homeostasis. Sodium/calcium
exchangers use the Na® electrochemical gradient
through the plasma membrane to extrude the intracellu-
lar Ca%* [57, 58].

Other salt tolerance related potential candidate genes
Twenty three unknown potential candidate genes were
found among which, five genes possess the CBS or cupin
domain(s) in their sequence. For instance, a gene con-
taining CBS domain was located in Chr2:M-QTL1 that
up-regulated in the roots. Previous reports have indi-
cated that, it plays a role in the salinity and oxidative
stress tolerance through influencing the chloride chan-
nels (Kushwaha et al. 2009). It has also been reported
that overexpression of OsCBSX4 improved the tolerance
against salinity and oxidative stress in tobacco transgenic
lines [59].

Furthermore,four genes possessing the cupin do-
main(s) in their sequence were found in various M-QTL
positions (Table S6) while there were up-regulated in
the seedlings. According to the previous reports, cupin
domain might play a role in improving the seed germin-
ation in rice under salinity stress because the proteins
having the cupin domain(s) were observed near the pos-
ition of QTLs related to the seed dormancy, seed reserve
utilization, and seed germination [60].
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Conclusions

To inspect the molecular mechanisms by which tolerant
genotypes respond to the salinity stress, we employed an
integrative approach to identify candidate genes related
to salt tolerance in rice. The obtained results indicated
that, the salt tolerant genotypes utilize more effective
mechanisms in response to the salt stress (Fig. 6) par-
ticularly in terms of 1) Sensing and signalling of the salt
stress; several genes coding the cell wall organization,
pectinesterase, Ser/Thr phosphatase, chitinase, CIPK-
were observed in the hotspot-regions that were differen-
tially expressed in the tolerant genotypes. 2) Regulation
of transcription; several salinity responsive transcription
factors (TFs) belonging to different families including
TIFY, MYB, HSF, HOX, WRKY, AP2, and GRAS fam-
ilies were found both in the meta-QTL regions and
among the DEGs, which have been shown to play essen-
tial roles in the salinity tolerance in rice. 3) Ionic and os-
motic homeostasis; some transporters were also among
the promising candidate genes such as HKT1 (Na/ K
transporter), NCX (sodium/calcium exchanger), and
TIP2-1 (aquaporin). 4) ROS scavenging; there were
many important genes involved in detoxification such as
hydrolase, oxidoreductase, and peroxidase among the
DEGs that were located in the meta-QTL positions. Fur-
ther research on these promising candidate genes can
bring about beneficial information which would be used
to improve salt tolerance in the given genotypes through
genetic engineering or molecular breeding.

Methods

Meta-analysis of QTLs

Preparing the QTL data

All the reported QTLs related to the salinity tolerance in
rice (from 2009 to 2018) were collected including those
identified in 15 previously published studies [9-14, 16,
61-68]. The QTLs data including the parental lines, the
type and size of QTL mapping population, and the num-
ber of QTLs per trait were provided. Moreover, the
flanking molecular markers, Confidence Interval (CI),
QTL position, Logarithm of the Odds (LOD) score, and
Proportion of Phenotypic Pariance Explained (PVE or
R2) were evaluated with respect to each QTL. The QTLs
used in this study were derived from various population
types (including: F2, backcrossed lines (BC3F4), Recom-
binant Inbred Lines (RILs)), and sizes (from 87 to 285
plants) from different tissues at seedling and reproduct-
ive developmental stages (Table S1).

Consensus map and QTL projection

The consensus QTL regions were identified using the
BioMercator software [69]. The map of the International
Rice Microsatellite Initiative (IRMI) available at https://
archive.gramene.org (IRMI_2003) was used as the
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reference map for Meta-QTL analysis. The 95% CI of
the initial QTL was computed using the following for-
mulas before projecting the QTLs on the consensus
map:

(i) For F2 lines: CI = 3239
(ii) For Double Haploid (DH) lines: CI = <22

NxR?
. _ _163
(iii) For RILs: CI = Nl

Where, N is the population size and R? is the percent-
age of phenotypic variation explained by the related
QTL. The scaling rule between the marker intervals of
the initial QTLs was used for the QTL positions on the
consensus chromosome map.

Meta-analysis of the QTLs

Meta analysis was performed by the default parameter
sets in the BioMercator V4.2 tool. The consensus QTL
was calculated as 1, 2, 3, and n models by the software.
The Akaike Information Criterion (AIC) was used to se-
lect the QTL models on each chromosome [70]. Accord-
ing to the AIC value, the QTL model with the lowest
AIC value was considered as a significant model.

RNA -sequencing

RNA-Seq data was obtained from our previous study on
two contrasting genotypes of Oryza sativa under salinity
stress [31]. Briefly, the young seedlings of FL478 (Salt
tolerant) and IR29 (Salt sensitive) were treated with 150
mM NaCl and the root samples were collected 24 h after
inception of the salt stress. Along with, normal samples
(at the same conditions but without salinity treatment)
were also collected as control samples [31]. The purified
RNA was used to construct the cDNA library; the quali-
fied libraries were subsequently sequenced using Illumi-
naHiSeq™ 2500 sequencer. The transcriptome raw data
including control (SRR7944745 and SRR7944784) and
salt treated samples (SRR7944792 and SRR7944793) of
FL478, and control samples (SRR7945188 and
SRR7945229) and salt treated samples (SRR7945230 and
SRR7945234) of IR29 are available at SRA (Sequence
Read Achieve) of NCBI database. The quality of datasets
was conducted using the FastQC tool [71]. TopHat was
used to map eight paired-end sequencing libraries of
two rice genotypes against the rice reference genome se-
quences IRGSP 1.0 (ftp://ftp.ensemblgenomes.org/pub
/plants) [71]. Raw sequencing reads were then assembled
through Cufflinks and Cuffmerge meta assembler util-
ities [71]. Finally, DEGs were identified by Cuffdiff util-
ity, with log2 fold change > 1 (up-regulated genes)
and < (- 1) (down-regulated genes) and Q-value cut-off
of <0.05.
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Meta-analysis of the gene expression data according to
tissues

RNA-seq Meta-dataset

The available (by the time of this analysis) transcriptome
datasets of rice plants exposed to salinity stress were col-
lected from the National Center for Biotechnology
(NCBI) database (Table S7). The genes with -1 >log2
fold change > 1 and significant Q-value (FDR < 5%) were
considered as DEGs from these RNA-seq datasets and
were classified into four tissues (i.e. shoot, root, seedling,
and leaves).

Microarray Meta-analysis

Rice expression data subjected to salt stress were ob-
tained from the NCBI's Gene Expression Omnibus re-
pository (GEO) [71, 72]. Totally, nine GEO datasets
were downloaded from the affymetrix platform Rice
Genome Array (Affymetrix or Agilent microarray plat-
forms) (Table S5). Each set of the expression data was
preprocessed separately. The LIMMA package in the R
program was used to analyze Agilent microarray data
[73], while affymetrix platforms were handled in the R
program by the Affy package. The raw data of each
source was preprocessed by the quantile normalization
and Robust Multi-Array Average background correction.
Then, the probes with low-intensity and non-
informative were removed from the program standard
settings; then, the probes were transformed to their re-
lated genomic location. The RMA was employed for
normalization of values for the subsequent MA. Then,
the difference between each treatment and its control
was computed using the LIMMA package. After fitting
the data into a linear model, simple empirical Bayes
model was used to revise the standard errors. For each
contrast in every gene, moderated t-statistic and log-
odds of differential expression were calculated. The
genes with — 1>1log2 fold change > 1 and Q-value cut-
off of <0.05 were determined as DEGs in each of the
four tissues.

Integration of significant gene expressions and literature
citations for the DEGs

A novel data processing pipeline was proposed in this
research integrating different data types to identify
promising candidate genes related to salt tolerance in
rice (Fig. 4). On one hand, DEGs were integrated in re-
sponse to salinity stress in rice from both microarray
and RNA-Seq technologies. On the other hand, NCBI
(NCBIL; www.ncbi.nlm.nih.gov) literature was searched to
identify the published reports on the salinity tolerance
genes in rice. In this research, 111 papers were reviewed
and all the reported salinity tolerance-related genes in
rice were collected. All the identified genes were classi-
fied into four tissues (including shoot, root, seedling,

Page 11 of 14

and leaves) (Table S8). Venn diagram (using the R pack-
age) was used to compare the overlaps in the detected
genes for each tissue using different approaches (includ-
ing RNA-seq, microarray, and literature review) and the
common genes were detected. Finally, salinity tolerance
associated meta-QTLs regions were explored to find the
DEGs, which are coincided with the meta-QTL posi-
tions. For identification of DEGs in meta-QTLs regions,
the flanking markers of the identified MQTLs were used
to detect the physical intervals for each meta-QTL.
Then, the genes located in meta-QTLs regions were
found according to the rice genome assembly IRGSP 1.0.

Functional annotation and pathway analysis

Enrichment analysis of the DEGs were performed using
the AgriGO public web tool [74]. The over-represented
GO terms were filtered in the three main categories in-
cluding the “Biological Process”, “Molecular Function”
and “Cellular Component” using the Fisher’s exact test
(Q-value < 0.05) and were corrected by the False Discov-

ery Rate (FDR) method at p < 0.05.

Identification of salinity tolerance-related candidate genes
in the meta-QTL regions

The genes observed at least by two approaches (from
the three applied methodologies including RNA-seq,
microarray and literature review) were called as common
genes in this paper.The common genes were sought in
the salinity tolerance associated meta-QTLs regions to
find the potential candidate genes. The potential candi-
date genes located on the hotspot-regions overlying ori-
ginal QTLs for both vyield components and ion
homeostasis traits were assumed as promising candidate
genes (Fig. 4).

Plant growth and salt stress treatment

Seeds of FL478 as the salt tolerant rice (Oryza sativa L.)
genotype were provided from International Rice Re-
search Institute (IRRI). Seeds sterilization and germin-
ation, as well as plant growth conditions were performed
as previously described [31]. Root and shoot samples of
21-days-old treated seedlings with 150 mM NaCl were
collected 24 h after inception of the salt stress, instantly
put in liquid nitrogen and kept at —80°C until RNA
extraction.

RNA extraction and cDNA library synthesis

Total RNA extraction was performed by the RNeasy
Plant kit (Qiagen) from 100 mg of shoot and root tissues.
Integrity and quality of RNA samples was inspected
using a NanoDrop ND-1000° spectrophotometer and
agarose gel electrophoresis. The cDNA library synthesis
was done using iScriptTM cDNA synthesis kit (BioBasic)
consistent with the manufacturer’s instructions.


http://www.ncbi.nlm.nih.gov

Mirdar Mansuri et al. BMC Plant Biology (2020) 20:452

Validation of salinity tolerance-related candidate genes by
qRT-PCR assay

A total of 15 genes from the list of possible candidate
genes were randomly nominated in each tissue (Table
S6) for validation by quantitative real-time PCR (RT-
qPCR). Specific primer pairs for each gene (Table S9 for
list primer) were designed by Oligo 7.0 (National
Bioscience Inc., Plymouth, USA). The qRT-PCR with
three independent biological replicates was done by a
LightCycler® 96 Real-Time PCR System (Roche Life
Science, Germany) and SYBR Premix without ROX
based on manufacturer’s protocol. Actin gene of rice
(OS03G0836000) was employed as a suitable inner con-
trol gene. Transcript levels of nominated genes from
three biological replicates were computed as 2- AACt
[75].
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