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Abstract

Background: Depression affects approximately 7.1% of the United States population every year and has an annual
economic burden of over $210 billion dollars. Several recent studies have sought to investigate the
pathophysiology of depression utilizing focused cerebrospinal fluid (CSF) and serum analysis. Inflammation and
metabolic dysfunction have emerged as potential etiological factors from these studies. A dysregulation in the
levels of inflammatory proteins such as IL-12, TNF, IL-6 and IFN-γ have been found to be significantly correlated
with depression.

Methods: CSF samples were obtained from 15 patients, seven with major depressive disorder and eight age- and
gender-matched non-psychiatric controls. CSF protein profiles were obtained using quantitative mass spectrometry.
The data were analyzed by Progenesis QI proteomics software to identify significantly dysregulated proteins. The
results were subjected to bioinformatics analysis using the Ingenuity Pathway Analysis suite to obtain unbiased
mechanistic insight into biologically relevant interactions and pathways.

Results: Several dysregulated proteins were identified. Bioinformatics analysis indicated that the potential disorder/
disease pathways include inflammatory response, metabolic disease and organismal injury. Molecular and cellular
functions that were affected include cellular compromise, cell-to-cell signaling & interaction, cellular movement,
protein synthesis, and cellular development. The major canonical pathway that was upregulated was acute phase
response signaling. Endogenous upstream regulators that may influence dysregulation of proinflammatory molecules
associated with depression are interleukin-6 (IL-6), signal transducer and activator of transcription 3 (STAT3), oncostatin
M, PR domain zinc finger protein 1 (PRDM1), and peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PPARGC1A).

Conclusions: The proteome profiling data in this report identifies several potential biological functions that may be
involved in the pathophysiology of major depressive disorder. Future research into how the differential expression of
these proteins is involved in the etiology and severity of depression will be important.

Keywords: Cerebrospinal fluid, Proteomics, Label free quantitation, Major depressive disorder, Depression,
Inflammation, Metabolism, Interleukin 6, Oncostatin M, STAT3
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Background
According to the National Institute of Mental Health
(NIMH), 17.3 million U.S. adults had at least one epi-
sode of Major Depressive Disorder (MDD) in 2017 [1].
This number represents 7.1% of the United States popu-
lation and that number is only expected to rise. The
total economic burden of MDD in the U.S. was esti-
mated to be $210.5 billion dollars in 2010 [2]. MDD is a
challenging disease to study as it is a multifaceted and
polygenic disorder with environmental influences. Sev-
eral methods have been employed on plasma, saliva, and
CSF to understand the deeper mechanisms of MDD in-
cluding transcriptomics [3], DNA sequencing [4], and
genome wide association studies (GWAS) [5]. Recent re-
search has pointed to possible correlations of depression
with processes such as inflammation [6, 7] and meta-
bolic disease [8]. Inflammatory proteins such as IL-12,
TNF, IL-6, IFN-γ, IL-9, IL-17A, and IL-10 have been re-
ported as being elevated in MDD patients [9] and studies
regarding the role of metabolism in the disease are un-
derway. Several groups have used the above approaches
to investigate biomarkers circulating in the peripheral
blood [10, 11] or saliva. However, cerebrospinal fluid
(CSF) may be a more promising biomarker source be-
cause of its proximity to and direct interactions with
brain tissue [12]. Similar to plasma studies, it shares the
advantage over post-mortem brain tissue studies in that
samples can be collected from live patients. Tradition-
ally, CSF proteomics studies have employed 2D-gel elec-
trophoresis, which is quantitative but requires relatively
large quantities of protein that can only be identified
post-analysis [13]. Mass spectrometry methods are ideal
for CSF studies because their high sensitivity requires
relatively low protein concentrations [14]. In this study,
CSF samples from MDD patients and matching non-
psychiatric patients were analyzed by quantitative mass
spectrometry. The resulting data was subjected to bio-
informatic analyses with Ingenuity Pathway Analysis to
determine potential pathways involved in the patho-
physiology of MDD.

Methods
Cerebrospinal fluid collection
Ten adult outpatients fulfilling DSM-IV criteria for
unipolar MDD and ten non-psychiatric controls, se-
lected to age and gender match the patient group,
provided voluntary written informed consent to par-
ticipate in this study. A demographic table for these
patients has been included in Supplementary Table 1.
The protocol was approved by the institutional review
boards of Yale University (New Haven, CT) and But-
ler Hospital (Providence, RI), and conducted at both
institutions. For a detailed description of subjects and
CSF collection see [15]. Briefly, depressed patients

with baseline Hamilton Depression Rating Scale score
greater than 17 were recruited. Diagnostic interviews
were used to determine the presence of unipolar
MDD (patient group) or the absence of any current
and lifetime DSM-IV Axis I disorder (controls). Indi-
viduals with any other major Axis I comorbidity were
excluded. All participating subjects were medication-
free for at least 2 weeks. MDD subjects underwent
CSF sampling within 2 weeks prior to starting their
clinical trial antidepressant treatment.
Efforts were taken to reduce anxiety and HPA axis

arousal associated with the lumbar puncture (LP) pro-
cedure. Subjects were in a comfortable leaning-forward
seated position on a bed and repeatedly encouraged to
provide feedback in order to achieve a relatively pain-
free LP by adjusting positioning and liberal application
of local anesthetic. Procedure was terminated if CSF
sample was not obtained by 30min after the start of
preparations. Collection of samples was completed when
10 patients in each group had successful lumbar
punctures.
A total of 12 ml of clear CSF was collected and frozen

at − 80 °C in 0.5 ml aliquots. In addition to the samples
being clear and devoid of coloration, mass spectrometry
revealed a negligible amount of hemoglobin alpha and
beta changes with no significant difference between the
two groups. Other blood specific and highly abundant
blood proteins including catalase, peroxiredoxin, and
carbonic anhydrase I were not detected in the CSF sam-
ples [16]. This gives us a high degree of confidence that
blood contamination did not occur or is below detection
sensitivity. A workflow of the MS experiments is shown
in Fig. 1.

Mass spectrometry detection and quantification of
proteins
LabelFree analysis
5 μL of digested samples (EN or FT, at equal conc. ~
0.1 μg/μL) are injected onto a nanoACQUITY™ UPLC™
in-line with an LTQ Orbitrap Elite MS system equipped
with a Waters nanoACQUITY™ UPLC™ system, and uses
a Waters Symmetry® C18 180 μm× 20mm trap column
and a 1.7 μm, 75 μm× 250mm nanoAcquity™ UPLC™
column (35 °C) for peptide separation. The LC gradient
and sequence of MS events are described below. Buffer
A: 0.1% Formic Acid in Water; Buffer B: 0.075% Formic
Acid in Acetonitrile. A 120-min run time is utilized as
follow: 0 min – 5% B, 1 to 90 min – 5 to 40%B, 90 to 91
min – 40 to 85% B, maintain at 85% B for 4 min, then
back to 5% B in 1 min, finally 24 min re-equilibration at
5%B. Two blanks (1st 100% ACN, 2nd Buffer A) follow
each injection to ensure no carry over.
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MS sequence events
MS is acquired in the Orbitrap using 1 microscan, and a
maximum inject time of 900 ms followed by three to 10
data dependant and Multi-Stage Activation (MSA) MS/
MS acquisitions for the FT and EN fractions, respect-
ively, in the ion trap (with precursor ions threshold of >
3000); the total cycle time for both MS and MS/MS ac-
quisition is 1.0 s. Peaks targeted for MS/MS fragmenta-
tion by collision induced dissociation (CID) or High
energy Collision dissociation (HCD) were first isolated
with a 2 Da window followed by normalized collision en-
ergy of 35%. Dynamic exclusion was activated where
former target ions were excluded for 30 s. See below for
MS script details on LTQ-Orbitrap parameters used.
The data were processed with Progenesis QI proteomics
4.1 (Waters) and protein identification was searched
using Mascot search algorithm (version 2.6.2) (Matrix
Science). See details below.

LF data analyses
Feature extraction, chromatographic/spectral alignment,
data filtering, and statistical analysis were performed
using Progenesis QI proteomics. First, the .raw data files
were imported into the program. A sample run was
chosen as a reference (usually at or near the middle of
all runs in a set), and all other runs were automatically
aligned to that run in order to minimize retention time
(RT) variability between runs. No adjustments are neces-
sary in the m/z dimension due to the high mass accuracy
of the mass spectrometer (typically < 3 ppm). All runs
were selected for detection with an automatic detection

limit. Features within RT ranges of 0–16 min and 102–
120 min were filtered out, as were features with charge ≥
+ 8. A normalization factor was then calculated for each
run to account for differences in sample load between
injections. The experimental design was setup to group
multiple injections from each run. The algorithm then
calculates and tabulates raw and normalized abundances,
max fold change, and Anova values for each feature in
the data set. The features were tagged in sets based on
characteristics such as MS/MS > 1, p < 0.01, and p < 0.01.
The MS/MS collected for the experiment were filtered
to exclude spectra with rank > 10 or isotope > 3 to en-
sure that the highest quality MS/MS spectral data are
utilized for peptide assignments and subsequent protein
ID. The remaining MSMS were exported to an .mgf
(Mascot generic file) for database searching (see below).
After the Mascot search, an .xml file of the results is cre-
ated, and then imported into the Progenesis QI proteo-
mics software, where search hits are assigned to
corresponding features.

Database searching
The .mgf files created by the Progenesis QI proteomics are
searched in-house using the Mascot algorithm (Hirosawa
et al., 1993, version 2.6.2 for un-interpreted MS/MS spectra.
The data was searched against a user specific protein data-
base and also the SWISSPROT Human protein database.
Search parameters include: Variable modifications-
Carbamidomethyl (Cys), Oxidation (Met), Carbamyl (K) –
Note other modification is also used when appropriate (i.e.
phosphorylation of S, T, and Y); Peptide mass tolerance - ±

Fig. 1 Workflow of mass spectrometry experiments. LTQ – Linear trap quadropole, SWATH – Sequential window acqusition of all theoretical
fragment ion spectra
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10 ppm; Fragment mass tolerance - ± 0.2Da; and with Decoy
search to get at false discovery rate (FDR). The significance
threshold of the ion score was calculated based on a false dis-
covery rate of ≤1%.
Statistical analysis was performed using ANOVA and

The Benjamini-Hochberg (BH) method was used to ad-
just p values for multiple-testing false discovery rate.
The adjusted p ≤ 0.05 was considered as significant. Vol-
cano plot and heatmap was generated using Partek Gen-
omics Suite.

SWATH analysis
In order to perform SWATH analysis a relative protein
quantification library, consisting of Control and MDD
groups was created using CSF samples from this study.
Samples were precipitated and trypsin digested overnight
using in-solution method and dried using speed vac and
resuspended in 20ul of 0.5%TFA and desalted using
Millipore C18 ZipTip. Cleaned samples were dried in
speed vac and reuspended in 0.1% formic acid for pep-
tide quant using Nanodrop 2000. 1μg of each sample
was injected through Eksigent cHiPLC column (75 μm×
15 cm ChromXP C18-CL 3 μm 120 Å) onto 5600 Triple-
TOF (typical gradient 2–60% ACN in 60min). CONT
and MDD were spiked in HRM calibration peptides for
SWATH. CONT and MDD were performed in technical
triplicates. Control and MDD pools (each consisting of 3
subjects) were used to create a library of proteins.
To identify proteins present in individual CSF samples,

data were analyzed using Protein Pilot search engines
against the Swissprot database with the species set as
human, specifying trypsin as the enzyme, one missed
cleavage, and variable modifications were cysteines as
carbamidomethyl and oxidized methionine. Protein
Identifications that achieved at least 1% FDR and were
identified in all three technical replicates were subjected
to further statistical analyses.
The changes in the relative abundance of proteins

present in CSF sample were established by comparing
the extracted-ion peak intensities of the three technical
replicates for each sample. Variation in the relative ex-
pression of proteins was assessed by Ztest.
After removal of degraded proteomic samples, nine fe-

male (4 MDD and 5 CTRL) and six male (3 MDD AND
3 CTRL) samples that were age and gender matched
were used for bioinformatics analysis from the LTQ
Orbitrap Elite Mass Spectrometer. Between these two
groups, 426 proteins were identified. SWATH analysis
identified 307 proteins.

Ingenuity pathway analysis
Analysis of LTQ Orbitrap Elite mass spectrometry de-
rived proteomics data was performed using Ingenuity
Pathways Analysis (IPA) software. The fold expression

change data linked to each protein was uploaded as an
Excel document to the IPA servers. A core analysis was
performed to identify any potentially interesting rela-
tionships in the dataset. Overlap with canonical path-
ways or specific biological functions was calculated
algorithmically by the software using its statistical
formulas.

Statistical analyses
Differential expression between major depressive dis-
order patients was accomplished by performing an
ANOVA for each protein and the Benjamini-Hochberg
(BH) method was used to adjust p-values for multiple
testing false discovery rate. An adjusted p-value less than
0.05 was considered significant. The heat map represen-
tation of the data was performed using Euclidean mini-
mum distance clustering to determine the similarities of
the relative changes. The similarity to biological proper-
ties performed by Ingenuity Pathways Analysis was com-
pleted with a right-tailed Fisher’s Exact test.

Results
Biological functions altered in major depressive disorder
(MDD)
After mass spectrometry was completed on the cerebro-
spinal fluid (CSF) samples, statistical analysis was per-
formed using the Progenesis QI software. This resulted
in identifying 43 proteins that were differentially
expressed with 23 upregulated and 20 downregulated in
MDD. All proteins identified by the LTQ Orbitrap Elite
Mass Spectrometer are reported in Supplementary
Table 2. Confirmation of proteins was completed with
SWATH analysis with 22 proteins being upregulated
and 19 downregulated and are reported in Supplemen-
tary Table 3. The regulated proteins are shown in Fig. 2
and Fig. 3. Table 1 shows the top ten proteins for both
upregulation and downregulation as identified by the
LTQ Orbitrap Elite Mass Spectrometer. An Ingenuity
Pathway Analysis software core analysis was performed
on the complete dataset to elucidate any biological func-
tions related to the dataset. This analysis resulted in the
list of disorders/diseases shown in Table 2. This includes
inflammatory response, metabolic disease, and organis-
mal injury and abnormalities. Several molecular and cel-
lular functions were also significantly implicated in this
dataset. The affected functions listed in Table 3 are cel-
lular compromise, cell-to-cell signaling & interaction,
cellular movement, protein synthesis, and cellular
development.

Canonical pathways related to major depressive disorder
as generated by IPA
The IPA core analysis also identified several canonical
pathways that had a substantial overlap with the dataset
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(Fig. 4). The activated pathways include acute phase re-
sponse signaling, coagulation system, intrinsic prothrom-
bin activation pathway, and glycoprotein VI (GP6)
invasiveness signaling. The sole downregulated pathway
was LXR/RXR activation. The most significantly regu-
lated pathway was acute phase response signaling
(Fig. 5).

Upstream regulators generated by IPA software
Shown in Table 4 is a list of upstream regulators that
can regulate the processes connected to the dataset.
These included cytokines interleukin-6 (IL-6) and oncos-
tatin M (OSM); chemical drugs phenacetin and carbo-
platin; transcription regulators PR domain zinc finger
protein 1 (PRDM1), signal transducer and activator of
transcription 3 (STAT3), and PPARG coactivator 1 alpha
(PPARGC1A); and the chemical toxicant thioacetamide.
Excluding exogenous regulators from this list leaves

interleukin-6, oncostatin M, PRDM1, STAT3, and PPAR
GC1A. As seen in Fig. 6, three of these molecules are in-
terconnected in one pathway leading to the activation of

STAT3. This correlates with the data in Fig. 5 as many
of the molecules downstream of STAT3 are upregulated.

Discussion
We performed a proteomic analysis of CSF from MDD
and matched non-psychiatric controls and further ana-
lyzed the data for functional significance using Ingenuity
Pathway Analysis software. This revealed altered molecu-
lar and cellular functions, including cellular compromise,
cell-to-cell signaling & interaction, cellular movement,
protein synthesis, and cellular development. Disease/dis-
order processes related to MDD were also statistically sig-
nificant, including inflammatory response, metabolic
disease, and organismal injury and abnormalities.
Previous research has shown that MDD patients have

elevated levels of inflammatory proteins including those
revealed in our study such as alpha-1-antitrypsin [17,
18]. The role of inflammation in depression has attracted
significant attention and there is substantial evidence to
indicate that it is important to disease pathophysiology.
Studies have described how a western diet that leads to

Fig. 2 Volcano plot showing the distribution of proteins (307) with relative protein abundance (log2 MDD vs CONT) plotted against its significance
level (negative log10 P-value), showing significantly (P < 0.05) increased (> 1.5; Red) and decreased (<− 1.5; Green) proteins in MDD
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adiposity also increases the pro-inflammatory state of
the body and correlates with depressive symptoms [19].
Another study investigated how core MDD symptoms
such as exaggerated response to negative information,
altered reward processing, and decreased cognitive con-
trol correlate strongly with inflammation [20]. Several
chemokines are dysregulated in the blood of depressive
patients [21], including elevated C-Reactive Protein
(CRP) levels [22, 23]. The above information insinuates
a correlational role of adiposity independent or
dependent inflammation with depressive symptoms.
It is interesting to note that the reward pathway is

strongly influenced by inflammatory cytokines such as
interferons, interleukin-1β, and tumor necrosis factor
[24]. This modulation of the reward pathway by pro-
inflammatory signaling could emerge as a causal link be-
tween our proteomics data and disease phenotype with
the decreased reward pathway leading to the anhedonia
that is common to the disorder [25]. The pro-
inflammatory state may also lead to MDD through direct
neurotoxicity of brain regions involved in emotional
regulation including the hippocampus, amygdala, and
anterior cingulate cortex. This neurotoxicity is poten-
tially mediated by NMDA receptor excitotoxicity, react-
ive oxygen and nitrogen species, and reactive gliosis

[26]. The adverse impact on these brain structures could
influence the cortico-striatal pathway as both the hippo-
campus and amygdala have inputs to the striatum, and
the cortex has many bidirectional relationships with the
thalamus and striatum [27]. In addition to highlighting
the acute phase response signaling system, our
dataset also implicated several upstream regulators that
could have a role in depression. These signaling mole-
cules are oncostatin M (OSM), interleukin 6, and
STAT3. IL-6 and STAT3 have been previously shown to
be involved in serotonin transporter function and
depression-like behavior [28]. OSM has been shown to
have various effects in the body including inflammation,
but it has not been well studied with regard to depres-
sion [29]. Clinical studies (NCT00291239;
NCT03080025) are investigating the role of IL-6 as a
biomarker or causative molecule in depression, but none
are investigating STAT3 or oncostatin M. It should be
noted that STAT3 is activated by elevated IL-6 and
oncostatin M belongs to the IL-6 family. Future research
focused on manipulating levels of these molecules in
preclinical models can shed light on whether they play
direct roles in modulating depressive behavior.
Downregulated proteins found in our study and in the

literature include energy metabolism proteins such as

Fig. 3 Heat map representation of 6 individual samples abundances for 49 significantly altered proteins after unsupervised hierarchical clustering,
segregating samples into CONT (left) and MDD (right) and proteins into up-regulated (bottom) and down-regulated (top) proteins in MDD
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Table 1 Top ten upregulated and downregulated proteins in MDD cerebrospinal fluid. Columns show UniProt ID, gene symbol, fold
change, description, molecular function and cellular localization. Molecular function and cellular localization are from Ingenuity
Pathway Analysis (IPA) software

Representative top molecules identified by IPA analysis in MDD patients

UniProt ID Gene
Symbol

Fold Change
(MDD/Ctrl)

Description Molecular
Function

Cellular
Localization

Upregulated Genes

O75460 ERN1 2.26 Ser/thr-protein
kinase/endoribonuclease

Kinase Cytoplasm

Q8IVL0 NAV3 1.96 Neuron navigator 3 Other Nucleus

P0DOX6 1.88 Immunoglobulin mu
heavy chain

Other Other

Q969Y0 NXPE3 1.67 NXPE family member 3 Other Other

P01009 SERPINA1 1.65 Alpha-1-antitrypsin Other Extracellular
Space

P02679 FGG 1.65 Fibrinogen gamma chain Other Extracellular
Space

P00746 CFD 1.64 Complement factor D Peptidase Extracellular
Space

O75128 COBL 1.60 Protein cordon-bleu Other Plasma
Membrane

P51884 LUM 1.59 Lumican Other Extracellular
Space

P02675 FGB 1.56 Fibrinogen beta chain Other Extracellular
Space

Downregulated Genes

P29622 SERPINA4 −2.07 Kallistatin Other Extracellular Space

P60174 TPI1 −1.96 Triosephosphate isomerase Enzyme Cytoplasm

O43293 DAPK3 −1.65 Death-associated protein
kinase 3

Kinase Cytoplasm

A0A075B6K4 IGLV3–10 −1.65 Immunoglobulin lambda
variable 3–10

Other Other

P04090 RLN2 −1.55 Prorelaxin H2 Other Extracellular Space

P0C0L5 C4A/C4B −1.50 Complement C4-B Other Extracellular Space

Q8IVW6 ARID3B −1.49 AT-rich interactive domaincontaining
protein 3B

Transcription
Regulator

Nucleus

Q6P1S2 C3orf33 −1.45 Protein C3orf33 Other Extracellular Space

P25705 ATP5F1A −1.40 ATP synthase subunit
alpha, mitochondrial

Transporter Cytoplasm

P02765 AHSG −1.39 Alpha-2-HS-glycoprotein Other Extracellular Space

Table 2 Disorders and diseases identified by Ingenuity Pathway Analysis software as being implicated in MDD. p-value ranges were
calculated for this dataset for the involvement of including inflammatory response, metabolic disease, and organismal injury and
abnormalities. # proteins indicate the number of proteins from this dataset that were implicated as being involved in each of the
indicated disorders and diseases

Disorder/Disease p-value Range # Proteins

Inflammatory Response 6.57E-03 - 7.27E-16 25

Metabolic Disease 6.51E-03 - 2.42E-09 18

Organismal Injury and Abnormalities 7.07E-03 - 2.42E-09 40
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triosephosphate isomerase [30, 31]. Studies examining
the comorbidity of depression and metabolic dysregula-
tion have been supported by reports that have focused
on poor glycemic control [32], diabetes [33], and meta-
bolic syndrome [34]. The specific link between these
conditions has not been sufficiently elucidated. Also, the
directionality of the relationship is still being debated. It
is clear that there is a correlation between hyperglycemia
and depression [32]. Importantly, in patients with Type
II diabetes the psychosocial stress or a biochemical
change as a result of the treatment does not cause any
alteration in the rate of depression which suggests that
an alternate variable must be involved. Adiposity leads
to a heightened inflammation state in the body [35] and
this could affect the brain leading to increased vulner-
ability for major depressive disorder. An interesting

Table 3 Molecular and cellular functions dysregulated by MDD.
Functions include cellular compromise, cell-to-cell signaling &
interaction, cellular movement, protein synthesis, and cellular
development. # proteins indicate the number of proteins from
this dataset that were implicated as being involved in each of
the indicated molecular and cellular functions

Molecular and Cellular Functions p-value Range # Proteins

Cellular Compromise 5.41E-03 - 7.27E-16 20

Cell-To-Cell Signaling & Interaction 6.71E-03 - 4.01E-09 20

Cellular Movement 6.66E-03 - 2.24E-08 24

Protein Synthesis 3.87E-03 - 1.42E-07 16

Cellular Development 5.41E-03 - 3.66E-06 14

Fig. 4 Complete list of canonical pathways associated with the dysregulated proteins identified in this dataset. Y-axis lists the canonical pathway
and the x-axis is the log of the corresponding p-value for each. Orange coloring indicates the pathway is activated and blue coloring indicates
the pathway is inhibited. No coloring indicates insufficient data in the dataset or the IPA knowledge base to determine if the pathway is
activated or inhibited
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Fig. 5 Activation of the acute phase response. Red nodes indicate upregulation and green nodes indicate downregulation. The intensity of the color
relates to the extent of regulation with darker meaning greater. An arrow indicates activation whereas a perpendicular line indicates inhibition

Table 4 Upstream regulators with a predicted state of activation or inhibition. Based on the dataset, IPA generated a list of
upstream regulators and determined their predicted activation state, activation z-score, and p-value of overlap with the dataset

Upstream
Regulator

Molecule Type Predicted
Activation State

Activation
z-score

p-value of
overlap

IL6 cytokine Activated 2.84 0.000000104

phenacetin chemical drug Activated 2 0.00000104

carboplatin chemical drug Activated 2 0.00000268

PRDM1 transcription regulator Activated 2.433 0.0000037

thioacetamide chemical toxicant Activated 2.388 0.00000558

STAT3 transcription regulator Activated 2.24 0.00000969

OSM cytokine Activated 2.594 0.000086

PPARGC1A transcription regulator Inhibited −2.204 0.000384
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avenue of future research is understanding the links be-
tween hyperglycemia, adiposity, inflammation, and major
depressive disorder.
Lastly, fibrinogen has been shown in previous studies

to be positively correlated with MDD [36, 37]. In pa-
tients with high CSF levels of fibrinogen, significant
white matter tract abnormalities were observed [38].
Haptoglobin has also been implicated in MDD over the
past few decades [18] and more recent research has fo-
cused on investigating the effects of different haptoglo-
bin genotypes [39, 40]. These findings indicate a
potential vulnerability of the BBB in depression and is
worthy of further investigation. Our results provide add-
itional support that these proteins are involved in MDD.

Conclusion
The proteome profiling data in this report identified sev-
eral potential biological functions that may be disrupted
as part of the pathophysiology of MDD. These include
inflammatory response, metabolic disease, and organis-
mal injury/abnormalities. Additionally, several biological
functions including cellular compromise, cell-to-cell sig-
naling and interaction, cellular movement, protein syn-
thesis, and cellular development were also suggested to
be involved in MDD. Acute phase response was identi-
fied as a significantly impacted canonical pathway by this
analysis. Finally, several endogenous upstream regulators
including interleukin 6, oncostatin M, STAT3, PRDM1,

and PPARGC1A were identified by statistical analyses of
the proteome profiling data.
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1186/s12888-020-02874-9.

Additional file 1: Supplementary Table 1. A demographic table of
patient data including gender and major depressive disorder status.
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proteins identified by LTQ Orbitrap Elite Mass Spectrometer. Green
highlighted ANOVAs are statistically significant.

Additional file 3: Supplementary Table 3. A complete list of all
proteins identified by SWATH analysis.

Additional file 4: Supplementary Figure 1. Complete acute phase
response signaling. Red nodes are upregulated and green nodes are
down regulated.
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activation, and blue arrows denote inhibition
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theoretical fragment ion mass spectra; TNF: Tumor necrosis factor; TNF-
α: Tumor necrosis factor-alpha; VGF: Non acronymic
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