Table 2. Performance of the machine learning algorithms.
| Algorithm | Oversampling method | Area under ROC curve |
Matthews correlation coefficient | Brier score | Sensitivity | Specificity | Accuracy |
|---|---|---|---|---|---|---|---|
| Logistic regression | SMOTE# | 0.830 | 0.433 | 0.036 | 0.692 | 0.968 | 0.965 |
| ADASYN* | 0.823 | 0.376 | 0.049 | 0.692 | 0.955 | 0.968 | |
| Support vector machine | SMOTE# | 0.825 | 0.393 | 0.045 | 0.692 | 0.959 | 0.970 |
| ADASYN* | 0.786 | 0.345 | 0.048 | 0.615 | 0.958 | 0.971 | |
| K nearest neighbor | SMOTE# | 0.644 | 0.253 | 0.031 | 0.307 | 0.981 | 0.942 |
| ADASYN* | 0.759 | 0.410 | 0.028 | 0.538 | 0.979 | 0.924 | |
| Random forest | SMOTE# | 0.787 | 0.351 | 0.046 | 0.615 | 0.959 | 0.972 |
| ADASYN* | 0.787 | 0.351 | 0.046 | 0.615 | 0.959 | 0.971 | |
| Gradient boosting | SMOTE# | 0.787 | 0.351 | 0.046 | 0.615 | 0.959 | 0.971 |
| ADASYN* | 0.787 | 0.351 | 0.046 | 0.615 | 0.959 | 0.971 |
Notes:
SMOTE, Synthetic minor oversampling technique.
ADASYN, Adaptive synthetic sampling.