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a b s t r a c t

Learning and education are two of the biggest world issues of the current pandemic. Unfortunately,
it is seen in this work that, due to the length of the incubation period of Covid-19, full opening of
schools in the Fall of 2020 seems to be impractical unless the spread of the virus is completely under
control in the surrounding region (e.g. with fewer than 5 active cases every million people).

In order to support the possibility of some in-person learning, we model the diffusion of the
epidemic within each single school by an SEAIR model with an external source of infection and a
suitable loss function, and then evaluate sustainable opening plans. It turns out that blended models,
with almost periodic alternations of in-class and remote teaching days or weeks, are generally (close
to) optimal. In a prototypical example, the optimal strategy prescribes a school opening of 90 days
out of 200 with the number of Covid-19 cases among the individuals related to the school increasing
by about 67% with respect to no opening, instead of the about 200% increase that would have been a
consequence of full opening. As clinical fraction is low in children, these solutions could lead to very
few or no symptomatic cases within the school during the whole school year.

Using the prevalence of active cases as a proxy for the number of pre- and asymptomatic, we get
a preliminary indication for each country of whether either full opening, or blended opening with
frequent testing, or no school opening at all, is advisable.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

More than one billion students are out of school because
f Covid-19 [1]; most of them are now using remote learning
ractices that present several drawbacks [2] and, in most cases,
ave been hurriedly arranged.
In addition, in most schools, school districts, and countries

here is uncertainty on how to plan school activities for the 2020–
021 school year [3]. As a result, learning and education are two
f the biggest world issues of the current pandemic [4,5]. As we
ee below, the characteristics of Covid-19, and in particular the
ength of its incubation period of about 5 days [6,7], are such
hat cases within each single school tend to undergo a multifold
ncrease should the school be completely open in the upcoming
chool year. This makes full opening of schools impractical unless
he epidemic in completely under control in a region, or till a
accine is available: difficulties have been already experienced by
he first reopening attempts [8,9].

On the other hand, remote teaching has been put together in
n emergency situation, and it appears to have badly affected
ost students [10–12], especially those from less advantaged
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contexts [13]. At the same time, it has imposed, and it is likely to
impose again, an additional burden on many families. Therefore,
the hypothesis of a fully remote 2020–2021 school year is also
impractical for different reasons.

To help reconcile such conflicting circumstances, there is thus
a need for studies and methods that suggest sustainable opening
strategies; they should be aimed at supporting the possibility of
some in-person learning while simultaneously containing extra
infection transmissions, both at the level of each single school,
and in a broader context. In this first work, we focus on a single
school. What each school needs is a flexible instrument that
incorporates some of the specific details of the school, the stu-
dents, the personnel, and the surrounding area, and provides
indications of the outcome of in-person school activities in terms
of the potential spread of Covid-19 within the school. Some of
the difficulties in this process are that it is hard to estimate the
transmission rate within schools; that the individuals involved
in the school are subject to potential external infectious trans-
missions; that asymptomatics are hard to detect; and that policy
makers have to establish a relative importance of the two targets
(in-person teaching and Covid-19 containment).

In this paper, we provide a model whose set-up and param-
eters incorporate several features of Covid-19 dynamics related
to a single school, and then outline the optimization process. We

then study optimal solutions for a wide variety of plausible values
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f the parameters of the model, obtaining both an adaptable
rocedure that can be conformed to specific situations, and gen-
ral policy indications. Blended solutions appear to be extremely
fficient in reducing the potential spread, and together with some
etection of asymptomatic cases could offer the possibility of a
ustainable planning for the whole year.
Besides containing the Covid-19 diffusion, these solutions

ould be pedagogically acceptable, and could also become a
riving model for the society at large.

. Methods

.1. Epidemic model

In this work we focus on a single school. To model the dif-
usion of Covid-19 among the personnel and the students of
he school, we set up a suitable system of ordinary differential
quations. In particular, we consider an SEAIR, a version of the
IR model [14], with an external source of infection [15,16] and
control.
The population is divided into: susceptible (S), pre-symptoma-

ic or, equivalently, exposed (E), asymptomatic (A), infected (I)
nd recovered (R). Variables are normalized so that S + E + A +

+ R = 1.
We assume that susceptible individuals might become pre-

ymptomatic or exposed (E) at transmission, entering a latency
eriod in which they have contracted the virus and are conta-
ious, without showing symptoms. The contagion can be caused
y contact with other individuals with viral load, at a rate βc(t)
c(t) is the control, as described below); or, alternatively, it is
aused by an infectious contact outside the school taking place
t rate α. The asymptomatic members of the school community
resent a challenge, as they cannot be easily detected while still
eing infectious for a relatively long time: we assume accessibility
o some type of fast screening with sufficient sensitivity [17]:
he contacts with asymptomatics within the school are then
educed by a parameter η, the false negative rate of the screening
rocedure. Exposed individuals either develop symptoms at a
onstant rate δ, becoming infected, or progress into being asymp-
omatic with rate γ . The viral load is carried by exposed (E),
symptomatic (A) or infectious (I) individuals; however, infec-
ious individuals are assumed to be isolated, while a large fraction
f asymptomatic (A) is supposed to be detected by the screening
rocedure. Both asymptomatic and infected individuals recover
t rate ρ. As COVID-19 mortality is particularly low in a mostly
oung population [18], we disregard mortality.
The key differences with the usual SEIR model [14] are: an ex-

ernal source of infection [15,19], the possibility of transmission
imited to 7 hours per working day; a control indicating from the
tart whether, for each day, schools are open or closed; and the
resence of asymptomatic individuals.
With these assumptions, the system of OdE modeling infec-

ious transmissions of concern for the school is:

Susceptible:
dS
dt

= −α(1 − c(t))S − βSc(t)(E + ηA) (1)

Exposed:
dE
dt

= βSc(t)(E + ηA) + α(1 − c(t))S − (γ + δ)E

(2)

Asymptomatic:
dA
dt

= γ E − ρA (3)

Infected:
dI
dt

= δE − ρI (4)

Recovered:
dR

= ρ(A + I) (5)

dt

2

for a certain time interval [0, T ]. We consider 40 weeks, and
count time in hours, so that T = 6720. The initial population
at the beginning of the school year might be partly immune
due to previous infections, but to avoid issues about efficacy and
duration of the immunity, we assume that the initial population
consists primarily of susceptible, S(0) ≈ 1, and a small fraction of
exposed, so that S(0) + E(0) = 1.

The function c(t) describes the control variable, and c(t) = 0
for all times when the school is closed; these include all hours
except from 8 am to 3 pm of those working days in which it has
been decided that the classes are in person. For each of the 200
working days, c(t) can be 0 again if remote activities have been
decided for that day, or 1 if teaching is in person. Formally, with t
easured in hours, let M indicate the class of controls c(t) such

that

c(t) =

⎧⎪⎨⎪⎩
ci,j if i = ⌊t/168⌋, j = ⌊(t − 168⌊t/168⌋)/24⌋ ≤ 5 and

8 ≤ t − 168⌊t/168⌋ − 24⌊(t − 168⌊t/168⌋)/24⌋ ≤ 15
0 otherwise

(6)
for some ci,j ∈ {0, 1}, i = 1, . . . , 40, j = 1, . . . , 7, and 0 ≤ t ≤

6720.

2.2. Mathematical analysis

Lemma 2.1. For each solution of (1)–(5), the total population
S + E + A + I + R is preserved. In addition, 0 ≤ S, E, A, I, R ≤ 1

Proof. Let φ(t) = S(t) + E(t) + A(t) + I(t) + R(t); we have that
φ(0) = 1 and dφ

dt = 0 for all t from (1)–(5); it follows that φ ≡ 1
y uniqueness of solutions of linear differential equations.
In addition, R(0) ≥ 0 and R′

≥ 0, so that R(t) ≥ 0 for all
. The other functions have to take the value 0 before becoming
egative by continuity. If I(t) = 0 for some t , then I ′(t) > 0 unless
(t) = 0, and the same applies to A(t), therefore let us consider
he case that E(t) = 0. But then E ′(t) > 0 unless S(t) = 0. In
his last case, (1) implies that all derivatives dnS(t)

dtn = 0, in which
case S(t) ≡ 0; on the other hand, the system (2)–(5) with S = 0
and nonnegative initial condition has an explicit, unique solution,
which is seen to be non negative. □

Lemma 2.2. For all initial conditions X⃗(0) = (S(0), E(0), A(0), I(0),
(0)) such that 0 ≤ S(0), E(0), A(0), I(0), R(0) ≤ 1 there exists a
nique solution of the system (1)–(5) for all times.

roof. Let X⃗(t) = (S(t), E(t), A(t), I(t), R(t)) and express (1)–(5)
s X⃗ ′(t) = F⃗ (c, X⃗), where c = c(t) is the control. Notice that the
unction F (c, X⃗) is C1 in the whole of R6, so that F (c(t), X⃗) is C1

n each domain Rk = {(t, x⃗) : 168k < x < 168(k + 1), x⃗ ∈ R5
},

∈ N, where 168 is the number of hours in a week.
Take k = 0. Extending c(t) = c0 for t ≤ 0, the conditions of

eano’s Theorem are satisfied ([20], Ch. 6, Th. 9), so that there
s a solution to the initial boundary value problem (1)–(5) for
ome positive t ’s. By considering R0 as above, one can see that
he solution can be continued to the boundary of R0 ([20], Ch.
, Th. 11), which is t = 168. In addition, as each component of

⃗(t) satisfies 0 ≤ Xi ≤ 1 by Lemma 2.1, F⃗ (c, X⃗) is seen to be
ipschitz in [0, 1] × {x⃗ : 0 ≤ xi ≤ 1 for i = 1, . . . , 5}. Hence, the
olution is unique (see [20], Ch. 6, Th. 1). The same reasoning can
ow be repeated from t = 168 and with initial conditions given
y the limit t → 168 of the unique solution determined in the
revious time interval. As c(t) has only jump discontinuities, the
ame procedure can be repeated in each interval, (see [21]), to
how that there always exists a unique solution for all times t of
the system (1)–(5). □
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emma 2.3. If (S(0) + E(0) + A(0) + I(0) + R(0)) = 1 then there
is a unique stationary solution, namely S = E = A = I = 0, R = 1,
which then attracts the solution for all initial conditions.

Proof. For a stationary solution, X⃗ ′
= 0 implies S = 0 by (1).

Then, (2) implies E = 0, and (3)–(4) imply A = I = 0. By
Lemma 2.1, it must then be R = 1. □

We are, however, interested in a finite time interval [0, T ], and
hence in the transient solution up to time T .

2.3. Parameter selection

In the first part of the analysis, we will explore the effect of
the opening policies on the number of remote teaching days and
infection spreading. For this, we need an appropriate parameter
selection. We make a first choice based on current observations,
and present results in Section 3, and then evaluate the modifica-
tions for a wide range of possible values in the Sensitivity Analysis
Section.

As time is counted in hours, we need to scale all available
parameter estimates, usually expressed for time counted in days,
by a factor of 24.

Estimates of the daily infection rate β are typically around 0.1–
0.4 [22]; however, as the school is likely to elicit more frequent
contacts, we adopt the somewhat higher value of β = 0.9/24 ≈

3.75 × 10−2 hourly. The value of β can also be computed from
contact matrices and susceptibility. [23] has contact matrices in
school for most countries: averaging the contacts for class ages 0–
19 with a factor 16 for the number of classes, one gets an average
number of daily contacts varying between 6 (Germany) and 20
(Italy); the contacts need to be revised by the recent containment
measures, and related awareness of the population; a reasonable
figure would be a factor of 1/2. Covid susceptibility (probability of
infection upon contact) in school is estimated around 0.01–0.02,
see [18] Figure 1(b). As our equations are written for the school
population only, which is about 1/6 of the total population, one
needs to use a scale factor 6; in addition, one needs to divide by
7 to have the hourly contact number during school hours. In the
end, estimates of hourly β range from βm ≈ 0.01×1/2×6×6/7 ≈

2.5×10−2 to βM ≈ 0.02×1/2×20×6/7 ≈ 1.7×10−1 (this is a
range of 0.175–1.2 for the daily β), slightly below with our choice
above. In the stability analysis we consider the other values in this
range.

The duration of the latency period after infection and before
symptoms are developed has been estimated at about 5 days (see
for example [6] and [7]), so that γ + δ ≈ 1/5 × 1/24 = 0.2/24;
he clinical fraction, which is the fraction of symptomatic cases,
epends on many factors [24], and it is substantially lower for
ounger individuals [18]. We take a ratio of about 100, which is
= 0.198/24 ≈ 8.25 × 10−3, and δ = 0.002/24 ≈ 8.33 × 10−5

imilarly, the average recovery period is about 7 days, for mild
ases [25], suggesting ρ = 0.14/24 ≈ 5.8 × 10−3; more severe
ases (I) are excluded from contacts, so their recovery rate is
rrelevant: we use the same value of ρ.

The parameter η describes how asymptomatic individuals are
xcluded from contacts with the other individuals; such a sepa-
ation depends on the availability of detecting tests: we assume
hat a sufficiently reliable test is available, with a 90% test sensi-
ivity, so that η = 0.1. This assumption is subject to parameter
ensitivity analysis in Section 4, where we see that a test sen-
itivity of at least 45% is needed for our calculations to make
ense.
We finally consider the external rate of infection. This is due
3

Table 1
Recap of the model parameters and their selected
values.
Parameter Selected value

α 2 × 10−5 [h−1]
β 3.75 × 10−2 [h−1]
γ 8.25 × 10−3 [h−1]
δ 8.33 × 10−5 [h−1]
ρ 5.83 × 10−3 [h−1]
η 0.1

to encounters of infectious individuals from the schools with oth-
ers outside of the school; it is primarily based on the prevalence
of presymptomatic and asymptomatic individuals in the region
around the school. This number is clearly unavailable, but an
approximation can be obtained from the prevalence of active
cases, which is a well established figure [26]: since about half of
the infected shows symptoms, and the symptomatic period lasts
longer than (perhaps 3 times as long as) the asymptomatic, which
itself lasts as the presymptomatic period of everyone infected,
the prevalence of presymptomatic and asymptomatic together is
about the same as the prevalence of active cases; the asymp-
tomatics are not assumed to be detected outside of the school,
so we take the prevalence of active cases as a proxy for the
prevalence of infectious individuals that can be met outside of the
school. A survey of the current situation in about 200 countries
shows that the prevalence of active cases to the population ranges
between 1.7× 10−7 and 1.2× 10−2 (see [26]). This number must
then be multiplied by the average number of contacts, similar
to what done above to select β . As external contacts are, for
the most part, between students and other individuals outside
schools, we use the corresponding matrices in [23], with entries
averaged over the various age classes: the averages vary between
6.02 for Germany and 10.5 for Italy; we then add a factor 1/2
or reduced mobility and awareness, and 1/17 for the 17 hours
n which schools are not open nor remote teaching takes place.
usceptibility is taken again at 0.01–0.02, and the scale factor is
. Plausible values of α are then in the range from 0.01× 6.02×

× 1/2 × 1/17 × 1.7 × 10−7
≈ 1.80 × 10−9 to 0.02 × 10.50 ×

6 × 1/2 × 1/17 × 1.2 × 10−2
≈ 4.44 × 10−4

We take an intermediate external infection rate α ≈ 2×10−5.
With this value, in the observation period of 40 weeks there
is a moderate, but non negligible number of cases even if the
school is totally closed; with our selection of parameters the
individuals infected outside of the school will be about 12.2%
of the total. The parameter α will be carefully monitored in the
sensitivity analysis, where it is seen that our optimality results
are insensitive to the specific value of α provided that this lies in
a specific range.

To aid readability, one can consider an approximate conver-
sion factor of 0.02 (to be adapted to local characteristics) between
α and the prevalence of active cases: α ≈ 2 × 10−5 corresponds
to an overall prevalence of active cases of approximately 1.8 ×

10−5/0.02 ≈ 1 × 10−3 active cases, or 1 active case in 1000
people. This conversion factor and the above range of α will also
be used to give a tentative indication of which countries can
reopen schools and which cannot.

As initial condition, we consider two possibilities. In the first
one, we assume that there are a few (about 1%) exposed individ-
uals already present at the start of the school year: we start from
E(0) = 0.01. All others are susceptible, so S(0) = 0.99. In the
second, we assume that a careful screening is carried out at the
beginning of the school, so we take S(0) = 1.



A. Gandolfi Physica D 415 (2021) 132753

s

2

w
b
m
o
d
a
m
t
a
a
c
r
a
a

p
S
i
S
w
(

l

w

Fig. 1. Fraction of extra infected, next to the 12.2%, vs. days of remote teaching, for several opening strategies. The potentially perfect, and hence optimal ones for
ome values of τ , are close to the continuous curve. One special possibly perfect and hence optimal solution corresponds to the red dot.
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.4. Planner’s objectives

In the second part of the analysis, we introduce a loss function
hich incorporates the aim of the planner to maximize the num-
er of days with in-class vs. remote teaching, and simultaneously
inimize the number of extra infectious transmissions due the
pening of the school. For this, it is essential that the planner
etermines the relative weight τ of these two objectives. Once
value of τ is fixed, the aim of the planner becomes that of
inimizing a functional that combines these two objectives by

he relative weight. To achieve her/his targets, the planner can fix
school calendar, deciding ahead of time which days are in-class
nd which are restricted to remote teaching; for simplicity, we
onsider here a plan for the whole year, but monitoring and en
oute adjustments can also be incorporated. We remain agnostic
s to the value of the relative weight τ , and develop tools to
nalyze all possible scenarios.
Let S0(t) be the fraction of susceptibles at time t in the hy-

othesis that teaching is completely remote, that is with c ≡ 0;
0(0) − S0(T ) is then the fraction of individuals who receive an
nfectious transmission even if the school never opens; then, let
(t) = Sc(t) be the fraction of susceptibles with opening plan c(t);
e have that S0(T ) − S(T ) = S0(T ) − Sc(T ) = (Sc(0) − Sc(T )) −

S0(0)−S0(T )) is the fraction of extra infectious transmissions due
to the opening of the school according to plan c(t). In addition,
et N(c) = 200 −

∫ T
0 c(t)dt/7 be the number of remote teaching

days (the factor 1/7 is due to the number of hours that the school
is open in a regular day). The loss function combining the two
effects is then

L = (S0(T ) − S(T )) + (N(c)/τ ) (7)

where τ is the relative weight of a day of in-class teaching to
infectious transmissions: τ/100 can be interpreted as the number
of days of in-class teaching that the planner considers equivalent
to a 1% increase in the infectious transmissions in the school.

The planner’s objective becomes then

min
c∈M

L (8)

with M as in (6). It is easy to see that using the system (1)–
(5) the optimization problem can be cast in a more standard
form [27,28], in which

L = Ec(T ) − E0(T ) +

∫ T

0

(
(γ + δ)(Ec(t) − E0(t) +

1
7τ

c2(t))
)
dt

here E0(t) is the exposed component of the solution of the
system (1)–(5) for the case c ≡ 0; however, as we optimize over
the very restricted class of functions (6), which are piecewise
 p

4

constant and depend on the finite number of parameters ci,j’s,
he general theory of control optimization is not needed here: (8)
ecomes a discrete optimization problem.

.5. Minimization by simulated annealing

Once the parameters have been selected, for instance with the
alues given in Table 1, we have optimized for each fixed value of
∈ [0.5, 2000] by Simulated Annealing [29]. For simplicity, we

ssume here that the decision about remote or in-class teaching
s taken for each week, so the control ci = ci,j depends only on
i = 1, . . . , 40. This still includes 240 possible policies.

For a fixed value of τ , we take vanishing ‘‘temperatures’’ ϵk =

ϵ0e−k with ϵ0 ∈ (0, 1], and a random initial configuration c(0)(τ ) =

c1, . . . , c40} ∈ {0, 1}40. At iteration k = 1, . . . , 50, a random
position m between 1 and 40 is selected and cm is changed into
c̃m = 1 − cm, while c̃m′ = cm′ for all other m′’s. The system is
solved using the opening rule c̃, and the loss function is computed
in the solution. If the loss decreases, then c(k+1)(τ ) = c̃; else, we
set c(k+1)(τ ) = c̃ with probability ϵk and c(k+1)(τ ) = c⃗(k)(τ ) with
probability 1 − ϵk. We then repeat by drawing a new random
integer m. This is repeated 50 times for each initial configuration.

The sequence c̃(k)(τ ) tends to a (local) minimum of the loss
functional; the output c̃(τ ) = c̃(50)(τ ) of 50 iterations is retained
as a candidate (close to) optimal strategies for the given value of
τ .

In addition to the above, all the configurations c(k)(τ ), k =

, . . . , 50, not only the (close to) optimal ones, are recorded for
several values of τ , to get an idea of the possible scenarios. Fig. 1
reports remote teaching days vs. fraction of infected in school at
the end of the school year for each c(k)(τ ), k = 1, . . . , 50 and for
arious values of τ .

. Results

.1. Full closure vs. complete opening

As benchmark cases we consider the full closure and the
omplete opening of the school, which is to say, the two most
xtreme choices of a fully remote teaching or regular 7 hours a
ay in-class activities for the whole year.
As we have assumed that there is a constant source of external

nfection in the region surrounding the school, even if the school
s completely closed, which is c ≡ 0, the simulations based on
1)–(5) determine a number of cases. We have simulated the
raction of cases at school year end, and the number of cases
n a school of 1000 individuals in the first two months. The

arameters are those selected in Section 2.3, except that we
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Table 2
Comparison of complete opening vs. full closure for various values of the external rate of infection α. Cases include asymptomatic. An initial
screening is assumed so that there are no active cases at school start. Column 2 indicates cases per million in the surrounding area; the
correspondence with α is based on an average contact rate (see Section 2.3).
α [h−1

] Cases per million % cases at school end Number of cases by 60 days
in a school of 1000

Remote In-class Remote In-class

10−8 0.5 0.006 0.1 0 0
10−7 5 0.06 1 0 1
10−6 50 0.67 7.1 1 7
10−5 500 6.5 27.33 14 64
2 × 10−5 1110 12.57 37.80 28 115
10−4 5000 48.93 70.51 134 353
10−3 50000 99.87 99.81 753 859
s
i
t
t
s
s
p

3

h

v

consider a variety of possible rates for the external source of
infection.

For example, for α = 2 × 10−5, we have that with the school
ompletely closed there would be about 12.57% cases (A+I). In a
chool with 1000 individuals this means that about 125 individ-
als of the school would be infected (with or without symptoms)
n the course of the year from contacts outside of the school. At
ay 60 the number of infected individuals showing symptoms
s about 28, and we assume that this is in line with the rate of
nfection in the overall community.

If the school is completely open, on the other hand, simu-
ations with c ≡ 1 show a fraction of infected of about 37.8%
t the end of the school year, with already 11.5% of new cases,
nfected or asymptomatic, in the first 60 days. In a school of 1000,
ne would observe about 115 cases, with perhaps several symp-
omatic, in the first 60 days, vs. the expected 28 and very likely
o symptomatic; a deviation which would not pass unnoticed.
Table 2 compares the percentage of cases at the end of the

chool year, and the number of likely cases in the first two
onths, in the two cases of completely remote and fully in-class

eaching. The values of α can be either determined from active
ases in the area, contact matrix and susceptibility, as done in
ection 2.3, or from the fraction of infected (A+I) that it causes
t the end of the observation period. This last fraction is called
eropositivity, and it is discussed in [30] and [31]). Seropositivity
t the end of the school year, assuming the school is closed. is in
able 2, Column 2. The range of α covers all cases of interest.
In Table 2 we assume that there are no active cases in the

chool at the start of the school year due to a sufficiently accu-
ate initial testing. There is not much difference if we assume a 1%
ctive cases for the largest values of α, but this last assumption
ould not be appropriate for small values of α and hide the
ossibility of opening the schools with almost no restrictions
hould the virus be completely under control.
One can see that complete opening of the school determines

bout a four fold increase in the number of cases, except for the
xtreme values of α. If the virus is completely under control,
hich is less than 50 active cases per million, or α < 10−6,
hen the number of cases is so limited that schools can be safely
eopen completely (with an initial screening and maintaining
he physical distancing measures that are controlling the spread
f the virus). If, on the other hand, there are more than about
000 active cases per million in the surrounding region, or α >

0−4 then opening of the specific school would not particularly
ggravate the situation; but the number of cases is already so
igh that drastic measures need to be taken, such as keeping all
chools closed.
The conclusion is that, except in the extreme situations of

lmost complete elimination of Covid-19, or uncontrollable out-
reak, the number of cases registered in a fully open school is
ikely to raise concerns from authorities before the end of the
5

econd month of school opening in any reasonable scenario; this
s very likely to lead to the application of containment measures
o the school, such as a forced, unplanned remote teaching. For
hese reasons, since this situation is likely to occur in most
chools and in almost every external evolution of the epidemic,
imulations indicate that it is advisable to attempt a sustainable,
artial opening. This is the question faced here below.

.2. In-person teaching vs. epidemic containment

With the reference parameters identified in Section 2.3, we
ave explored various opening strategies; for each policy c we

have recorded the total fraction of infected, measured by the
marginal decrease in susceptible Sc(0) − Sc(T ), and the total
number of remote teaching days N(c). Recall that we consider
policies with opening or closure applied for entire weeks.

One can notice that, due to the form of the loss functional,
some policies c are uniformly better than others regardless of the
alue of τ : define c1 as strictly preferable to c2 if Sc1 (0)−Sc1 (T ) ≤

Sc2 (0) − Sc2 (T ) and N(c1) ≤ N(c2) with at least one inequality
strict; if a policy admits another one which is strictly preferable,
the first policy can clearly be disregarded. We say that a policy
is perfect with respect to the loss functional if there does not
exist a strictly preferable one.

On the other hand, once a value of τ is fixed, an optimal
policy for τ is a policy minimizing the functional in (8). Clearly,
an optimal policy for some τ is perfect with respect to the loss
functional, and, vice versa, a perfect policy with respect to the
loss functional can be optimal for an interval of values of τ .

In Fig. 1 we plot remote teaching days vs. fraction of infected in
school at the end of the school year for each c⃗(k)(τ ), k = 1, . . . , 50
and for various values of τ ∈ [0.5, 2000]. Such range corresponds
to between 0.5 and 20 days of in-class teaching rated equivalent
to a 1% increase in the number of infected. Notice, though, that
Fig. 1 does not allow one to retrieve the value of τ . One of the
(likely) perfect opening strategies is represented by the red dot:
it is very likely optimal for τ around 800. Notice, finally, that the
figure reports some, but very few of the strategies that are far
from perfect or optimal. There are many others that our runs of
the simulated annealing algorithm never visited.

Before turning to the exploration of specific optimal strategies,
let us discuss the solid line in Fig. 1. Experimentally, we have
noticed that the outcomes of the perfect policies seem to lie close
to a specific curve C, which corresponds approximately to

(
x
0.3

)0.76 + (
y

200
)0.76 = 1, (9)

where x is the percentage of Covid-19 cases in the school popu-
lation, and y is the number of remote teaching days. The curve C
can be thought of as parametrized by τ , the relative importance
of in-class teaching and Covid-19 cases; in an abstract sense, each
point on the curve C corresponds to one value of τ , although, as
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Fig. 2. Epidemic functions under the, presumably optimal, policy in (10). For visualization purposes, variables are multiplied as indicated. Time is in hours.
mentioned above, by the discrete nature of the opening strategies,
more values of τ give the same perfect strategy. As indicated
before, the red dot corresponds to a perfect strategy which is
optimal for τ ≈ 800 (see below).

The curve C is of both theoretical and practical importance.
In fact, 0.76 turns out to be a characteristic exponent of the
comparison of opening days vs. extra infected; theoretically, it
is quite interesting to explore the analytical reasons behind the
appearance of such a curve; its role in the analysis of the solutions
of the differential system (1)–(5); and the functional dependence
of the value of the exponent on the values of the parameters in
the system. In practice, if one was able to have some information
about the dependency of the exponents from the parameters of
the model different from τ , this would give an explicit benchmark
for perfect strategies: for instance, if one fixes the number of
opening days, then the curve indicates the best result that can
be ideally achieved in the containment of the infection, or vice
versa, without the need of an explicit numerical minimization.

3.3. Optimal policies

In this section we show one example of (nearly) optimal
policy. As mentioned, a choice has been required by the policy
maker: such a choice could have consisted of the minimal number
of opening weeks, or of the maximal fraction of cases which
is allowed by the circumstances. However, we adopted the less
intuitive, but more intelligible possibility of using the relative
weight of remote teaching vs. percentage of cases, as incorporated
by the parameter τ (see Section 2.4).

We consider the parameters identified in Section 2.3 and τ =

800, which means that 8 days of remote teaching are considered
equivalent to a 1% increase in the number of cases. The aim of the
planner becomes then to solve the optimization problem (8), with
the functional L defined in (7). This can be achieved by a discrete
optimization in {0, 1}40. We use here simulated annealing with 50
iterations from a random seed, repeated for 100 random initial
conditions. The (possibly) perfect opening strategy indicated by
the algorithm is

(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, (10)
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

where 0 indicates a week of remote, and 1 a week of in-class
activities; notice that there is an initial period of closure, before
progressing to a regular alternation of openings and closures. This
is due to the assumed presence of 10% of cases at the start of the
school year, and could be avoided with a very efficient screening
before the start of the school year.
6

The solution in (10) has 90 days of in-class teaching, with the
additional infectious transmissions contained to 8.4%, which is an
increase of 67% of the cases with respect to remote only activity.
In a school of 1000 individuals this corresponds to creating an
extra 84 cases of COVID-19 in the school year, in addition to the
125 who would have been infected in any case. The administra-
tors can decide to realize a stricter or more relaxed containment
of the extra cases by assigning more or less weight to infectious
transmissions.

Notice that the solution in (10) is quite periodic, with alter-
nated weeks of in-class and remote activities; Fig. 2 shows the
evolution of the epidemic trajectories under the policy in (10).
Table 3 summarizes the change in infectious transmissions with
the solution in (10); notice that there is an increase of 67% in the
number of the positive cases due to the 90 days of school opening
vs. an increase of 200% if the school was open all the 200 days.
This realizes an effective containment of the extra diffusion of the
virus, while still having the possibility of offering a substantial
portion of the teaching in person.

We have also explored the possibility of selecting at random
which weeks to open or close, with the constraint of having 90
days of in-class activities, which is to say 18 open out of the 40
weeks. A simulation of the distribution gives that the increment
in the number of cases is 90.61% on average, with a Standard
Deviation of 9.94%, hence the solution in (10) is more than 2
SD’s below what the average random selection would provide; in
addition, it is also not subject to possible adverse fluctuations, so
it is definitely preferable to a random, unjustified selection. It is,
however, the case, that adopting a blended model with alternated
open and closed weeks does provide in any case, even without
optimization, a sizeable containment of the infection within the
school.

In Section 4 we carry out a sensitivity analysis, which shows
that the optimal planning is pretty stable in case of some extra
opening or remote days, and is only moderately affected by errors
in parameter selection, within certain ranges.

3.4. Pedagogical considerations about blended models

The optimal solutions turn out to be blended models, with
approximately one week of in person teaching, and one week
of remote learning. The pedagogical aspects of such models have
been examined in various researches, for instance [32,33].

It turns out that there are several advantages in blended
learning:

• in the current context, it seems to allow a sustainable pro-
gramming of school operations;
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Table 3
Performance of optimal and random solutions with 90 days of in-class teaching. First 4 columns: total number of infectious transmissions;
last 3 columns: percentage increase with respect to remote only solution. ‘‘Optimal’’ refers to the policy in (10) identified by simulated
annealing.

Cases by school year end Increase w.r.t. full closure

Remote Optimal Random In-class Optimal Random In-class

% 12.57 20.99 23.96 ± 1.25 37.80 67 90.61 ± 9.94 200
Table 4
Sensitivity analysis. For each parameter, the second column gives the tested range; the third column indicates the change in number of cases
compared to the change in case of full opening for that value of the parameter in the indicated range which gives the minimal increase in
infection rate, i.e. (fopt − fcc )/fcc vs. (ffo − fcc )/fcc where (fopt − fcc )/fcc is minimal; the fourth column reports the case in which the increase
(fopt − fcc )/fcc is maximal. The last column reports the range in which the optimization is effective, but the number of cases doubles at the
most, i.e. (fopt − fcc )/fcc ≤ min(1/3(ffo − fcc )/fcc , 1) .

Parameter Test range Minimal effect Maximal effect Range

α (h−1) 10−7–10−4 19% vs. 44% 307% vs. 18925% 10−6–10−4

β (h−1) 1.25–9.75 × 10−2 5% vs. 15% 329% vs. 626% 1.25–5 × 10−2

γ (h−1) 5.25–23.25 × 10−3 12% vs. 37% 97% vs. 400% Whole range
δ (h−1) 3.33–233 × 10−5 40% vs. 150% 61% vs. 256% Whole range
ρ (h−1) 8–200 × 10−4 44% vs. 171% 133% vs. 487% Whole range
η 2–20 × 10−2 43% vs. 167% 179% vs. 555% 0.02–0.45
a

t
b
o

• it permits to take advantage of both in person and remote
teaching, limiting drawbacks of both; one can, for instance,
shift in person tests and labs to the in-class weeks, and
reserve less participative moments for remote teaching;

• in general, it allows the use of a variety of learning modes
and methods;

• it can provide a pedagogical experience that can be repli-
cated and expanded in the future in order to exploit new
technologies while keeping regular personal contacts;

• it can be flexibly adatpted in some ways, should a sudden
change in conditions occur.

Of course, there are challenges, in particular concerning the abil-
ity of teachers and students to master the needed technologies
and the alternating formats [32,33].

In addition, as schools could attempt planning in advance,
specially if this is coordinated for most schools in some location,
he regular economic and social activities could be somewhat
dapted to the school calendar; for instance, more working hours
ould be planned during the weeks in which schools are open.
Clearly, there are several difficulties in implementing blended

trategies, but the alternative, which is already unfolding in many
ituations, seems to be chaotic schedules, with schools attempt-
ng full openings, and then suddenly going back to closure as the
irst COVID cases surface.

.5. Sensitivity analysis

We provide a sensitivity analysis in four parts.
The first part concerns errors in the determination of the

ptimal solution. If one of the weeks for which remote teaching is
lanned by the optimal solution is instead changed to an in-class
eek, then the increment in the number of cases due to school
pening ranges from an extra 72% to an extra 78%, compared
o the extra 67% of the optimal solution. If one week is moved
emote from in-class, then the increment in the number of cases
s reduced to about 64%. This suggests that altering the number
f weeks of opening is not optimal, but does not substantially
hange the final outcome: therefore, once an optimal policy has
een determined, extra openings or closures can be adopted if
eeded without major changes in the final outcome. In addi-
ion, once the flexible blended model has been adopted, one
an quickly and easily adapt to major changes in the external
onditions, such as a sudden outbreak or a vaccine.
7

The second part of the sensitivity analysis concerns each of the
parameters of the model used to determine the optimal solution
in (10). We assume that the optimal policy has been determined,
and observe deviations from the expected performance due to
possible errors in the parameter determination.

For each possible value of the parameters, we compute the
fraction of cases if complete closure fcc , full opening ffo, or the
optimal solution fopt are adopted. Then compare the percentage
increase of optimal solution with respect to complete closure
(fopt − fcc)/fcc with the analogous increment for the full opening
(ffo−fcc)/fcc . Such comparison is reported in Table 4 for the largest
nd the smallest value of (fopt − fcc)/fcc in the given range of the

parameter.
In addition, we indicate of each parameter the range of values

for which the optimal solution achieves a substantial reduction
with respect to complete opening, but limited to determining at
most an 100% increase in the number of cases with respect to
school closure.

We see that the most critical parameters are α, β and η.
The range of α in which the optimization process has a chance

of being effective is 10−6-10−4, which corresponds to about 50 to
5000 active cases per million in the area around the school.

For the infection rate β , the range in which optimization
is effective is 1.25-5 × 10−2; this is a very critical parameter,
as observations in different countries lead to a range of 2.5 ×

10−2-17 × 10−2. So, each region or country should monitor this
rate and introduce strict measures to keep β within the above
limits.

Finally, the fraction of undetected asymptomatic η must not
exceed 45%: we assume availability of an easy, rapid and cheap
test with a sensitivity of at least 55%, such as CRISPR [34].

The third part is about the selection of τ . In fact, the sensitivity
to τ has already been discussed in Section 3.2: Fig. 2 shows that
he optimal strategies lie approximately on the curve C described
y Eq. (9); even if the equation is not exact and the dependency
n τ is not known analytically, it nonetheless gives an idea of

the variability of the optimal solutions as function of τ . The data
plotted in Fig. 2 has been obtained with τ ranging from 200 to
1400, which corresponds to a range between 2 and 14 days of
in-class teaching equivalent to a 1% of extra cases. There is at
most doubling of the cases for τ ≥ 700, and, correspondingly, for
at least 85 of remote teaching. This seems to indicate that next
school year will allow no more than 115 days of in-class teaching
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ithout pharmaceutical progress; recall that possibly one of two
xtra weeks can be gained with an efficient initial screening.
The last part of the sensitivity analysis is about the weekly

chedule. A possible alternative is to schedule opening or closure
f the schools for each single day (still with a calendar fixed in
dvance). The optimization is now over 2200 possible policies.
ptimization by simulated annealing in this case determines a
lot similar to that of Fig. 1. For instance, the optimal policy
or τ = 800 gives an increase of 65.24% in the number of
ases, vs. the 67% increase of the weekly schedule; the daily
chedule consists of 89 of in-class teaching, instead of the 90
hich are considered by the weekly schedule. In summary, the
aily schedule turns out to offer little advantage with respect
o the weekly option, but a more complicated implementation
rocess.

. Summary and discussion

.1. Summary

We have considered the issue of planning in-class activities
or the school year ’20–’21. Education is, in fact, one of the
reas in which the measures to contain the current Covid-19
andemic have had a negative impact, with many countries and
ocal authorities struggling to find acceptable plans for the next
cademic year. In this work we have focused on a single school.
To aid the planning of teaching for the school, we have mod-

led the evolution of the Covid-19 epidemic in the school by
n extension of the SIR model, with asymptomatic; an external,
onstant, source of infection; interactions within the school hap-
ening only during the 7 hours of opening during week days;
reduced rate of encounter with asymptomatic due to a some-
hat efficient screening system applied weekly. We have then
etermined realistic values for the remaining parameters of the
odel.
Next, we have set up an optimization problem, based on a

reliminary assessment by the planner of the relative impor-
ance of ensuring in-class teaching vs. containing the epidemic
pread. For each value of such relative importance and of the
ther parameters, we have carried out a discrete optimization by
imulated annealing to obtain a (close to) optimal strategy within
he space of all possible weekly opening policies.

.2. Related studies

Modeling of epidemic outbreaks by differential equations dates
ack to the original paper by Kermack and McKendrick [35], with
n enormous number of recent works on the current Covid-19
utbreak. Among these, [36] discusses the impact of reopening
arious combinations of schools in England vs. keeping schools
losed; results in [36] are expressed in terms of the reproduction
umber R0, and show that, in many cases, opening of all schools
ould bring the reproduction number above the critical value of
. Our model has many fewer categories and variables, and it is
ocused on one single school. In any case, our results also confirm
hat opening all schools is not advisable in UK, even with extra
esting and blended models (see Supplementary Material).

As far as optimization is concerned, methods similar to those
sed in this paper have appeared in many other contexts. In
articular, several recent studies have considered optimal plan-
ing strategies in response to general epidemics [14,37] or, more
pecifically, to the COVID-19 pandemic [28,38]; to our knowledge,
owever, none has considered the current optimization problem
or school planning.
8

4.3. Limitations

There are several limitations to our study. We use a variation
of the SIR model, in which we have averaged encounter rates and
susceptibilities over several age classes and different countries to
obtain reasonable parameters. It could be that local deviations
from the values we have used might lead to sensibly different
outcomes.

The model includes no randomness, which, however, is an
essential feature of both human interactions and virus spreading;
randomness would also allow us to assess the variability of the
predictions. As a result, there are no error bars in our predic-
tions, except for the case of a random selection of the weeks of
in-person teaching.

The external infection rate is taken to be constant, as focusing
on a single school does not allow us to model the evolution of
the epidemic in the overall area. This rate, however, is not likely
to be constant over a long period of time, but is subject to many
variations due to expansion or containment of the outbreak.

In addition, our results are only a first indication of a modeling
methodology for the search of an optimal trade off between in-
class teaching and containment of infectious transmissions. Even
if parameters are carefully and realistically selected, the values
are based on information known at the time of this study; when
a parameter has a wide range of variability we settle for one
representative value; in addition, the worked out examples refer
to an ideal school: for each particular concrete situation, one
needs to adapt the model to the specific case.

We also did not consider other alternatives, such as reducing
the number of in-class students for each lesson. Many possible al-
ternatives could be conveniently incorporated in a more elaborate
model.

4.4. Conclusions

First, we have seen in Section 3.1 that the regular opening of
a typical school would cause a multifold increase in the number
of cases among the individuals involved with the school itself,
both at 60 days and at school year end. The only exception
would be if the virus is under tight control in the region around
the school, which is to say with less than 50 active cases per
million, in which case one can safely plan a complete reopening.
If there are more than about 5000 active cases per million in
the surrounding region, then the opening of the school would
not particularly aggravate the situation; in that case it would,
however, not be advisable to carry out any in person activity as
the number of cases would be out of control (at least 35% of the
school population in the first 60 days of opening).

The second conclusion, discussed in Section 3.2, is that careful
planning of the opening weeks is capable of making a drastic
reduction on the number of extra cases induced by opening the
school. Optimal or close to optimal solutions consist of blended
models, with an alternation of weeks of remote and in-class
activities; with about half of the weeks in class, for instance, one
can reduce the increase in the number of cases by a factor of 3;
we have also seen that schedules with a choice between in-class
and remote on a daily basis would not improve the reduction
much. The likely cause of the need for the weekly alternation is
the duration of Covid-19 incubation period.

The third result, in Section 3.3, is that to identify an optimal
opening strategy suitable for a specific situation, planners are first
required to explicitly incorporate into their objective the relative
value of in-person teaching vs. reduction of Covid-19 spread; once
this is done, optimal or close to optimal solutions can be numeri-
cally estimated to produce one of the optimal or close to optimal

strategies mentioned above. A random choice of the weeks of
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n-class activities would not reduce the number of new cases as
ffectively as an optimal choice, but would nonetheless achieve a
ubstantial reduction with respect to full opening. In Section 4 we
ave also seen that the achieved reduction is preserved by small
hanges in the weeks of in-person activities. As such, one school
ould identify the number of in-class days or weeks, and slightly
djust the calendar to other needs.
Finally, in Section 4, we have carried out a sensitivity analysis

f the results. These have turned out to be rather stable for small
rrors in the selection of the model parameters. The more critical
arameters are

• the contact rate during school opening, a parameter which
should be very carefully monitored and controlled via phys-
ical distancing and other measures;

• the fraction of detected asymptomatic, for which schools
should adopt some frequent and possibly not very expensive
testing procedure; there is no need to have an exceptionally
high reliability of the test itself, and we have shown viable
opening policies based on sensitivity above 55%;

• the external risk rate: as mentioned, one can achieve some
control on the spread of the virus in the school only if there
are no more than about 5000 active cases per million in
surrounding area.

Based on the above broad indications, and pending adapta-
ion to specific situations, we have determined for each country
hether full opening is feasible, or whether a blended opening of
chools for about half of the weeks, with systematic quick testing
f all students and personnel, and physical distancing within the
chools, would be sustainable. Or whether, finally, school open-
ng is not advisable in the current situation (see Supplementary
aterial).
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