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Abstract

Rationale: Two distinct phenotypes of acute respiratory distress
syndrome (ARDS) with differential clinical outcomes and responses
to randomly assigned treatment have consistently been identified
in randomized controlled trial cohorts using latent class analysis.
Plasma biomarkers, key components in phenotype identification,
currently lack point-of-care assays and represent a barrier to the
clinical implementation of phenotypes.

Objectives: The objective of this study was to develop models to
classify ARDS phenotypes using readily available clinical data only.

Methods: Three randomized controlled trial cohorts served as the
training data set (ARMA [High vs. Low VT], ALVEOLI [Assessment
of Low VT and Elevated End-Expiratory Pressure to Obviate Lung
Injury], and FACTT [Fluids and Catheter Treatment Trial];
n= 2,022), and a fourth served as the validation data set (SAILS
[Statins for Acutely Injured Lungs from Sepsis]; n= 745). A gradient-
boosted machine algorithm was used to develop classifier models
using 24 variables (demographics, vital signs, laboratory, and
respiratory variables) at enrollment. In two secondary analyses, the
ALVEOLI and FACTT cohorts each, individually, served as the

validation data set, and the remaining combined cohorts formed the
training data set for each analysis. Model performance was evaluated
against the latent class analysis–derived phenotype.

Measurements and Main Results: For the primary analysis, the
model accurately classified the phenotypes in the validation cohort
(area under the receiver operating characteristic curve [AUC], 0.95;
95% confidence interval [CI], 0.94–0.96). Using a probability cutoff
of 0.5 to assign class, inflammatory biomarkers (IL-6, IL-8, and
sTNFR-1; P, 0.0001) and 90-daymortality (38% vs. 24%; P= 0.0002)
were significantly higher in the hyperinflammatory phenotype as
classified by the model. Model accuracy was similar when ALVEOLI
(AUC, 0.94; 95% CI, 0.92–0.96) and FACTT (AUC, 0.94; 95% CI,
0.92–0.95) were used as the validation cohorts. Significant treatment
interactionswere observedwith the clinical classifiermodel–assigned
phenotypes in both ALVEOLI (P= 0.0113) and FACTT (P= 0.0072)
cohorts.

Conclusions: ARDS phenotypes can be accurately identified using
machine learning models based on readily available clinical data and
may enable rapid phenotype identification at the bedside.
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In critical care medicine, clinical syndromes
such as acute respiratory distress syndrome
(ARDS) and sepsis have come to define the
specialty. Both sepsis and ARDS are highly
prevalent clinical disorders associated with
high mortality and morbidity (1, 2). Despite

decades of preclinical and clinical studies,
no disease-altering interventions have
been successfully tested in either of these
syndromes (3, 4). In recent years, a
proposed explanation for the near
ubiquitous failures of these clinical trials

implicates the broad defining criteria for
these syndromes, which inevitably lead to
clinical and biological heterogeneity.

To address the issue of heterogeneity,
investigators are increasingly using
unsupervised learning methods to seek
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distinct phenotypes nested within these
syndromes. Clustering algorithms using
experimental biomarkers, including plasma
proteins and transcriptomic data, have most
consistently identified distinct phenotypes
that offer novel biological insights (5, 6).
More pertinently, many of these studies
have identified phenotypes that potentially
offer routes to both prognostic and
predictive enrichment of clinical trials (5,
6). Although the potential of their clinical
applicability may be tantalizing, practically,
the lack of point-of-care testing for many of
the key defining biomarkers limits the
applicability of phenotypes in the clinical
setting. The clinical implementation of
these phenotypes, therefore, represents one
of the foremost challenges facing the field.

Specifically pertaining to ARDS, our
group has performed latent class analysis
(LCA) in five randomized controlled trial
(RCT) cohorts of ARDS using 30–40 clinical
and biological variables and has consistently
identified two distinct phenotypes of
ARDS (7–10). These phenotypes have

been termed hypoinflammatory and
hyperinflammatory, with the latter
characterized by high plasma levels of
inflammatory biomarkers. In addition, the
phenotypes have widely divergent clinical
outcomes, and differential treatment
responses have been identified to positive
end-expiratory pressure (PEEP) strategy
(7), fluid therapy (8), and simvastatin (9).

Bedside identification of these
phenotypes is seemingly dependent on the
rapid quantification of plasma biomarkers
such as IL-8, protein C, IL-6, and sTNFR-1
(soluble tumor necrosis factor receptor 1) (8,
11). Currently, point-of-care or clinically
validated assays are unavailable for most
of these biomarkers, thereby limiting real-time
prospective identification of the phenotypes.

The advent of modernmachine learning
algorithms could potentially allow the
development of highly accurate phenotype
classification models that are solely reliant on
readily available data. One such algorithm,
namely gradient-boosted machines (GBMs),
is increasingly being applied for prediction in
the data science industry and is known to
outperform simpler models, such as logistic
regression, in many clinical research fields,
including critical care (12–14). The primary
objective of this study was to use GBMs to
develop ARDS phenotype classifier models
using only clinical variables that are readily
available on admission to the emergency
room or ICU. Secondary objectives of
the study were 1) to test whether the
differential treatment responses observed in
prior LCA studies can be identified using
these clinical classifier models and 2) to
develop models that use a more limited set
of readily available clinical data. A portion of
the work contained in this manuscript has
been previously published in abstract form
(15). The data have been updated since then.

Methods

Study Population
Clinical data were obtained from patients
enrolled in four NHLBI ARDS Network
RCTs: namely, ARMA (High vs. Low VT)
(16), ALVEOLI (Assessment of Low VT

and Elevated End-Expiratory Pressure to
Obviate Lung Injury) trial (17), FACTT
(Fluids and Catheter Treatment Trial) (18),
and SAILS (Statins for Acutely Injured Lungs
from Sepsis) (19). Patients were enrolled in
these trials within 48 hours of the onset of
ARDS. All patients in the trials were

mechanically ventilated and admitted to
ICUs. Data from before or at the time of
enrollment were used for the purposes
of this study. Full details of the trials can
be found in the original published studies
(16–19). Subjects were assigned into
hypoinflammatory or hyperinflammatory
phenotypes using LCA-derived phenotypes
from a prior study (11). In this study, ARMA
(study arm only), ALVEOLI, and FACTT
were combined into a single cohort for LCA,
and SAILS was analyzed individually (20).
These phenotypes served as the reference
standard for model development and model
performance evaluation. The severity of
disease scores, clinical outcomes, and
treatment assignments were not incorporated
during the model development.

Data Synthesis and Analysis
Figure 1 provides an outline of the analysis
plan. For each phase of analysis, separate
training and validation data sets were
created. For the primary analysis, data from
ARMA, ALVEOLI, and FACTT cohorts
were merged to form the training data set,
and the most contemporaneous cohort,
SAILS, served as the validation data set. For
secondary analyses, two models were
created; in secondary model 1, the ARMA,
ALVEOLI, and SAILS cohorts were merged
to form the training data set, and the
FACTT cohort served as the validation data
set. In secondary model 2, the ARMA,
FACTT, and SAILS cohorts were combined
to form the training data set, and the
ALVEOLI cohort served as the validation
data set. The rationale for the resampling
analyses in secondary models 1 and 2 were
twofold. First, these analyses served as a
form of cross-validation of the approach to
estimate the external generalizability of the
proposed algorithms and phenotypes.
Second, they allowed the testing of
differential treatment responses in the
identified phenotypes, as seen in the original
LCA-derived phenotypes. The ARMA
cohort was not used as a validation data set
because it constituted the smallest and oldest
data set that excluded half the study
population (those receiving high VTs).
Consequently, the heterogeneous treatment
effect in phenotypes was not tested in the
ARMA cohort in the original LCA study (7).

Next, classifier models were developed
using sparse sets of variables that were
grouped according to variable type. The four
types were demographics, vital signs,
respiratory data, and laboratory data

At a Glance Commentary

Scientific Knowledge on the
Subject: Using latent class analysis,
two phenotypes of acute respiratory
distress syndrome (ARDS) with
divergent characteristics and clinical
outcomes have consistently been
identified in secondary analysis of
randomized controlled trials. To date,
however, the identification of these
phenotypes has been contingent on
quantification of research biomarkers.
The lack of point-of-care testing for
these biomarkers has limited their
implementation at the bedside.

What This Study Adds to the Field:
We have developed and validated
models that only use readily available
clinical data and can classify ARDS
phenotypes with high accuracy.
Importantly, the identified phenotypes
shared clinical characteristics and
differential treatment responses
observed in the original latent class
analysis–derived phenotypes.
Contingent on prospective validation,
these models can facilitate the
implementation of ARDS phenotypes
at the bedside.
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(Table 1). The data sets from the primary
analysis were used to train and test model
performance. A priori, a decision was made
to use the variables from the two best
performing groups in the validation data set
to develop a new (“combined”) model, and
its accuracy was evaluated in the validation
data set. The rationale for this approach
was to develop a model comprised of a
more parsimonious set of variables.

Predictor Variables
The list of predictor variables used in the
classifier models are presented in Table 1.
Only data that were used in the original
LCA-modeling studies and that were
deemed to be readily available in routine
clinical workflow at the point of trial
enrollment were considered for predictor
variables. Urine output over the prior 24
hours was excluded because it may not
consistently be available at the bedside, and
plateau pressure was excluded because of
high missingness (.25%).

Model Training and Testing
A variant of the gradient-boosted trees
algorithm known as XGBoost (extreme
gradient boosting) was used to develop the
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Figure 1. A schematic of the analysis plan and the data sets used in the primary, secondary, and sparse variable set analyses. ALVEOLI = Assessment of
Low VT and Elevated End-Expiratory Pressure to Obviate Lung Injury; ARMA=High vs. Low VT; FACTT=Fluids and Catheter Treatment Trial;
SAILS=Statins for Acutely Injured Lungs from Sepsis.

Table 1. Variables Used for the Clinical Classifier Model

Variables Groups

Age, yr Demographic (group 1)
Sex, F
Race, white
Body mass index
ARDS risk factor: pneumonia
ARDS risk factor: sepsis
ARDS risk factor: aspiration
ARDS risk factor: trauma
ARDS risk factor: other

PaO2
/FiO2

ratio, mm Hg Respiratory (group 2)
PaCO2

, mm Hg
_VE, ml/min
VT, ml
Peak end-expiratory pressure, cm H2O

Temperature, 8C; high Vital signs (group 3)
Heart rate, beats/min; high
Systolic blood pressure, mm Hg; low
Respiratory rate, breaths/min21; high
Vasopressor use at baseline, yes/no

Hematocrit, % Laboratory (group 4)
White cell count, 103/ml; high
Platelets, 103/ml; low
Sodium, mmol/L; high
Glucose, mg/dl; high
Creatinine, mg/dl; high
Bicarbonate, mmol/L; low
Albumin, g/dl; low
Bilirubin, mg/dl; high

Definition of abbreviation: ARDS=acute respiratory distress syndrome.
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clinical classifier models (21). GBM is an
ensemble- or decision tree–based method
whereby each new tree in the model aims to
correct the classification errors of previous
trees in the ensemble (22). This learning
procedure enables the iterative refinement
of the model, and residual errors are
minimized in new trees until the model is
maximally optimized, leading to more
accurate predictions. Hyperparameters
were tuned using a grid search strategy in
the training data set using 10-fold cross-
validation. Additional details of the
XGBoost analyses are available in the
online supplement.

The performance of the final tuned
model was evaluated in the validation data
set, which was kept isolated from the model
training process throughout the analysis.
The area under the receiver operating
characteristic curve (AUC) was used to
evaluate model performance. In the
validation data set, patients were assigned
the phenotypes based on their highest
probability (>0.5). Sensitivity, specificity,

and accuracy of phenotype assignments
were computed. Clinical outcomes and
treatment interactions were determined
based on phenotype assignments, and these
were compared with LCA-derived
phenotypes. Furthermore, to test the model
performance over a range a probability
cutoffs, the analyses were repeated for all
models by assigning classes using cutoffs of
0.3, 0.4, 0.6, and 0.7.

Between-group differences were
tested using Student’s t tests and
Wilcoxon-rank sum tests depending
on the distribution of the variable.
Differences in outcomes between
phenotypes were tested using Pearson’s x2

test. To evaluate differential treatment
responses, logistic regression models were
constructed by introducing interaction
terms of phenotype assignment and
treatment, with mortality at Day 90 as the
outcome variable. XGBoost models were
developed using the R package XGBoost.
All analyses were performed using R
version 3.4.1.

Results

Values for variables at baseline for the
training data set and validation data set in
the primary analysis are summarized in
Table E1 in the online supplement. For
model performance, only data generated in
the validation data sets are presented
throughout.

Primary Analysis
Data were available for 2,022 patients in the
training data set and 745 patients in the
validation data set. For the primary analysis,
the final tuned (“clinical classifier”) model,
when tested in the validation data set
(SAILS), had an AUC of 0.95 (95%
confidence interval [CI], 0.94–0.96). Using
a probability cutoff of 0.5 or more to assign
the hyperinflammatory phenotype, the
model specificity was 0.98, sensitivity was
0.63 (Table 2), and accuracy was 0.85. The
model performance over a range of
probability cutoffs is presented in Table 3.
There was a strong positive correlation
between the probabilities generated by the
clinical classifier model and those generated
by the LCA (r= 0.81; P, 0.0001).

As with LCA-derived phenotypes, the
hyperinflammatory phenotype identified
using the clinical classifier model had
significantly higher levels of plasma IL-6,
IL-8, soluble tumor necrosis factor receptor
1 (Figure 2), intercellular adhesion molecule
1, and plasminogen activator factor 1
(see Figure E1). As with the LCA-derived
phenotypes, plasma protein C levels were
significantly lower in the hyperinflammatory
group (Figure 2). The absolute median
values and interquartile ranges of the
biomarkers in the phenotypes of the clinical
classifier models were remarkably similar to
those in the LCA-derived phenotypes (data

Table 2. Confusion Matrix Comparing Phenotype Classification Derived by the
Gradient-Boosting Machine (Clinical Classifier) Model with Original LCA-derived
Classification in the Primary Validation Data Set (SAILS)*

LCA-assigned
Hyperinflammatory

Class

LCA-assigned
Hypoinflammatory

Class Total

Clinical classifier–derived
hyperinflammatory class

175 (sensitivity 0.63) 8 183

Clinical classifier–derived
hypoinflammatory class

102 460 (specificity 0.98) 562

Total 277 468 —

Definition of abbreviations: LCA= latent class analysis; SAILS=Statins for Acutely Injured Lungs from
Sepsis.
*Probability cutoff of >0.5 to assign phenotype.

Table 3. Model Performance and Accuracy of Clinical Classifier Model over a Range of Probability Cutoffs in the Validation Data Set
(SAILS) in the Primary Analysis*

Probability
Cutoff Sensitivity Specificity Accuracy

Total Patients [n (%)] Mortality at Day 90 [n (%)] P Value for
Treatment
InteractionHypoinflammatory Hyperinflammatory Hypoinflammatory Hyperinflammatory

>0.3 0.78 0.93 0.87 493 (66) 252 (34) 117 (24) 87 (35) 0.7960
>0.4 0.71 0.97 0.87 533 (72) 212 (28) 124 (23) 80 (38) 0.3300
>0.6 0.54 0.99 0.82 593 (80) 152 (20) 145 (24) 59 (39) 0.3897
>0.7 0.45 0.99 0.79 618 (83) 127 (17) 154 (25) 50 (39) 0.2650

Definition of abbreviation: SAILS=Statins for Acutely Injured Lungs from Sepsis.
*For each phenotype, proportions of patients, mortality at Day 90, and P values for interaction term of phenotypes with randomized intervention (with
mortality as outcome) are also presented.
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not shown). When phenotype was assigned
by the clinical classifier model, mortality at
Day 90 was significantly higher in the
hyperinflammatory phenotype compared
with the hypoinflammatory phenotype
(38% vs. 24%; P= 0.0002). Ventilator-free
days were also significantly fewer in the
hyperinflammatory phenotype (median
13 vs. 21 d; P, 0.0001). As with the
LCA-derived phenotypes, no treatment
interaction was observed with treatment
groups (rosuvastatin vs. placebo) and
clinical classifier–derived phenotypes
(P= 0.359).

The three most important predictor
variables in the clinical classifier model were
bicarbonate, vasopressor use, and
creatinine. The top 10 variables of
importance in the clinical classifier model
are presented in Figure 3.

Secondary Analysis

FACTT as the validation data set (secondary
model 1). In this analysis, the training data
set comprised 1,767 patients (ARMA,
ALVEOLI, and SAILS) and the validation
data set comprised 1,000 patients (FACTT).

The AUC for the secondary model 1 in the
validation data set was 0.94 (95% CI,
0.92–0.96). Table E2 has a summary of
model accuracy, sensitivity, and specificity
using a probability cutoff 0.5 or more to assign
class. Clinical outcomes were significantly
worse in the hyperinflammatory phenotype
compared with the hypoinflammatory
phenotype (Tables 4 and 5). In line with
LCA-assigned phenotypes, a significant
interaction was identified between the
phenotype and fluid treatment strategy for
mortality at Day 90 (P=0.0072) in the
validation (FACTT) data set.

ALVEOLI as the validation data set
(secondary model 2). For this analysis, the
training data set comprised 2,218 patients
(ARMA, FACTT, and SAILS) and the
validation data set comprised 549 patients
(ALVEOLI). The AUC for secondarymodel 2
was 0.94 (95% CI, 0.92–0.95). Table E3 has a
summary of model accuracy, sensitivity, and
specificity using a probability cutoff of 0.5 or
more to assign class. Clinical outcomes were
significantly worse in the hyperinflammatory
group, and significant treatment interaction
was observed with model-derived
phenotypes and PEEP strategy for mortality
at Day 90 in the validation data set
(P=0.0113; Tables 4 and 5).

Sparse variable-set modeling. Of the
sparse set of variables, the laboratory
variables model had the highest AUC (0.92;
95% CI, 0.90–0.94) followed by the vital
signs model (AUC, 0.79; 95% CI,
0.76–0.82) in the validation data set
(SAILS). Demographic variables had the
lowest AUC (0.58; 95% CI, 0.53–0.62;
Figure 4).

A further model was created combining
the laboratory and vital signs variables
(groups 3 and 4; Table 1). In the primary
analysis data set, this combined model had
an AUC of 0.94 (95% CI, 0.93–0.96) in the
validation data set (SAILS). The addition of
further groups to the model had no notable
improvements in model performance (see
Table E4). Using a probability cutoff of 0.5
or more to assign class, clinical outcomes
were again worse in the hyperinflammatory
phenotype (90-d mortality 38% vs. 23%
[P< 0.0001]; ventilator-free days median
14 vs. 21 d [P, 0.0001]).

When the combined group model was
developed and evaluated using data sets
described in the secondary analyses, the
findings of clinical outcomes in the
phenotypes identified were also significantly
divergent, in keeping with the prior models
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Figure 2. Differences in the plasma biomarker levels in the validation data set (SAILS [Statins for
Acutely Injured Lungs from Sepsis] trial) at baseline in the hypoinflammatory and hyperinflammatory
phenotypes as identified by the clinical classifier model developed in the primary analysis. P values
represent the Wilcoxon rank sum test. (A) IL-6; y-axis upper limit is restricted to 10,000 with 19
observations censored (15 hyperinflammatory and 4 hypoinflammatory). (B) IL-8; y-axis upper limit is
restricted to 1,000 with 31 observations censored (24 hyperinflammatory and 7 hypoinflammatory).
(C) Protein C. (D) Soluble tumor necrosis factor receptor 1; y-axis upper limit is restricted to 40,000
with three observations censored (all hyperinflammatory). TNF= tumor necrosis factor.
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(Tables 4 and 5). In addition, significant
treatment interactions were observed with
phenotype assignment with fluid
management strategy (P= 0.0124) when the
FACTT served as the validation cohort
(Table 4). With ALVEOLI as the validation
cohort, a similar pattern of significant
divergent clinical outcomes were also
observed (Table 5). The observed
differential treatment response was similar
to the original LCA study but failed to
reach statistical significance (P= 0.0748;
Table 5).

The proportional composition of
phenotypes and their divergent clinical
outcomes remained consistent across a
range of probabilities in all models (Tables
E5–E7). When detected in the original LCA
studies, significant treatment interaction
with phenotypes assignment were also

observed with most probability cutoffs in all
models (Tables E5–E7).

Discussion

The clinical implementation of biologically
derived phenotypes has been limited
because of a lack of point-of-care or clinical
grade laboratory tests for the defining
biomarkers (23, 24). In the presented
study, a novel machine learning–based
approach is described that uses readily
available clinical data to accurately identify
phenotypes derived from complex
composite biological and clinical data. The
findings of this study and the models it
describes offer a potential pipeline for the
clinical translation of biomarker-derived
phenotypes and their imminent clinical

application. The presented study not
only describes highly accurate bedside-
amenable classifier models, but more
importantly, the differential treatment
responses that were identified in prior LCA-
derived phenotypes were also observed
here. Differences in levels of biomarkers
between these phenotypes were also
remarkably similar to those in the original
LCA-derived phenotypes. Collectively, the
findings of this study suggest that the
hyperinflammatory and hypoinflammatory
phenotypes of ARDS can be identified based
on clinical variables alone, at least in selected
RCT-based populations with ARDS.

Prior efforts to develop accurate
parsimonious models to identify ARDS
phenotypes have mostly been reliant on
the plasma quantification of research
biomarkers. In addition to these biomarkers,
bicarbonate and vasopressor use were
the two most consistently identified
clinical components of such parsimonious
models (8, 11). It was, therefore, anticipated
that these two were the most important
clinical variables in the clinical classifier
models developed here. The top 10
variables of importance for the classifier
models further identify the factors separating
the two phenotypes. Given that the LCA-
derived hyperinflammatory phenotype is
known to be associated with increased
incidence of shock, acidosis, and organ
dysfunction (7), it is unsurprising that
vasopressor use, bicarbonate, creatinine,
platelets, and bilirubin were among the most
important variables in the model. The
observed differences in top 10 variables
between the identified phenotypes would, in
part, explain the differences in mortality
between the two phenotypes. It is worth

Bicarbonate
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Minute Ventilation

White Blood Cells

Albumin

Platelets

Bilirubin

Systolic BP

Creatinine

Heart Rate

0 10 20 30 40 50 60 70 80 90 100
Split Gain (scaled to 100)

Respiratory Variables

Vital Signs

Laboratory Tests

Figure 3. Top 10 most important variables in the training data set in the primary analysis. Importance
was scaled to 100; 100 represents the most important predictor variable, and a decreasing value
represents diminishing importance. BP=blood pressure.

Table 4. Mortality at Day 90 in Phenotypes Identified in the Secondary Model 1 Using the Classifier Models (Probability Cutoff > 0.5)*

Model

Mortality at Day 90 in the Hypoinflammatory
Phenotype

Mortality at Day 90 in the Hyperinflammatory
Phenotype

P Value
Total
[n (%)]

Liberal Fluid
[n (%)]

Conservative Fluid
[n (%)]

Total
[n (%)]

Liberal Fluid
[n (%)]

Conservative Fluid
[n (%)]

Clinical classifier 145/678 (21) 81/321 (25) 64/357 (18) 139/322 (43) 69/176 (39) 70/146 (48) 0.0072
Sparse combined 153/693 (22) 86/333 (26) 67/360 (19) 131/307 (43) 64/164 (42) 67/143 (51) 0.0124
LCA (8) 161/727 (22) 93/355 (26) 68/372 (18) 123/273 (45) 57/142 (40) 66/131 (50) 0.004

Definition of abbreviations: ALVEOLI =Assessment of Low VT and Elevated End-Expiratory Pressure to Obviate Lung Injury; ARMA=High vs. Low VT;
FACTT=Fluids and Catheter Treatment Trial; LCA= latent class analysis; SAILS=Statins for Acutely Injured Lungs from Sepsis.
*Training data sets: ARMA, ALVEOLI, and SAILS; validation data set: FACTT (n=1,000). P value represents the interaction between phenotype
assignment and randomly assigned treatment strategy for mortality at Day 90. LCA-derived classes were extracted from the original LCA study (8) and not
from the derivation data set. Outcomes are shown in phenotypes derived by three different models: clinical-classifier model composed of all the predictor
variables, the sparse-combined model composed of only laboratory values and vital signs variables, and the original latent class model (8). Outcomes were
substratified by randomized treatment strategy in the original trials.

ORIGINAL ARTICLE

Sinha, Churpek, and Calfee: ML Clinical Classifier Models Can Identify ARDS Phenotypes 1001



noting, however, that although on one level
these phenotypes represent the severity of a
pathophysiological process, they also seem to
capture information that is unique. For
example, when the same populations were
stratified by other measures of disease
severity, such as APACHE score or PaO2

/FiO2
,

differential treatment responses were not
observed (9, 11).

Prior logistic regression–based
classifier models developed exclusively
using clinical variables have only
demonstrated modest accuracy during
validation (AUCs of 0.75–0.80) (8). There
are several factors that may have resulted
in the models presented in this study
performing better than the models
developed in prior studies. The current

analysis represents a larger data set of
patients with ARDS, which allowed
enhanced model development and tuning.
In addition, the models presented in this
study likely benefited from the enhanced
predictive accuracy afforded by using
GBM. For this reason, GBM is widely
applied in big data analytics and
consistently used by the top performers
of machine learning predictive modeling
competitions (e.g., Kaggle) (21). In
addition, compared with other machine
learning ensemble algorithms such as
random forest, GBM models have a built-
in functionality to deal with missing
values. This gives GBM the distinct
advantage of using data from, and
assigning class to, all observations in the
cohort without the need to impute data.
Consequently, the GBM models may
be more likely to detect heterogeneous
treatment effects should they exist because
all the observations used in the LCA
analysis are being used to test interactions.
Furthermore, the ability to classify
phenotypes in the face of missing data
makes these models more viable in the
real-life clinical setting and offsets some
of the disadvantages inherent to GBM
model complexity. Another advantage
of GBM models is that the data can be
used in its original scale, whereas other
methods, such as support vector machines,
require data transformation (e.g., Z scale
standardization). Such transformations
require prior knowledge of variable
distribution, which limits their value in
the prospective setting. The ability to
handle missing data and use original
scale predictor variables makes GBM

models uniquely attractive for prospective
implementation.

The findings from using sparse
categories of variables indicate that laboratory
values, followed by vital signs, were the most
important variables for phenotype
classification. Put differently, these variables
were the best at predicting the biological
signature described by plasma biomarkers in
LCA-derived ARDS phenotypes. The
significant differences in levels of IL-6, IL-8,
and sTNFR-1 between the identified
phenotypes substantiate this finding.
Unsurprisingly, given the independent
association of these biomarkers with adverse
outcomes in ARDS (25), mortality at Day 90
and ventilator-free days were significantly
worse in the hyperinflammatory phenotype.
Of great interest, however, was the ability to
detect differential treatment response in both
the ALVEOLI and FACTT trials in the GBM
model–identified phenotypes. Taken
together, these findings suggest that the
clinical classifier models closely mimic
phenotypes identified by LCA and have
potential clinical utility for personalizing care
for patients with ARDS.

This study, necessarily, has limitations.
All presented data are retrospective
secondary analyses of previously conducted
RCTs. Further, all the RCTs analyzed
were conducted by the same network
(the NHLBI ARDS Network), and the
type and timing of data collection were
reasonably uniform. The generalizability
of these and prior LCA-derived phenotypes
in unselected populations with ARDS
are also unknown. The presented models
must, therefore, be interpreted with
caution. The assumption of the linkage

Table 5. Mortality at Day 90 in Phenotypes Identified in the Secondary Model 2 Using the Classifier Models (Probability Cutoff > 0.5)*

Model

Mortality at Day 90 in the Hypoinflammatory
Phenotype

Mortality at Day 90 in the Hyperinflammatory
Phenotype

P Value
Total
[n (%)]

Low PEEP
[n (%)]

High PEEP
[n (%)]

Total
[n (%)]

Low PEEP
[n (%)]

High PEEP
[n (%)]

Clinical classifier 73/372 (20) 27/184 (15) 46/188 (25) 75/177 (42) 42/89 (47) 33/88 (38) 0.0113
Sparse combined 85/402 (21) 35/200 (18) 50/202 (25) 63/147 (43) 34/73 (47) 29/74 (39) 0.0748
LCA (7) 81/404 (20) 33/202 (16) 48/202 (24) 67/145 (46) 36/71 (51) 31/74 (42) 0.049

Definition of abbreviations: ALVEOLI =Assessment of Low VT and Elevated End-Expiratory Pressure to Obviate Lung Injury; ARMA=High vs. Low VT;
FACTT=Fluids and Catheter Treatment Trial; LCA= latent class analysis; PEEP=positive end-expiratory pressure; SAILS=Statins for Acutely Injured
Lungs from Sepsis.
*Training data sets: ARMA, FACTT, and SAILS; validation data set: ALVEOLI trial (n=549). P value represents the interaction between phenotype
assignment and randomly assigned treatment-strategy for mortality at Day 90. LCA-derived classes were extracted from the original LCA study (7) and not
from the derivation data set. Outcomes are shown in phenotypes derived by three different models: clinical-classifier model comprising all the predictor
variables, the sparse-combined model comprising only laboratory values and vital signs variables, and the original latent class model (7). Outcomes were
substratified by randomized treatment strategy in the original trials.
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Figure 4. Receiver operating characteristic
curves of the four grouped sparse variable set
classifier models in the validation cohort (SAILS
[Statins for Acutely Injured Lungs from Sepsis]
trial) of the primary analysis. For each model, the
area under the curve is presented in the legend
box. AUC=area under the curve; ROC= receiver
operating characteristic.
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between phenotypes described by the
clinical classifier models to underlying
biological signatures may not be valid
outside these RCT populations. Prospective
validation of the models in both non–
ARDS Network RCTs and in observational
cohorts is required before their use in
clinical settings. Furthermore, the variables
used to generate the model were carefully
curated for RCTs. Model performance in
the context of data extracted directly from
electronic medical records and/or real-time
data is also currently unknown and likely
represents a major challenge in the bedside
implementation of these models.

The best probability cutoff to use to
classify phenotypes remains unknown. It is
interesting to note that in SAILS, a sepsis-
associated ARDS cohort, a lower probability
cutoff led to higher classification accuracy,
whereas when ALVEOLI and FACTT, which
were composed of nonspecific ARDS risk
factors, served as validation cohorts, higher
cutoffs led to more accurate classification.
Imbalance in outcome prevalence can often
lead to the default cutoff of 0.5 not being the
most accurate at classification nor the most
representative of the probability distribution
(26). To that end, for the primary analysis,
the prevalence of the hyperinflammatory
phenotype in SAILS (validation data set) was
37%, whereas in the training data set it was
29%; this difference may explain the modest
accuracy with the default cutoff. The cross-
validation across permutations of the data
sets is reassuring that the observed high
AUCs in the validation data sets are robust
over a range of prevalence of the
hyperinflammatory phenotype. Nonetheless,
when translating the models to the
prospective setting, in which prior
population data would not be available,
selecting the optimal cutoff threshold at
an individual level may be challenging. To

an extent, the objective of identifying the
phenotypes would determine the optimal
threshold. For example, if the objective
were to use the classifier model as a
screening tool, then a lower cutoff would
be desirable. Conversely, for studies
in which specificity is more important,
higher cutoffs could be used. Whether the
optimal probability cutoff requires risk
factor–dependent adjustment on an
individual level also requires further
evaluation. To determine the optimal
cutoff, the models require validation in
more generalized population with ARDS,
and this reiterates the necessity for further
studies.

As a consequence of the complexity of
the underlying algorithms, it is not possible
to decipher the precise mechanics of the
XGBoost models, so they are sometimes
referred to as concealed in a “black box.”
The variables with the highest predictive
power in these models, such as bicarbonate,
vasopressor use, and creatinine, were also
the most influential nonprotein biomarker
variables in the original LCA studies,
lending validity to the algorithms and the
phenotypes they identify. Furthermore,
the strong paired correlation between the
probabilities generated by LCA models and
the XGBoost models also indicate local (per
sample) validity of the presented models.

Potential pathways of investigation to
evaluate these models prospectively include
either developing a mobile interface or a
web-based application. Alternatively, the
models could be incorporated into existing
electronic health record systems, in which
they could serve as a screening tool for
patients with ARDS to recruit in future
clinical trials based on phenotypes, with
the caveats mentioned above. Another
important use of the models could be to
interrogate previously conducted ARDS

trials that have been inaccessible because
of the lack of biological specimens.
Finally, once the phenotypes have been
identified, these models may offer an
inexpensive approach to studying the
phenotypes and their trajectory
longitudinally over time. All these avenues
of implementation are technically relatively
straightforward and could be developed
imminently; however, before their
widespread use, these models need
validating in observational cohorts using
real-life data. This represents the main rate-
limiting step in the bedside usage of these
models because of the limited availability of
cohorts with biomarker-derived LCA
phenotypes to serve as the comparative gold
standard.

In summary, this study presents
machine learningmodels that can accurately
identify ARDS phenotypes exclusively
using clinically available data. The ability
to identify phenotypes independent of
measuring plasma biomarkers could
accelerate our understanding and application
of ARDS inflammatory phenotypes.
Moreover, the study represents the
culmination of a body of work from
phenotype identification using a composite
of biological and clinical data to the
development of models that can identify
these phenotypes using clinical data at the
bedside. The presented study offers an
algorithmic pipeline to other investigators
seeking to implement biologically derived
phenotypes in the clinical setting. The
authors make a commitment to sharing
the model with investigators seeking
to validate it against LCA-derived
phenotypes or seeking to use the model in
prior or prospective RCT cohorts. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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