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Summary

Tracing the lineage history of cells is key to answering diverse and fundamental questions in 

biology. Coupling of cell ancestry information with other molecular readouts represents an 

important goal in the field. Here, we describe the CARLIN (for CRISPR Array Repair LINeage 

tracing) mouse line and corresponding analysis tools that can be used to simultaneously 
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interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits 

CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any 

point during development or adulthood, is compatible with sequential barcoding, and is fully 

genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver 

hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck 

in the response of HSCs to injury. CARLIN also allows the unbiased identification of 

transcriptional signatures associated with HSC activity without cell sorting.

Graphical Abstract

Introduction

Generating animal models that enable cell lineage tracing in vivo has been a long-standing 

aim in biological research. Historically, lineage tracing in mammals has been limited to 

labelling and tracking small populations of cells through the use of dyes or fluorescent 

markers (Kretzschmar and Watt, 2012). Although these techniques helped resolve major 

questions in biology, from lineage commitment during early development (Balakier and 

Pedersen, 1982) to adult stem cell behavior (Snippert et al., 2010), the low number of clones 

analyzed at any one timepoint limit comprehensive understanding of global stem cell 

dynamics within tissues. These approaches are also intrinsically limited in their ability to 

trace individual cells and therefore provide limited insight into heterogeneity in cell 

populations. Retrovirally-delivered DNA barcodes have been used as clonal markers 

particularly in the context of blood generation (Gerrits et al., 2010; Lu et al., 2011; Schepers 
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et al., 2008). However, introduction of such barcodes requires stem cells to be extracted 

from the tissue and manipulated. Recently, two mouse models have been developed that 

enable barcoding of cells in their native environment using randomly integrated transposons 

(Sun et al., 2014) or recombinases that create genetic diversity in a distinct locus (Pei et al., 

2017). The use of these models has revealed dramatic differences between hematopoietic 

stem cell (HSC) behavior in unperturbed conditions versus transplantation, and has 

highlighted important functional heterogeneity within the HSC compartment (Pei et al., 

2017; Rodriguez-Fraticelli et al., 2018). However, these models are limited in that they only 

provide lineage information and do not provide molecular insight into the genetic program 

driving heterogeneous behavior.

The advent of CRISPR/Cas9 has led to the development of additional lineage tracing tools 

that use errors from non-homologous end-joining DNA repair to generate a high diversity of 

unique and heritable DNA barcodes. A first proof-of-principle study demonstrated the 

feasibility of lineage tracing via this method in the zebrafish embryo (McKenna et al., 2016). 

Modified variants of this system that use expressed barcodes have allowed for the 

simultaneous measurements of single-cell gene expression levels and lineage tracing 

(Alemany et al., 2018; Raj et al., 2018; Spanjaard et al., 2018). More recently, systems 

combining delivery of expressed barcodes with transposons in the mouse embryo have been 

described (Chan et al., 2019; Kalhor et al., 2018). Both of these approaches use 

constitutively expressed Cas9 and use multiple target arrays (barcodes) to generate diversity. 

However, new embryonic manipulations are required to generate mice every time, and the 

resulting mice are impractical for breeding given the high number of randomly inserted 

transgenes. Therefore, these models are unsuitable for lineage analysis of adult tissues.

Here we present a versatile mouse model that allows inducible CRISPR-based lineage 

tracing that is genetically defined, incorporates inducible, transcribed barcodes, and works 

across adult mouse tissues. Furthermore, we have developed the analysis tools and reference 

data sets required to interpret the detected barcodes and quantify their statistical 

significance. Due to our ability to simultaneously interrogate lineage and transcriptional 

profiles of single-cells, the CARLIN system presents unique advantages to study stem cell 

clonal dynamics compared with previously generated cell lineage tracing tools. We exploit 

these advantages here to unveil unknown aspects of hematopoiesis during development and 

in adulthood following stress.

Results

Inducible and dose-dependent molecular barcoding in mouse embryonic stem cells

We set out to generate a genetically-defined mouse model in which we could (i) record the 

lineage histories of individual cells within their own DNA and (ii) read out lineage histories 

alongside gene expression profiles at the single-cell level. Based on the GESTALT model 

that has been successfully used for molecular recording in zebrafish (McKenna et al., 2016), 

we designed 10 sgRNAs that enable efficient cutting of target sites in the presence of Cas9 

(Supplementary Figure 1A) with minimal off-target activity within the mouse genome 

(Methods). We designed the gRNA cassette in two iterations, one where individual U6 

promoters drove sgRNA expression (Figure 1A), and a second cassette carrying tetO-
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operons upstream of each sgRNA (iCARLIN; Supplementary Figure 1B). Unless otherwise 

stated, all data presented here correspond to the first system. We also designed a 276 bp 

array containing target sites perfectly matching each of the expressed gRNAs (Figure 1A,B; 

Supplementary Table 1). Constitutive expression of the molecular recorder array is achieved 

through its placement in the 3’ UTR of a fluorescent protein driven by the constitutive CAG 

promoter. All of these elements were inserted together in the widely-used Col1a1 locus via 

recombinase-mediated integration into mouse embryonic stem (ES) cells that also express an 

enhanced reverse tetracycline transactivator (M2-rtTA) from the ubiquitous Rosa26 

promoter (Beard et al., 2006). We then generated mouse lines from these ES cells. To have 

temporal control of Cas9 expression, we separately created a mouse line that expresses both 

doxycycline-dependent Cas9 (tetO-Cas9; integrated in the Col1a1 locus) and M2-rtTA 

(integrated in the Rosa26 locus). Finally, we crossed these two mice lines to generate 

CARLIN ES cells and CARLIN mice that carry all the transgenic elements.

Taken together, doxycycline (Dox) induction drives Cas9 expression, which leads to double-

strand DNA breaks in the target array. These breaks are repaired to result in a diverse range 

of altered DNA sequences (referred to as CARLIN alleles) that are expressed and stably 

inherited (Figure 1A). To analyze the CARLIN alleles from sequencing of the target array, 

we developed a novel bioinformatic pipeline that accounts for the location at which the 

Cas9-dependent alterations are expected (Methods; Figure 1B; Supplementary Figure 2A–C; 

Supplementary Tables 2–3). This code is available at https://gitlab.com/hormozlab/carlin.

To test the ability of our system to generate inducible and detectable CARLIN alleles at the 

DNA level, we characterized the CARLIN edits present in CARLIN ES cells following Dox 

treatment (Methods). While we observed little background editing in the absence of Dox 

(Supplementary Figure 1C,F), a diverse set of repair outcomes was generated following Dox 

exposure (Figure 1C,D) as determined by high-throughput sequencing. These edits included 

deletions spanning 1–252 bps, the most common of which spanned multiples of 27 bps (the 

length of a target site and adjoining PAM+linker sequence), and insertions of up to 51 base 

pairs in length (Figure 1D). The edits occurred throughout the array, with different target 

sites displaying slightly different indel preferences (Figure 1E). In initial experiments, we 

observed 301 distinct alleles in 453 cells with edited alleles, 219 of which were only 

observed in one cell, indicating that CARLIN can generate highly diverse repair outcomes 

following Cas9 activity. Since CARLIN alleles are generated by different indel events, the 

distribution of CARLIN alleles detected may be distorted due to length-dependent 

amplification of transcripts during library preparation and sequencing. We verified that the 

distribution of allele lengths produced by the bioinformatics pipeline was consistent with the 

distribution produced by fragment analysis as a partial validation that the experimental 

protocol and bioinformatics pipeline preserve the distribution of CARLIN alleles observed 

in the biological sample (Supplementary Figure 2D).

We also investigated how CARLIN editing is influenced by the duration and magnitude of 

Cas9 expression. We exposed ES cells to low, medium and high dosages of Dox (0.04, 0.20 

and 1.00 μg/mL respectively), and performed bulk DNA sequencing prior to induction and at 

a series of timepoints up to 96h. As expected, both the fraction of cells with edited CARLIN 

sequences and the diversity of CARLIN alleles increases with both length and dose of 
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induction (Figure 1F,G; Supplementary Figure 1C–F). This analysis also reveals that the 

nature of CARLIN edits can act as a readout of induction duration and strength. Specifically, 

we observe a decrease in the number of unmodified target sites (calculated as CARLIN 

potential; Methods; Figure 1H) and an increase in the average length of deletions with 

increasing time and concentration of doxycycline (Supplementary Figure 1F). Together, 

these data demonstrate that CARLIN is edited in an inducible way with the extent of editing 

dependent both on the duration and magnitude of the induction, indicating that the system 

can be used as a heritable molecular recorder.

Sequential CARLIN induction permits lineage reconstruction

Having shown that we could regulate the extent and nature of editing, we next tested 

whether we could accrue sequential edits on the same CARLIN array. CARLIN ES cells 

were exposed to one, two or three 6h pulses of Dox (0.04 μg/mL) interspersed by 24h in 

fresh media. Indeed, we observed an increase in the fraction of cells with edited CARLIN 

alleles, the number of mutations accrued in each allele, and the diversity of CARLIN alleles 

over the three pulses (Figure 2A; Supplementary Figure 1G). This finding indicates that 

sequential pulses of Dox can incorporate additional information and can potentially be used 

to build multi-level, hierarchical histories for lineage reconstruction. To test this last 

hypothesis, we exposed ES cells to one pulse of Dox, picked 8 ES cell clones for outgrowth, 

and exposed them to a second pulse of Dox (Figure 2B). Sanger sequencing of the 8 ES cell 

clones after the first timepoint allowed us to establish a ‘ground truth’ of edits generated 

after the initial pulse (Figure 2C). We devised a basic lineage tree reconstruction algorithm 

that accounts for the expected CARLIN mutation patterns and assumes that the internal 

nodes are restricted to the observed alleles (Figure 2D; Methods). Applied to these data, we 

achieved a false positive rate of 0.6% (the fraction of cells in which the most recent ancestor 

of an allele is a clone other than where the allele came from) and a false negative rate of 

18% (the fraction of cells in which none of the 8 selected clones is found as an ancestor of 

an allele). False negatives arise when alleles from a specific Next Generation Sequencing 

(NGS) library cannot be matched to a parent clone because of large subsuming deletions that 

erase the mutations that uniquely identify the parent allele. In these cases, we always link the 

child allele back to the unedited reference, to avoid false positives. Taken together, 

sequential Dox pulses allow multiple stages of lineage reconstruction.

CARLIN generates a high diversity of barcodes in vivo

We next generated mice carrying the CARLIN transgenes and assessed allele generation 

following Dox induction in adults. Because dose and timing of Dox concentration is critical 

to induce editing in a large fraction of cells, we tested multiple dosing regimes of Dox (not 

shown) and selected a protocol in which CARLIN mice were exposed to Dox for 7 days 

(Methods). Following this protocol, we harvested RNA from multiple tissues from CARLIN 

mice for bulk sequencing of the CARLIN array (Figure 3A). We observed that the fraction 

of CARLIN transcripts that were edited ranged from 31% to 88% across all tissues analyzed, 

with the exception of the brain, that is inaccessible to Dox, and the heart and skeletal 

muscle, in which expression from the Col1a1/Rosa26 loci has been previously shown to be 

low (Beard et al., 2006; Figure 3B, Supplementary Figure 3A). To investigate editing in 

different cell types, we sorted blood, mesenchymal, and epithelial cells from a variety of 
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tissues of two induced mice and assessed the fraction of edited transcripts by RNA 

sequencing. Similar to our bulk tissue data, we observed robust editing in the presence of 

Dox across multiple cell types and tissues (Supplementary Figure 3B). Importantly, 

background editing in the absence of Dox is negligible (averaging 1%) across all tissues of 

an uninduced 8-week old mouse (Figure 3B). Therefore, CARLIN represents a useful model 

to barcode adult tissues systematically.

We next assessed the full extent of the barcode diversity that could be generated in vivo. For 

this we compared CARLIN edits observed in large numbers of bone marrow granulocytes 

across three induced CARLIN mice following 1 week of Dox induction and two uninduced 

controls. Similar to our in vitro analysis, we detected a high diversity of edits in the induced 

mice generated through deletions and insertions across the length of the array (Figure 

3C,D,E). Across the induced mice we observed the fraction of edited CARLIN transcripts 

ranging 29%−63%, compared to an average of 2.1% editing in the two uninduced mice 

(Supplementary Figure 3C,D). The editing in the uninduced mice is largely attributable to a 

low level of background Cas9 activity rather than resulting from errors introduced during 

library preparation, since editing in the absence of Cas9 was 0.3% (Supplementary Figure 

3E). On average, 88% of the edited alleles (6485–11921) found in each mouse were not 

observed in the other mice (Figure 3F), indicating that the majority of edits represent unique 

repair outcomes. However, it also indicated that a small percentage (~12%) of alleles were 

generated at a higher frequency due to common indel mutation events (such as deletions 

spanning multiples of 27bps noted earlier) that independently generate the same allele 

sequence in different cells (Figure 3E). We pooled the edited alleles from across all induced 

mice together to form an allele bank, consisting of a total of ~32,000 distinct edited alleles 

over ~233,000 edited transcripts.

We used the allele bank to computationally estimate the total number of distinct alleles that 

CARLIN could generate (i.e. the maximum barcode diversity) and the expected occurrence 

frequency of these alleles. High diversity corresponds to many alleles that occur at equal 

frequencies. Conversely, low diversity corresponds to few dominant alleles that occur at high 

frequencies. By extrapolating the frequency distribution of alleles in the bank, we estimate 

that CARLIN is able to generate up to 44,000 ± 400 distinct alleles (Figure 3G,H; Methods), 

consistent with a high diversity system. Additionally, we used the bank to discriminate 

between rare alleles that occur at low frequencies and commonly-occurring alleles. To do so, 

we used the allele bank to estimate the probability that a CARLIN allele is unique for a 

given number of observed cells, obtaining a p-value of significance (Figure 3I; Methods). 

The curves in Figure 3I can be used by an experimentalist to determine how many cells will 

be uniquely marked for a given number of edited cells. This discrimination is critical for any 

experiment to ensure that an allele detected in many cells is due to the shared lineage history 

of those cells, as opposed to independent CARLIN editing events that coincidentally 

produced the same allele. We also verified that alleles deemed rare by our statistical 

procedure are less likely to occur simultaneously across biological replicates 

(Supplementary Figure 4A). Critically, these statistical measures can be adjusted to account 

for other experimental parameters (such as number of cells in the system, number of 

detected CARLIN alleles, etc.) and may be applied to other CARLIN experiments.
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Finally, we also investigated edited alleles generated in granulocytes of iCARLIN mice, in 

which the expression of the sgRNAs, as well as Cas9, is driven by a tetO promoter 

(Supplementary Figure 1B). Similar to the constitutive guide CARLIN system, we observed 

a high diversity of edits (Supplementary Figure 3F), indicating that this system may be used 

as well to label cells with even tighter inducibility and potentially shorter labelling windows.

Lineage reconstruction in vivo

To investigate whether multiple rounds of CARLIN labelling could be used to gain insight 

into cellular phylogeny in vivo as done in vitro (Figure 2D), we set up timed pregnancies 

and delivered three pulses of Dox to pregnant dams at E6.5, E9.5 and E13.5 (Figure 4A). 

When the 3x labelled CARLIN embryos reached 8 weeks of age, we collected RNA from 

the skin, heart, liver, intestine and colon, and also separately sampled the left and right brain, 

muscle, lung and bone marrow HSCs, MPPs, granulocytes, and B-cells. We employed the 

same tree reconstruction algorithm developed for analyzing the in vitro experiment with ES 

cells (Figure 2D). However, as a pre-processing step we only retained alleles whose 

observed frequency was significantly higher than their frequency in the bank (using a 

FDR=0.05 on their frequency p-values – see Methods; Figure 4B). Only a small fraction of 

CARLIN transcripts were discarded based on this filtering step across all tissues (Figure 

4C). We computed a consensus lineage tree, by simulating 10,000 stochastic reconstructions 

(Methods), which allowed us to visualize a hierarchy of clades across multiple tissues 

(Figure 4D–G; Methods). Based on this lineage tree, we computed a pairwise similarity 

matrix of the tissues and observed that contra-lateral tissues were closely related, as were 

multiple cell types of hematopoietic origin, and tissues of endodermal origin (Figure 4H), 

which is consistent with known lineage relationships. We also observed a low level of allele 

sharing across other tissues, some of which were derived from the same embryonic germ 

layer (Figure 4F,H). This indicates limited lineage mixing between these tissues and 

suggests that they began to develop independently prior to the stages of induction used in 

our analysis. Taken together, CARLIN can be useful for multi-level tissue reconstruction in 
vivo.

Simultaneous detection of CARLIN barcodes and whole-transcriptomes from single cells

We next set out to develop a platform to detect CARLIN alleles using single-cell sequencing 

technologies. Our pipeline for this analysis involves: (i) exposure of mice to Dox, (ii) 

encapsulation of single cells from the cellular population of interest into droplets containing 

barcoded polyT-coated beads, (iii) amplification of whole cellular transcriptome, (iv) 

targeted amplification of the CARLIN array, and (v) sequencing using NGS (Figure 5A). 

After optimization, we were able to detect CARLIN in 32–63% of cells in which we could 

also measure a full transcriptional profile (for the criteria used to select single cells, see 

Supplementary Table 4 and Methods). To check for reproducibility of our protocol, we 

prepared two CARLIN amplicon libraries independently starting from the same single-cell 

transcriptome library. We observed that 89% of the cell barcodes were shared across the two 

libraries. We also verified that the same CARLIN alleles occurred across the two samples 

with consistent frequencies (Supplementary Figure 6A; Methods).
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As a proof-of-principle experiment, we used CARLIN to characterize clonal properties of 

hematopoietic development. Here, we barcoded HSC precursors during embryogenesis and 

characterized their clonal lineages in adulthood. In the mouse, definitive blood progenitors 

arise at embryonic day (E) 10.5 with the formation of Runx1-expressing clusters within the 

main arteries of the embryo (Dzierzak and Bigas, 2018). From E11 onwards, these 

progenitors migrate to the fetal liver where they undergo extensive expansion before 

colonizing the bone marrow at around the time of birth. Although several studies have 

investigated the process through which the progenitors are formed, the dynamics of HSC 

expansion and migration to the bone marrow are still poorly resolved. In particular, it is 

unclear whether HSCs derived from the same developmental precursor clone already exhibit 

intrinsic functional biases.

We applied a single pulse of Dox at E9.5 to label the earliest emerging definitive blood 

progenitors (Figure 5A). Accounting for delays in Dox response and Cas9-protein stability 

(Alemany et al., 2018; Traykova-Brauch et al., 2008), this represents actual labelling times 

of approximately E10-E12.5. Once the labelled animals reached 8 weeks of age, we sorted a 

combination of cKit+ progenitors, including HSCs, multipotent progenitors (MPPs) and 

lineage-restricted progenitor cells (Supplementary Figure 5A) from four separate bones 

(right and left humerus and femur) and encapsulated the cells from each bone into separate 

single-cell libraries. We combined the 3755–5261 cells per bone that passed quality control 

cutoffs (Supplementary Table 4; Methods) into one dataset encompassing 19,056 cells 

(Supplementary Figure 5C). Unsupervised hierarchical clustering resulted in 36 distinct 

clusters that we annotated as HSC, MPP, myeloid, megakaryocyte, erythroid and lymphoid 

using previously described markers (Figure 5B; Supplementary Figure 5D,E). We 

considered cells belonging to the HSC-like clusters to be HSCs, and cells belonging to other 

clusters to be non-HSCs for all subsequent analysis. Finally, we visualized the single-cell 

gene expression profiles using uniform manifold approximation and projection (UMAP) 

plots, overlaid with the detected CARLIN alleles (Figure 5C).

From a total of 60 clones, each marked with a different CARLIN allele, our high-stringency 

analysis determined 46 (20–29 in each bone) to be significant (assessed using their clonal p-

value at a FDR=0.05 – see Methods; Supplementary Table 4). We restricted all further 

analysis to these significant clones. The sizes of these clones ranged from 1 to 123 cells 

comprising numerous cell types across the hematopoietic hierarchy. We initially assessed the 

extent to which clones that contained HSCs (HSC-rooted clones) also contained 

hematopoietic progeny (non-HSCs). Previous studies suggest that hematopoiesis is driven by 

HSCs that are progeny of definitive embryonic precursors (Dzierzak and Bigas, 2018). 

Indeed, we find that 23 out of 27 clones containing an HSC have detectable hematopoietic 

progeny (we refer to these HSCs as parent HSCs). Such HSC-rooted hematopoietic progeny 

make up most of the cellular composition in the analyzed bone marrow samples, i.e. 95% of 

non-HSCs displaying a significant CARLIN allele (p < 10−6; Figure 5C; Methods). 

Interestingly, we observed that the distribution of HSC-rooted clone sizes was significantly 

non-uniform (p<10−6; Figure 5E; Methods). This finding points towards significant 

heterogeneity across embryonic-derived HSCs.

Bowling et al. Page 8

Cell. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We next separated out the transcriptional and lineage profiles of cells across the four bones 

(Figure 5D). With this analysis we could assess both the presence and behavior of HSCs 

across multiple bone marrow compartments. We observed 13 of the 46 significant clones in 

all bones, accounting for 46% of cells displaying an edited CARLIN allele (Figure 5E). 

Notably, across all clones we observed that many of the largest clones were not uniformly 

distributed across bones, but were more likely to be found in a subset of the bones analyzed 

(Methods). For example, clone #10 appeared in 49 cells of the right humerus but appeared in 

only 3 cells of the left femur and was completely absent in the other analyzed bones (p < 

10−6; Figure 5D,E). Similarly, clone #3 appeared in 42 and 72 cells of the left and right 

femur, respectively, but appeared in only 6 and 3 cells of the left and right humerus (p < 

10−6; Figure 5E). No clone had a statistically significant fate bias, as judged by its 

occurrence among cell types as defined in Figure 5B, either within bones or pooled across 

all bones (Methods). Assuming equal expansion in the fetal liver, our data suggest that the 

expansion potential of fetal liver-derived HSCs might not be pre-determined but that it might 

be conferred by the niche into which they home. It is also possible that fetal liver-derived 

HSCs exhibit biases in colonization of different bones.

Clonal bottlenecks during hematopoietic regeneration

Next, we applied CARLIN to investigate the clonal dynamics of adult hematopoiesis 

following perturbation. Decades of work have established that following acute 

myeloablation, most HSCs exit their quiescent state and undergo cell division (Harrison and 

Lerner, 1991; Wilson et al., 2008). It has been assumed that these divisions are asymmetric 

cell divisions and correspond to HSC activation, implying that most HSCs participate in 

regeneration. However, this process has never been studied at a clonal level and the extent to 

which each individual HSC participates in regeneration is unclear.

To measure how much individual HSCs contribute to regeneration, we studied the HSC 

response to 5-fluorouracil (5-FU), a widely used model of myeloablation in the mouse. 5-FU 

induces proliferation of most HSCs within 4 days (Harrison and Lerner, 1991; Wilson et al., 

2008) and by 10 days post 5-FU, most cellularity is recovered in the bone marrow (Harrison 

and Lerner, 1991). We induced CARLIN labelling in 8-week old mice before administering 

one dose of 5-FU via intraperitoneal injection (Figure 6A). Following 10 days recovery, we 

sorted the cKit+ population from the marrow of single bones (Supplementary Figure 5A,B) 

and generated single-cell RNA libraries. Across five independent experiments in control and 

5-FU treated groups, we detected between 4073–6025 cells with high resolution whole 

transcriptome information (Supplementary Table 4) that we compiled into one dataset 

following batch correction (Supplementary Figure 6B). Unsupervised hierarchical clustering 

resulted in 34 distinct clusters to which we assigned coarse-grain annotations as before 

(Figure 6B; Supplementary Figure 6C,D).

As with the previous experiment, we restrict our attention to clones corresponding to 

significant CARLIN alleles (assessed using their clonal p-value at a FDR=0.05; Methods). 

Of the 1619 statistically significant alleles detected across samples, 1580 were unique and 

found only in one sample, corroborating that our filtering procedure for rare alleles was 

effective. We detected important differences in the clonal composition of control versus 5-
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FU treated bone marrow. First, we observed a significant reduction in the number of clones 

detected in the 5-FU treated marrow (p<10−6; Figure 6C; Supplementary Figure 6E; 

Methods), which likely reflects the massive cellular and clonal loss after injury. 

Additionally, we used CARLIN to analyze the clonal contribution of HSCs to hematopoietic 

production. In the absence of 5-FU, only 24 of 1330 clones across all samples, representing 

65 of 1522 (4%) edited CARLIN cells, contained both hematopoietic progeny and HSCs 

(Figure 6C,D,F; Supplementary Figure 6E,F,H). This suggests minimal contribution of 

HSCs at steady state, at least over 20 days, consistent with other studies (Busch et al., 2015; 

Sun et al., 2014). In the presence of 5-FU, this landscape was significantly altered with 48 of 

289 clones containing both hematopoietic progeny and HSCs (p<10−6; Methods), 

representing 217 of 695 (31%) of cells carrying an edited CARLIN allele (p<10−6; Figure 

6D,F; Supplementary Figure 6F,H; Methods). Additionally, there was a significant increase 

in the average size of HSC-rooted clones (p=7.5×10−6; Figure 6E; Supplementary Figure 

6G; Supplementary Table 5; Methods). Surprisingly however, the distribution of the sizes of 

the HSC-rooted clones was significantly non-uniform (Methods), with 12 of 92 HSC clones 

making up 45% of all cells in HSC-rooted clones in the first 5-FU treated mouse (p<10−6; 

Figure 6E) and 4 of 19 HSC clones making up 67% of all cells in the HSC-rooted clones in 

the second 5-FU treated mouse (p=5.2×10−3; Supplementary Figure 6G). These findings 

indicate that a small number of highly-active HSCs are responsible for the replenishment of 

the blood system following cytotoxic injury. Therefore, our results indicate a clonal 

bottleneck during regeneration where only a handful of HSC clones can generate productive 

flow into the MPP and downstream compartments.

CARLIN allows the identification of gene signatures underlying functional heterogeneity

As highlighted above, current clonal tracing models (Sun et al, 2014; Pei et al, 2017) in the 

hematopoietic system are able to identify heterogeneity in function. However, these studies 

cannot provide any molecular insight into potential drivers of function in HSCs. We 

explored whether CARLIN could allow us to identify gene signatures specific to the ‘active’ 

HSC state. Initially, we performed differential gene expression analysis comparing the 

parent HSCs (n=93) to childless HSCs (n=265) across the control and 5-FU single-cell 

datasets (Supplementary Table 6). After applying a Bonferroni correction, 27 genes showed 

a statistically significant change at a log-fold change cutoff of 0.2 including CD48 and 

Plac8. To increase the number of cells used for the differential analysis, we took advantage 

of our observation that, as visualized using UMAP, the parent HSCs were not uniformly 

spread across the HSC clusters (Figure 6B,D; Supplementary Figure 6F). To delineate the 

parent HSC region, we grouped the HSC clusters into a parent HSC cluster group and a 

childless HSC cluster group, such that the former contained a significantly larger fraction of 

parent HSCs (p=4.2×10−4; Supplementary Figure 6C; Methods). Differential gene 

expression analysis across these two cluster groups revealed 45 significantly different genes, 

in addition to CD48 and Plac8 (Figure 6G,H; Supplementary Figure 6I,J; Supplementary 

Table 6). Some of these genes have known involvement in HSC quiescence/activity (Mllt3, 
Cd34, Pdzk1ip1; Forsberg et al., 2010; Pina et al., 2008; Wilson et al., 2008), hematopoietic 

differentiation (Mpo and CD48) and cell proliferation (Cdk6, Plac8; Rogulski et al., 2005), 

as well as a number of genes with described but poorly-defined links to hematopoiesis (e.g. 

Nkg7; Wilson et al., 2015). The grouping of HSC clusters into parent and childless HSC 
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cluster groups could not have been achieved without taking into account the relative 

prevalence of parent HSCs in each cluster as determined by CARLIN, since HSCs 

overexpressing proliferation markers did not localize in the parent HSC cluster group 

(Methods). Additionally, HSCs overexpressing proliferation markers were also not 

significantly over-represented among parent HSCs as determined by CARLIN. Lastly, 

partitioning HSCs according to expression of these proliferation markers alone, and 

performing a differential gene expression analysis between the subsets that most highly and 

lowly expressed these markers, also failed to identify any of the aforementioned genes, with 

the exception of Cdk6 (Methods; Supplementary Table 6). Taken together, these data 

demonstrate that the combined analysis of lineage and gene expression profiles can in 

principle identify molecular profiles underlying heterogeneous HSC behavior in vivo, 

without a need for a priori known markers or cell sorting.

Discussion

Here, we present CARLIN, a new resource for lineage tracing research that can be used to 

simultaneously interrogate lineage histories and gene expression information of single cells 

in the mouse in an unbiased, global manner. We have demonstrated that CARLIN mice can 

be used to generate up to 44,000 distinct CARLIN alleles (barcodes) in vivo, and that these 

alleles can be detected and read out using single-cell droplet sequencing alongside the 

transcriptome of individual cells. We also demonstrated that multiple pulses of labelling can 

be used to enhance our understanding of tissue phylogeny.

CARLIN has a number of unique advantages over existing mouse lines for in vivo lineage 

tracing. Unlike models that use Polylox (Pei et al, 2017) or Sleeping Beauty transposons 

(Sun et al, 2014), the barcodes generated by CARLIN are transcribed, enabling (i) high-

throughput readout of lineage histories in single cells and (ii) simultaneous measurement of 

gene expression profiles in the same cells. Because of this, we can characterize the identity 

of the cells that have been traced using their gene expression profiles in a precise and 

unbiased fashion. In contrast, existing techniques sort cells into subpopulations based on 

known cell types before readout of lineage histories. This requires prior knowledge of the 

markers associated with each cell type of interest and existence of antibodies that can enrich 

for these subpopulations. Strategies that rely on cell type specific expression of fluorescent 

reporters require costly and time consuming genetic engineering. Even with available 

established cell sorting strategies, resulting cell purity is limited and cells can be lost during 

sorting. Critically, CARLIN can be used to read out the lineage histories of any cell type, in 

any tissue and organ, even in the absence of known cell surface markers for sorting. 

Therefore, CARLIN enables precise annotation of cell types whose lineage has been traced 

beyond what can be gleaned from cell surface markers alone. Complete gene expression 

profiles also provide information about mechanisms that drive cell behaviour. Finally, 

CARLIN can directly quantify clone sizes by counting the occurrence frequency of barcodes 

across individual cells. Existing methods rely on bulk sequencing and are therefore less 

accurate because of PCR amplification biases.

Innovations that have increased our ability to both modify and detect DNA sequences in 

single cells has led to sophisticated lineage tracing systems based on CRISPR-Cas9 gene 
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editing, with recent implementations in mice (Chan et al., 2019; Kalhor et al., 2018). In 

these previously described models, constitutive Cas9 expression generates evolvable 

barcodes in hundreds of random genomic target sites. Our system offers a number of 

advantages over these previously described models. First, our system is inducible, allowing 

cells to be barcoded at precise timepoints. Second, all transgenic elements in CARLIN mice 

are contained in defined genomic loci, enabling straightforward crossing into alternative 

genetic backgrounds, and minimizing damage caused by continuous double-strand DNA 

breaks. Third, CARLIN mice represent a stable and practical mouse line that can be utilized 

by others in the scientific community, avoiding the use of zygote microinjection or complex 

mouse crosses. Finally, we have created a bank of alleles and statistical methods to create a 

confidence score for each allele, allowing us to quantify the statistical significance of alleles 

that are shared across multiple cells.

We have used CARLIN to shed light on two aspects of hematopoiesis. First, we applied our 

tool to track early blood progenitor clones to adulthood. A surprising observation was that 

the majority of the largest clones detected exhibited significant bias in their representation 

across the four bones analyzed. One possible explanation for this is heterogeneity in the 

niche environments resulting in different seeding success and subsequent expansion (Gao et 

al., 2018). Alternatively, our data could indicate that only a subset of HSCs in the fetal liver 

expand or seed the bone marrow (Ganuza et al., 2017). Finally, we also cannot rule out that 

migration of HSC clones during adulthood occurs between bones, contributing to a skewed 

distribution of clones (Wright et al., 2001).

Second, we used CARLIN to analyze the clonal dynamics of blood replenishment following 

chemotherapeutic lympho/myeloablation. Analysis of CARLIN alleles uncovered a reduced 

clonal diversity of the blood following 5-FU treatment. Furthermore, we observed that a 

small number of HSCs were responsible for replenishment of the blood. This finding is 

surprising given that previous reports indicated homogenous cycling within the HSC 

compartment following 5-FU treatment (Harrison and Lerner, 1991; Wilson et al., 2008). 

Taken together, it is possible that 5-FU treatment could initiate widespread cycling within 

the HSC niche with only a small number of clones continuing to cycle and contributing to 

downstream blood populations. Interestingly, similar dynamics were observed following 

transplantation into irradiated or cKit-depleted mice (Lu et al., 2019) where only a subset of 

HSCs replenished the blood, suggesting that skewed blood production from HSCs could be a 

generalized response to hematopoietic stress. Differential gene expression analysis 

comparing these ‘active’ HSCs with their ‘inactive’ counterparts revealed increased 

expression of cell proliferation and cell differentiation genes among others; of particular 

interest is Plac8 that has been previously implicated in proliferation (Rogulski et al., 2005), 

host defence (Ledford et al., 2007) and has reduced expression in aged HSCs (Mann et al., 

2018). Our identification of a potential new candidate gene involved in the regulation of 

HSC quiescence/activation highlights the value of using CARLIN to interrogate the 

molecular drivers underlying the heterogeneous clonal output of HSCs.

Our method can potentially be improved in several ways. First, while our diversity estimates 

have established the maximum diversity of the CARLIN system to be ~44,000 alleles, which 

is sufficient for many applications, higher diversity may be desired when analyzing whole 
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adult tissues. Diversity of the system could be increased through simple modifications such 

as use of homing guide RNAs (Kalhor et al., 2018) or combining the system with Cre-based 

tracing lines. Second, the current iteration of CARLIN can result in a limited fraction of 

cells edited (16–74% of cells have edited CARLIN alleles across our single-cell datasets). 

Editing efficiency could potentially be increased by optimizing the timing and/or dose of 

doxycycline. Third, a CARLIN capture rate of 32–63% (fraction of cells in which CARLIN 

was detected across our single-cell datasets) may be limited by low expression/stability of 

CARLIN RNA, transcriptional bursting from the promoter used, or errors in PCR/

sequencing resulting in loss of reads in silico. Incorporating CARLIN into loci that are more 

highly expressed, using additional CARLIN arrays, or further optimizing the promoter or 

RNA stabilization sequences could potentially circumvent these deficiencies and increase 

the fraction of cells from which lineage histories can be extracted.

Finally, this work among others (Alemany et al., 2018; Chan et al., 2019; Frieda et al., 2017; 

Kalhor et al., 2018; Raj et al., 2018; Spanjaard et al., 2018) represents a proof-of-principle 

study for the robust recording of cellular information using genome editing. In principle, 

CARLIN can be extended so that Cas9 expression is controlled by environmentally-sensitive 

promoters rather than doxycycline. Such a system could record histories of specific stimuli 

such as pathogen exposure, nutrient intake and signaling activity, in addition to lineage.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Fernando Camargo 

(fernando.camargo@childrens.harvard.edu).

Materials Availability—Plasmids generated by this study are available upon request. 

Mouse lines generated by this study are available upon request and will be deposited to The 

Jackson Laboratory.

Data and Code Availability—All sequencing data used in this paper is available on the 

NCBI GEO database (Accession Number GSE146972). The CARLIN software package, 

together with the allele bank, is available at https://gitlab.com/hormozlab/carlin. Instructions 

and code to reproduce all results, numerics and figures in the paper can be found at https://

gitlab.com/hormozlab/cell_2020_carlin.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—8–12-week-old mice (Mus musculus) were used in all the experiments unless noted 

in the text or figure legends. Both male and female mice were used indistinctly as we have 

not observed any difference associated with sex in the biological processes studied; mice 

were randomly assigned to the different experimental groups in the experiments shown. 

CARLIN and Cas9 mice were derived from the KH2 mouse embryonic stem cell (ESC) line, 

with a mixed C57BL/6 × 129 genetic background. Experimental mice used in this study 

were from F2/F3 generations resulting from the breeding of F1-C57BL/6 × 129 with the 
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tetO-Cas9 mice (also mixed C57BL/6 × 129 genetic background). All mice were maintained 

in standard conditions of housing and husbandry at Boston Children’s Hospital, and all the 

procedures involving animals were approved by the Boston Children’s Hospital Institutional 

Animal Care and Use Committee.

Cell Lines—The CARLIN mouse embryonic stem cell (ESC) line used in some 

experiments was derived from a male embryo from the F3 generation. Karyotype analysis 

was performed on the cells to ensure proper genome stability. ESCs were maintained in KO-

DMEM, supplemented with 15% ES-FBS, 10 ng/mL LIF and non-essential amino-acids, 

and grown over a mono-layer of mitomycin C-inactivated mouse embryonic fibroblasts 

(MEFs), for the time points indicated in the results and figure legend sections. All cultures 

were maintained in standard tissue culture conditions of 37°C and 5% CO2.

METHOD DETAILS

Design and Assembly of CARLIN Array—The CARLIN reference sequence was 

designed as an array of ten sense-oriented CRISPR/Cas9 target sites, each with a length of 

20 bp and separated from each other by a 3 bp protospacer adjacent motif (PAM) sequence 

and 4 bp linker. In order to design a mouse-optimized array containing 10 CRISPR/SpCas9 

target sites, we started from the set of guides previously tested for the zebrafish GESTALT 

system development (McKenna et al., 2016; v6 and v7 arrays). From that set, we first 

excluded all target sites showing any homology with the mouse genome. Secondly, we used 

the CRISPR design tool (crispr.mit.edu) to select guides with the strongest score factor 

(highest efficiency and lowest off-target) possible. Based on these criteria we preserved 6 

guides from the GESTALT system and designed from scratch the other 4 using the same 

criteria described. To test each guide, we cloned each one of the 10 sgRNAs individually 

under the control of the U6 promoter and transduced along with a plasmid containing the 

CARLIN array into 293T cells. 48 hours after transduction we lysed cells and PCR 

amplified the array for fragment analysis. All guides selected for the final design showed a 

similar activity in this assay.

For array synthesis, the final sequence was synthesized as a gBlock (IDT) and is provided in 

Supplementary Table 1. The CARLIN reference sequence was cloned into the 3’-UTR 

region of a GFP open reading frame in an intermediate cloning vector, upstream of the bGH-

polyA sequence, and under the control of the CAG promoter to ensure robust expression.

Design and Cloning of the CARLIN sgRNA Multiplexes—10 sgRNAs perfectly 

matching the target sites of the CARLIN reference sequence were expressed as a multiplex, 

in which each sgRNA is driven by its own promoter. We assembled two different 

multiplexes, one with Dox-inducible sgRNAs (iCARLIN; see Supplementary Figure 1B), 

and one with constitutive sgRNAs (constitutive CARLIN, used for all data in the paper with 

the exception of Supplementary Figure 3F), using the same Golden Gate assembly strategy. 

In the inducible multiplex, we used the FgH1tUTG donor plasmid (Addgene plasmid 

#70183; Aubrey et al., 2015) to clone each one of the sgRNAs using the BsmBI restriction 

sites, whereas in the constitutive multiplex, we used the pU6-(BbsI)_CBh-Cas9-T2A-

mCherry plasmid (Addgene plasmid #64324; Chu et al., 2015). Then, the 10 blocks 
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containing the promoter and the sgRNA were PCR-amplified using specific primers with 

overhangs for the Golden Gate assembly method. The Golden Gate assembly protocol was 

adapted from the Addgene protocol (https://media.addgene.org/cms/files/

GoldenGateTALAssembly2011.pdf; Cermak et al., 2011). All primer sequences are 

provided in Supplementary Table 1.

Targeting ESCs with the CARLIN Transgene—Both the CARLIN reference sequence 

and the sgRNA multiplex were cloned adjacently into the pBS31 targeting vector (Beard et 

al., 2006) to target the ESCs in the Col1a1 locus. For an efficient targeting of the transgene 

in this locus we used the KH2 ESC line, containing a donor FRT site in the Col1a1 locus, as 

well as the M2-rtTA transgene introduced in the Rosa26 locus to allow expression of Dox-

inducible systems. Approximately 1.5×107 KH2 ESCs were electroporated using 50 μg of 

the pBS31-CARLIN vector and 25 μg of pCAGGS-FLPe-puro (Buchholz et al., 1998) at 240 

V and 500 μF using a Gene PulserII (Bio- Rad, Hercules, CA). Hygromycin selection (140 

μg/mL) was started 24h after electroporation. The genomic DNAs from the selected clones 

were screened by PCR using the Col1a1 genotyping primers (listed in Supplementary Table 

1). The same protocol was independently performed for the inducible and constitutive 

CARLIN systems.

Mice Generation—Two targeted ESC clones were selected from each of the inducible and 

constitutive CARLIN systems and injected into BL/6 embryos to form mouse chimeras. At 

least two chimeras with >90% of chimerism from each ESC clone were used as founders of 

our experimental mouse cohort. The ESCs were injected at the Mouse Gene Manipulation 

Core at Boston Children’s Hospital. To generate experimental mice, descendants from the 

F1 of the injected ESCs were bred with Col1a1-TetO-SpCas9, generated at Stuart H. Orkin’s 

laboratory. Primers for genotyping the Col1a1 and Rosa26 loci are listed in Supplementary 

Table 1.

Animal Procedures—Unless noted elsewhere, Dox was administered to 8–12-week-old 

mice via drinking water for one week (2 mg/mL supplemented with 10 mg/mL sucrose) and 

three intraperitoneal injections (50μg/g) every other day. For the embryonic labeling, Dox 

was administered to pregnant females via retro-orbital (RO) injection with 25 μg/g of a 

10mg/mL solution of Dox at E9.5. 5-fluorouracil (5-FU) was intraperitoneally injected (150 

mg/kg) into 8-week-old mice. To prepare 10 mL of the 15 mg/mL 5-FU injectable solution, 

the chemical was first suspended in 500 μL NaOH 1N and then dissolved in 9.5 mL of 

phosphate-buffered saline (PBS). For peripheral blood extraction (used to assess fraction of 

CARLIN sequences edited before performing the single-cell experiments), mice were 

anesthetized using isoflurane and 2–3 capillaries were collected from the RO sinus. 

Following erythrocyte removal by osmotic lysis, cells were pelleted and DNA extracted for 

fragment analysis.

Tissue Processing—For assessment of CARLIN barcode editing and expression in 

unsorted tissue samples (as in Figure 3B), samples of freshly dissected tissue were snap 

frozen in liquid nitrogen before RNA purification by Trizol.

Bowling et al. Page 15

Cell. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://media.addgene.org/cms/files/GoldenGateTALAssembly2011.pdf
https://media.addgene.org/cms/files/GoldenGateTALAssembly2011.pdf


To sort epithelial and mesenchymal cells from the lung, mice were euthanized by CO2 and 

lungs were injected with 2U/mL dispase. Following this, lungs were minced and incubated 

in 6mL 2U/mL dispase supplemented with 15μL DNase I at 37°C for 30min with rotation. 

Cells were then filtered through 40μm strainers and centrifuged at 800 rpm, 6 min at 4°C. 

Staining was performed in 10% FBS/PBS with conjugated Pdgfra, EPCAM, CD45, Ter119, 

Mac1, and Ly6G antibodies.

To sort epithelial cells from the intestine, approximately 1-inch of intestine was flushed with 

PBS and incubated in 10mL 4mM EDTA in PBS for 40min at 4°C. After shaking, the 

smooth muscle layer was removed and the remaining supernatant centrifuged and 

resuspended in 10mL collagenase/dispase (Roche, 60μL of 50mg/mL stock into 10mL PBS) 

and incubated at 37°C for 6 minutes. After pipetting to dissociate single cells, the sample 

was centrifuged, filtered through 70μm strainers and stained in 2% FBS/PBS with 

conjugated EPCAM, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort epithelial cells from the skin, hair was removed by shaving, and whole back skin 

removed and washed in PBS. Following fat removal by scraping, skin was incubated in 

0.25% trypsin for 1hr at 37°C. The epidermis was then removed from the dermis by razor, 

minced and filtered using a 100μm strainer to remove residual hair. The suspension was then 

washed twice in PBS by centrifugation at 300g for 15 min and stained in 2% FBS/PBS with 

conjugated integrin a6, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort mesenchymal cells from the liver, mice were euthanized and immediately perfused 

through the suprahepatic vena cava with pre-warmed perfusion buffer (50 mM EDTA, 10 

mM HEPES in 1X HBSS) followed by Liver Digest Medium (Gibco). The isolated livers 

were then subjected to subsequent serial digestions with Accutase (EMD Millipore, 

Billerica, MA) and 0.25% trypsin (Gibco) for 30 min at room temperature and 37°C, 

respectively. Cells were collected at each step and filtered through a 100 μm cell strainer, 

washed and re-suspended in resuspension buffer (1.25 mM CaCl2, 4 mM MgCl2, 10mM 

HEPES and 5 mM Glucose in 1X HBSS). Staining was performed in 10% FBS/resuspension 

buffer with conjugated Pdgfra, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort blood cells from bone marrow, bones were immediately dissected from euthanized 

mice and crushed in 2% fetal bovine serum in PBS. Erythrocytes were removed by osmotic 

lysis before antibody staining and fluorescence-activated cell sorting. Unless noted, lineage 

depletion was performed in the whole bone marrow samples using magnetic-assisted cell 

sorting (Miltenyi Biotec) using the biotin-conjugated lineage markers CD3e, CD19, Gr1, 

Mac1, and Ter119. To sort mesenchymal cells from bone marrow, bones were prepared as 

previously described (Houlihan et al., 2012). In short, bones were dissected, cleaned of 

muscle, lightly crushed and chopped with scissors. The bone fragments were then washed 

and incubated in 0.25% collagenase for 1h at 37°C whilst shaking. The bones were further 

lightly crushed and the supernatant passed through a 70μm strainer. Erythrocytes were 

removed by osmotic lysis and staining was performed in 2% FBS/PBS using conjugated 

Pdgfra, CD45, Ter119, Mac1, and Ly6G antibodies.
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Fluorescence-Activated Cell Sorting—Cell populations were sorted using FACSAria 

(Becton Dickinson) and the flow cytometry data was analyzed using FlowJo (Tree Star). The 

following combinations of cell surface markers were used to define the analyzed 

populations: LT-HSC: Lin−Kit+Sca1+CD150−CD48−; MPP3/4: Lin−Kit
+Sca1+CD150−CD48+; ST-HSC: Lin−Kit+Sca1+CD150−CD48−; MPP2: LinKit
+Sca1+CD150+CD48+; MyP: Lin−Kit+Sca1−CD150−CD41−; MkP: Lin−Kit
+Sca1−CD150+CD41+; granulocytes: Ly6G+Mac1+B220−Ter119−; monocytes: Ly6G
−Mac1+B220−Ter119−; pro-pre-B cells: Ly6G−Mac1−B220+Ter119−; erythroblasts: Ly6G
+Mac1+B220−Ter119+CD71+. Sorting of epithelial and mesenchymal cells from lung, liver, 

bone marrow was performed using the following cell surface markers: lung epithelial, 

CD45− Pdgfra-EPCAM+; skin epithelial, CD45-integrin-a6+; lung/ BM mesenchymal, 

CD45-EPCAM-Pdgfra+; liver mesenchymal, CD45-EPCAM-Pdgfra+Gr1−; all tissue 

monocytes, CD45+Ter119-Mac1+Ly6G−. For all sorts, 4’, 6-diamidino-2-phenylindole 

(DAPI) was used to eliminate dead cells. Representative examples of sorted populations can 

be found in Supplementary Figure 5A,B. The antibodies were used at a 1:100 dilution.

CARLIN Amplification and Bulk Sequencing Protocols—The sequences of all 

primers listed here are shown in Supplementary Table 1. For all applications, the PCR 

amplification of the CARLIN array was performed using primers flanking the 5’ and 3’ 

external regions of the array (primers CARLIN_fwd1, CARLIN_fwd2 and CARLIN_rev). 

Illumina adaptor regions, unique motif identifiers (UMI), biotin and fluorescent tags are 

added to these primers according to the experiment needs. For fragment analysis, the 

CARLIN_fwd2 was conjugated with 6-carboxyfluorescein (6-FAM) in the 5’ position 

(FAM_CARLIN_fwd), and PCR products were separated by capillary electrophoresis.

For sequencing the CARLIN array from the genomic DNA (gDNA) of pooled cellular 

populations, up to 250 ng of input gDNA were used per library. We first performed a UMI-

tagging reaction using the CARLIN_fwd2 primer attached to the Illumina sequencing 

adapter and a 10 bp region of fully degenerate DNA sequence (primer NGS_UIM_D_F). 

This reaction was performed as a single extension step, in which temperature ramped 

between annealing and extension for five cycles without a denaturalization step to prevent 

re-sampling of gDNA CARLIN sequences (McKenna et al., 2016). The DNA product was 

then purified using AMPure XP beads (Beckman Coulter) and the whole volume was loaded 

into a PCR reaction to amplify UMI-tagged CARLIN sequences (primers NGS2_F, 

NGS1_R; 35 cycles). Finally, an indexing PCR was performed (primers P5, NGS2R_I#; 10 

cycles) before sequencing.

For preparing libraries from RNA of pooled cellular populations, up to 1μg of total RNA 

was retro-transcribed using a gene specific primer that contains a 10 bp region of fully 

degenerated sequence (RT_Bulk_CARLIN) and SuperScript III (Invitrogen). For all in vitro 
applications, this cDNA product was then purified using AMPure XP beads (1X; Beckman 

Coulter) and loaded into a PCR reaction for CARLIN amplification (primers NGS2_F, 

NGS1_Bulk_R; 35 cycles; Platinum Taq enzyme (Invitrogen)). Following AMPure XP bead 

purification (0.8X), the indexing PCR was performed (primers P5, NGS2R_I#; 10 cycles). 

For all in vivo applications, the protocol was optimized for a nested PCR approach. The 

purified cDNA product was loaded into a first PCR reaction (primer NGS1_F, 
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NGS1_Bulk_R; 15 cycles; Q5 High Fidelity Polymerase (M0491, New England 

Biosciences)). Following AMPure XP beads purification (0.8X), half the product was loaded 

into a second PCR reaction (primer NGS2_F, NGS1_Bulk_R; 15 cycles; Q5 High Fidelity 

Polymerase). Finally, after AMPure XP bead purification (0.8X) the indexing PCR was 

performed (primers P5, NGS2R_I#; 9 cycles). The final indexed libraries were purified with 

AMPure XP bead purification (0.8X). Libraries were sequenced on Illumina MiSeq using 

paired-end 500 cycles v2 kits (Read 1: 250 cycles; Index Read: 6 cycles; Read 2: 250 cycles) 

with 10% PhiX sequencing control v3 (Illumina).

Single-Cell RNA Sequencing Protocols—10X Chromium single cell 3’ (10X) 

protocols were performed following the manufacturer’s instructions and step-by-step 

protocols can be found at the companies’ websites. For the 10X Chromium Single Cell 3’ 

libraries, whole-transcriptome libraries were prepared following the 10X v2 (Figure 5; 

https://bit.ly/2OUeaUj) and v3 protocol (Figure 6; https://bit.ly/2YP9Lol). Whole-

transcriptome libraries were sequenced on Illumina NextSeq500 using paired-end 150 cycles 

v3 kits (Read 1: 28 cycles; Index Read 1 (i7): 8 cycles; Read 2: 91 cycles).

For targeted CARLIN amplification, 3–5 ng of the amplified cDNA (Step 2.3) was loaded 

into an initial PCR reaction (10X-CARLIN_1-bio, P5-PR1; 15 cycles). Following cleanup 

with 0.8X SPRIselect (Beckman Coulter), biotin-tagged products were purified using 

Dynabeads kilobaseBINDER Kit (Invitrogen) following the manufacturer’s instructions. In 

short, Dynabeads were incubated with the PCR product on a roller for 3h at room 

temperature before supernatant removal using magnet separation and washing. Half of the 

CARLIN-tagged Dynabeads were then loaded into a second PCR reaction (10X-

CARLIN_2, P5-PR1; 15 cycles). Following Dynabead removal by magnet, libraries were 

purified with 0.8X SPRIselect and the indexing step was performed using one tenth of the 

PCR product (SI primer, Chromium i7 sample primer; 8 cycles). For all 10X PCR reactions, 

the polymerase supplied with the 10X v3 kit was used. 10X CARLIN single-cell libraries 

were sequenced on Illumina MiSeq using paired-end 500 cycles v2 kits (Read 1: 28 cycles; 

Index Read (i7): 8 cycles; Read 2: 350 cycles) with 10% PhiX sequencing control v3 

(Illumina).

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing—For bulk experiments, raw Illumina paired-end reads of the CARLIN 

amplicon were merged using PEAR v0.9.11 (Zhang 2014) with parameters --min-overlap=1, 

--min-assembly-length=1, --min-trim-length=1, and --quality-threshold=30. Amplicon and 

transcriptome libraries prepared with 10X were preprocessed using CellRanger v2.2.0 (for 

10X V2 libraries) and v3.0.2 (for 10X V3 libraries) according to the standardized workflow 

with default parameters. Transcriptome libraries were aligned against the mm10 reference 

genome provided by CellRanger.

Although no data presented in the paper was generated with InDrops (Zilionis 2017), it is a 

supported platform, though a modified version of the InDrops pipeline should be used 

(available at https://gitlab.com/hormozlab/indrops). The InDrops pipeline should be run with 

the parameters (LEADING=10, SLIDINGWINDOW=4:5, MINLEN=16) for Trimmomatic 
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and (m=200, n=1, l=15, e=500) for Bowtie. Additionally, amplicon libraries prepared with 

InDrops should be processed with the ‘--no_clean_barcodes’ flag, which preserves the 

uncleaned version of the Cell Barcode (CB) and logs QC information for the CB and UMI in 

the header (see Filtering Reads and CB and UMI Error Correction below).

Cells were additionally filtered by removing CBs in which the number of detected UMIs 

was below a threshold that was determined programmatically using MATLAB’s findpeaks 

function based on the distribution of UMI counts (thresholds are listed in Supplementary 

Table 4). CBs where the percentage of UMIs corresponding to mitochondrial genes 

exceeded 15% were also discarded. The remaining CBs constitute a reference list against 

which CBs found in CARLIN amplicon sequencing can be collapsed (see CB and UMI 

Error Correction).

CARLIN Pipeline—Custom software was developed in MATLAB to perform alignment 

and allele calling, which can handle both bulk and single-cell amplicon sequencing of the 

CARLIN array. The software is trivial to install, simple to run, and produces data 

diagnostics useful for an experimentalist. The CARLIN software package is available at 

https://gitlab.com/hormozlab/carlin. Supplementary Table 3 presents the number of reads 

retained at each step of the CARLIN pipeline described below, for the 3 mice used in the 

allele bank.

Filtering Reads: For bulk sequencing runs of genomic DNA, reads were filtered on 

possessing an exact match to the 20 bp CARLIN_fwd2 primer starting at the 11th bp of the 

read, since the UMI-tagging reaction adds a 10 bp randomer upstream of the CARLIN_fwd2 

primer (Supplementary Table 1; Methods). To ensure that the entire CARLIN sequence was 

read, we retained reads that had good alignment to the 31 bp pre-polyA UTR sequence 

(hereafter referred to as the secondary sequence; Supplementary Table 1) located 

downstream of the 10th CARLIN target site – specifically, we require MATLAB’s nwalign 

function with glocal=true (hereafter referred to as just nwalign) to return a score ≥30.

For bulk sequencing runs of RNA, reads were reverse-complemented as the read is anti-

sense. Because the UMI tagging protocol results in a 10 bp randomer being appended to the 

20 bp CARLIN_rev primer (Supplementary Table 1; Methods), we retained reads that had 

an exact match to the primer, starting at 30 bp upstream of the end of the read. Additionally, 

to ensure that the whole CARLIN sequence was read and to simplify subsequent alignment, 

we only retained reads that had good alignment to the CARLIN_fwd2 primer and secondary 

sequence (nwalign scores ≥15 and 30 respectively).

For all bulk reads, there is additional filtering to only retain reads with UMIs that have a QC 

of at least 30 at all 10 bps.

For sequencing runs of 10X CARLIN amplicon libraries, to ensure the whole CARLIN 

construct is sequenced, reads were filtered on possessing an exact match to the 

CARLIN_fwd2 primer starting at the 1st base pair, and a good alignment (nwalign scores ≥ 

30) to the secondary sequence. Additionally, reads in which the CB or UMI are of the 
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incorrect length, have uncalled base pairs, or in which the QC of any base pair is < 20, were 

discarded.

For all reads which pass the above filters, the CARLIN sequence was extracted by trimming 

the flanking primers and secondary sequence. If the resulting sequence has any uncalled 

base pair or was shorter than 26 bps (the combined length of the prefix, first conserved site 

and postfix – see Figure 1B), it was discarded.

Alignment: Here, we will describe the procedure used to determine how a CARLIN read 

has been altered with respect to the unmodified CARLIN sequence (referred to hereafter as 

the reference; see CARLIN reference sequence in Supplementary Table 1). As Cas9 

modifications are expected to predominantly be indels, to identify alterations, we first 

aligned the CARLIN sequences against the reference. We found that existing alignment 

algorithms do not account for where Cas9 alterations are expected to appear along the 

reference (3 bp upstream of the PAM sequence, in a region referred to here as the cutsite). 

For example, NeedleAll (Rice 2000), a software package that implements the standard 

Needleman-Wunsch (NW) algorithm, was used in GESTALT (McKenna 2016), but yielded 

mixed results when aligning 75 modified CARLIN sequences read out using bulk Sanger 

sequencing. First, the NW algorithm did not preferentially select indel locations to coincide 

with the expected activity of Cas9 when multiple indel locations were equally plausible. 

Second, the default parameters used in the NW algorithm (NUC44 scoring matrix, gap 

opening penalty of 10, gap extension penalty of 0.5), precludes insertions and deletions from 

occurring consecutively, which is unrealistic given that the activity of Cas9 can result in such 

alterations. Third, the default value of the gap extension penalty parameter penalizes 

insertions and deletions according to length. Finally, customizing these parameters cannot 

cluster the alterations into expected regions of Cas9 activity.

To overcome these limitations, we developed our own alignment algorithm. Our algorithm is 

a modified version of the NW algorithm that performs alignment while accounting for where 

along the sequence alterations are expected with respect to the reference. We introduced a 

site-dependent cost function that penalizes alterations outside the expected regions of Cas9 

activity. The cost function was minimized using a dynamic programming approach. 

Although the parameters used are specific to CARLIN, they can be modified to 

accommodate other systems that rely on Cas9 editing. Next, we describe our algorithm in 

full detail.

Let N = A, C, G, T  be the set of nucleotides, B denote a gap, and N+ = N ∪ B. Let 

s = s1…sj…sJ ∈ N1 × J, J ≥ 1, be the nucleotide string of length J. to align and denote the 

reference of length K by r = r1…rk…rK ∈ N1 × K, K ≥ 1. Let s j ∈ N1 × j, 0 ≤ j ≤ J, and 

r k ∈ N1 × k, 0 ≤ k ≤ K, be prefix strings of s  and r  ending with sj and rk respectively (or 

empty strings if j = 0 or k = 0). Denote by Q:N+
1 × L N1 × L′, L ≥ L′, the operator which 

removes gaps from the input string.
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Define a j, k =
a 1
a 2

∈ N+
2 × L, with max(j, k) ≤ L ≤ j + k, as an alignment of s j against r k

with s j = Q a 1  and r k = Q a 2 , and let V :N+
2 × L ℝ be a scoring function, that yields 

higher values for better alignments. We do not enumerate all alignments and rank them 

according to any explicit evaluation of this scoring function. Instead, we use a recursive 

formulation where we determine the maximum possible score for a j, k. This requires us to 

distinguish between three kinds of alignment: neither of the terminal characters are gaps, or 

the two cases where one terminal character is a gap but not the other. Using our notation, the 

three cases are (i) m j, k =
m 1
m 2

∈ N+
2 × L in which m1, L ∈ N and m2, L ∈ N, (ii) 

d j, k =
d 1

d 2
∈ N+

2 × L in which d1,L = B and d2, L ∈ N, and (iii) ı j, k =
ı 1
ı 2

∈ N+
2 × L in 

which i1, L ∈ N and i2,L = B. Denote by ℳj, k = m j, k , Dj, k = d j, k , Jj, k = ı j, k  the 

set of all such alignments.

We can then note the following recursive relationships, which simply state that an alignment 

of two strings can be decomposed into an alignment of two substrings, comprised of the first 

characters through to the penultimate characters, and an alignment of the terminal 

characters. We write down this recursive relationship for the three kinds of alignments 

defined above, using ⊎ to denote string concatenation.

ℳj, k = m j − 1, k − 1 ⊎
sj
rk

, m j − 1, k − 1 ∈ ℳj − 1, k − 1

∪ = d j − 1, k − 1 ⊎
sj
rk

, d j − 1, k − 1 ∈ Dj − 1, k − 1

∪ = ı j − 1, k − 1 ⊎
sj
rk

, ı j − 1, k − 1 ∈ Jj − 1, k − 1

Dj, k = m j, k − 1 ⊎
B
rk

, m j, k − 1 ∈ ℳj, k − 1

∪ = d j, k − 1 ⊎
B
rk

, d j, k − 1 ∈ Dj, k − 1

∪ = ı j, k − 1 ⊎
B
rk

, ı j, k − 1 ∈ Jj, k − 1

Jj, k = m j − 1, k ⊎
sj
B

, mj − 1, k ∈ ℳj − 1, k

∪ = d j − 1, k ⊎
sj
B

, d j − 1, k ∈ Dj − 1, k

∪ = ı j − 1, k ⊎
sj
B

, ı j − 1, k ∈ Jj − 1, k

The base cases are the empty sets ℳj ≥ 0, 0 = ℳ0, k ≥ 0 = Dj ≥ 0, 0 = J0, k ≥ 0 = ∅, and the 

singleton sets D0, k = d 0, k for 1 ≤ k ≤ K and Jj, 0 = ı j, 0 for 1 ≤ j ≤ J.

We now elucidate the score to rank the alignments in these sets. Briefly, we penalize 

deletions that do not begin and finish near the expected cutsites, and insertions that do not 
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occur near the expected cutsites. We do not favor insertions over deletions, discriminate 

based on the length of the alteration, or penalize consecutive deletions or insertions.

Let CM :N × N ℝ, be a scoring function for aligning different nucleotides (we use the 

same NUC44 scoring matrix used in the default NW algorithm). Define PD,B(k) ≥ 0 and 

PD,E(k) ≥ 0, 1 ≤ k ≤ K to be site-dependent penalties for beginning and ending a deletion at 

rk from alignments which end or begin in paired nucleotides respectively. Similarly, define 

PI,B(k) ≥ 0, and PI,E(k) ≥ 0 for 1 ≤ k ≤ K to be the site-dependent penalty for beginning an 

insertion after rk and ending an insertion before rk respectively. Let Mj,k, Dj,k, Ij,k be the 

highest scores of the alignments in ℳj, k, Dj, k and Jj, k respectively.

Mj, k = max
m j, k ∈ ℳj, k

V m j, k

Dj, k = max
d j, k ∈ Dj, k

V d j, k

Ij, k = max
ı j, k ∈ Jj, k

V ı j, k

Using the set recurrences above and the introduced scoring scheme, we arrive at a new set of 

scalar recurrences for the highest scores, so that we don’t have to compute these quantities 

explicitly by exhaustively searching over a full enumeration of alignments.

Mj, k = max Mj − 1, k − 1, Dj − 1, k − 1 − PD, E(k − 1), Ij − 1, k − 1 − Pl, E(k) + CM sj, rk
Dj, k = max Mj, k − 1 − PD, B(k), Dj, k − 1, Ij, k − 1
Ij, k = max Mj − 1, k − PI, B(k), Dj − 1, k, Ij − 1, k

As evident in the last two equations, there is no incremental cost in extending an insertion or 

deletion along either one of the two strings. Since insertions and deletions are penalized 

equally, we make the following simplifying assumption, which in turn also reduces the 

number of parameters: PD,B(k) = PI,B(k) ≡ PB(k) and PD,E(k) = PI,B(k) ≡ PE(k). We abuse 

notation to let PB(0) be the penalty for starting insertions prior to the first character of the 

reference. Consistent with the previously defined base cases, the initialization is Mj>0,0 = 

M0,k>0 = Dj≥0,0 = I0,k≥0 = −∞, D0,k>0 = PB(1), Ij>0,0 = PB(0), M0,0 = 0

There is no guarantee that a single alignment a j, k achieves the highest score 

max Mj, k, Dj, k, Ij, k . Multiple alignments can achieve the maximum score within each of 

ℳj, k, Dj, k and Jj, k, and also across the three. To select the optimal alignment amongst the 

alignments that share the maximum score, we need to retain which argument in the 

recurrence relationships for ℳj, k, Dj, k and Jj, k (see above) realize the maximum score. Let 

E:N+
2 × L N+

2 × (L − 1), L > 0, be the operator which strips the terminal character from the 

aligned sequence and reference. Given S, S ∈ ℳ, D, J , let Rj, k
(S, S), 0 ≤ j ≤ J, 0 ≤ k ≤ K, be 

an indicator function such that
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Rj, k
(S, S) =

1, if ∃ a j, k ∈ argmax
b j, k ∈ Sj, k

V b j, k such that E a j, k ∈ S

0, otherwise

For example, if both the first and third terms realize the maximum in the recurrence for Dj,k, 

then we set Rj, k
(ℳ, D) = Rj, k

(J, D) = 1 and Rj, k
(D, D) = 0. We will use this indicator function to 

select the optimal alignment as described below. In accordance with the previous base cases, 

the initialization is Rj ≥ 0, 0
( ⋅ , ℳ) = R0, k ≥ 0

( ⋅ , ℳ) = Rj ≥ 0, 0
( ⋅ , D) = R0, k ≥ 0

( ⋅ , J) = 0, R0, k > 0
(D, D) = Rj > 0, 0

(J, J) = 1.

The alignment algorithm is implemented in two stages, a forward stage in which we tabulate 

the maximum score, and a reverse stage in which we construct the optimal alignment. In the 

forward stage, the maximum scores are first initialized as outlined above. Next, we solve the 

recurrences using a dynamic programming approach in O(JK) time by sweeping across all 

nucleotides in the sequence from j = 1 to J, and for each value of j, iterating over all the 

nucleotides in the reference, k = 1 to K. At each (j, k) ordered pair, we compute and store 

Mj,k, Dj,k and Ij,k in three two-dimensional arrays of size (J + 1) × (K + 1), and update a 3 × 

3 × (J + 1) × (K + 1) Boolean array for Rj, k
(S, S), which retains the alignment type (gap in the 

reference, gap in the sequence, or no gap) that achieves the maximum scores.

In the reverse stage, we incrementally build the optimal alignment a  by backtracking from 

the last aligned pair of nucleotides (J, K) using the following rules, picking the first lettered 

rule that applies within each numbered rule. These rules were formulated to ensure 

continuity among mutation types, which allows us to group distinct mutations more easily 

(see Mutation Calling) and attribute them to a single Cas9 cutting event.

1. Let j = J, k = K, a ∈ N+
2 × 0.

a. If MJ, K ≥ max DJ, K, IJ, K , let S = ℳ.

b. If DJ, K ≥ max MJ, K, IJ, K , let S = D.

c. If IJ, K ≥ max MJ, K, DJ, K , let S = J.

2. Repeat rules 3–5 until j = 0 and k = 0.

3. If S = ℳ:

a. If Rj, k
(ℳ, ℳ) = 1, let S = ℳ.

b. If Rj, k
(D, ℳ) = 1, let S = D.

c. If Rj, k
(J, ℳ) = 1, let S = J.

Let a
Sj
rk

⊎ a , j j − 1, k k − 1.

4. If S = D:
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a. If Rj, k
(D, D) = 1, let S = D.

b. If Rj, k
(ℳ, D) = 1, let S = ℳ.

c. If Rj, k
(J, D) = 1, let S = J.

Let a
B
rk

⊎ a , k k − 1.

5. If S = J:

a. If Rj, k
(J, J) = 1, let S = J.

b. If Rj, k
(ℳ, J) = 1, let S = ℳ.

c. If Rj, k
(D, J) = 1, let S = D.

Let a
sj
B

⊎ a , j j − 1.

The result is a unique alignment a  such that V ( a ) = max MJ, K, DJ, K, IJ, K .The algorithm 

above can be used to generate improved alignments for any CRISPR-Cas9 system for 

suitably chosen penalties PB(k) and PB(k). We provide a standalone C++ implementation of 

the described algorithm for groups interested in performing alignment on custom CRISPR-

Cas9 templates, outside the context of CARLIN.

Lastly, we turn our attention to the values chosen for the penalty functions, for CARLIN 

specifically. Because we expect the alterations to be localized to the cutsites, the minimum 

value of the penalty was set to occur within 3 bp upstream of the PAM sequences with the 

penalty increasing linearly moving away from this location. We used the same penalty 

function for all the target sites. We manually selected the parameters of the penalty function, 

i.e. the minimum value and the slopes, to promote alignments comprised of insertions and 

deletions in the cutsites for the 75 CARLIN sequences characterized using bulk Sanger 

sequencing. The same parameters also resulted in desired alignment properties when applied 

to the bulk RNA sequencing data used to make the allele bank (Supplementary Figure 2A–

C). For the numerical values of the penalty functions, refer to Supplementary Table 2.

Motif Classification: We partitioned the reference into 31 consecutive regions (called 

motifs), according to the locations of the reference prefix sequence, conserved sites, cutsites, 

PAM+linkers, and postfix sequence (Figure 1B). After aligning a sequence to the reference, 

we identified the same motifs in the aligned sequence according to the nucleotide boundaries 

of the motif in the reference. Each aligned motif was then assigned a classification: (1) ‘N’: 

all the nucleotides of the sequence match that of the reference exactly and there are no gaps 

in the sequence or reference. (2) ‘E’: motif is completely absent in the aligned sequence. (3) 

‘D’: any (but not all) bps of the motif are deleted in the sequence, and there are no gaps in 

the reference. (4) ‘M’: there are no insertions or deletions relative to the reference, only 

substitutions. (5) ‘I’ otherwise. These motifs were used to correct potential sequencing 

errors and establish a consensus sequence across multiple reads (as described below).
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Sequence Error Correction: Sequencing and amplification (technical) errors can, in 

addition to Cas9 activity, also introduce alterations in the CARLIN sequence. We assumed 

that any individual SNP that occurs outside of a 3 bp window around the cutsite is a 

technical error. To remove these technical errors, we took the aligned CARLIN sequences 

and reverted the SNPs in these regions (classified as ‘M’ in non-cutsite motifs) to the 

corresponding base pair in the reference. We also trimmed nucleotides in the aligned 

sequence that extended beyond the reference in either direction.

CB and UMI Error Correction: CBs and UMIs are also subject to the same technical 

errors as the CARLIN sequence. Denoising of CBs and UMIs is performed according to the 

directional adjacency method developed in UMI-tools (Smith 2017). In short, the method 

starts by making a list of tags (either CBs or UMIs) sorted in descending order by the 

number of reads corresponding to each tag. Next, a directed graph is constructed with nodes 

representing tags. The objective is to connect the nodes whose tags are different only due to 

technical errors.

To do so, first, the top-ranked node is selected as the current node. An edge is drawn from 

the current node to all candidate nodes that satisfy the following criteria: the candidate node 

does not already have an incident edge, the tag of the candidate node is different by only one 

base pair from the tag of the current node, and the number of reads of the candidate node’s 

tag is less than half of the current node’s tag. The current node is then updated to be the next 

most common node. The process is repeated until the entire sorted list has been traversed, 

resulting in disjoint sets of connected nodes (connected components). In each connected 

component, the reads of all the tags are merged under the tag of the top-ranked node in that 

connected component.

For bulk samples where no CB exists, we do not apply this algorithm directly to all of the 

detected UMIs. Instead, we first group the UMIs by their consensus CARLIN sequence with 

no read threshold (see Consensus Calling and Read Thresholds for Denoised CBs and UMIs 

below for definition of consensus sequence and use of read thresholds respectively). Next, 

the directional adjacency method (describe in the previous paragraph) is applied across all 

UMIs with the same consensus sequence. This extra step prevents accidental merging of 

UMIs that differ by only 1 bp when the number of detected UMIs is large with respect to the 

possible UMI diversity.

For single-cell data, directional adjacency denoising is also used but with CBs for tags. If 

there is a reference CB list (for e.g. obtained after preprocessing of the transcriptome library, 

see Preprocessing), then we include two additional requirements: (i) top-ranked nodes in 

each connected component need to belong to the reference CB list (or else the whole 

connected component is discarded), and (ii) candidate nodes cannot belong to the reference 

CB list. Next, for each denoised CB (which is now guaranteed to be in the reference list, if 

supplied), directional adjacency denoising is performed on its constituent UMIs. The result 

of this procedure is a denoised list of CBs and/or UMIs.

Read Thresholds for Denoised CBs and UMIs: Since we do not necessarily have a ground 

truth list of tags which we expect to detect in the data, tags with few reads may be spurious, 
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even if they have been denoised. Additionally, to call a consensus sequence for each tag, we 

need to be able to find a common sequence among a sufficiently large number of reads; 

repeat occurrences of a CARLIN sequence over many reads gives us confidence that the 

sequence is the correct one. Averaging over many reads also allows us a secondary 

mechanism of correcting for technical errors (especially at cutsites, which we left untouched 

in the Sequence Error Correction section). Here we describe how we determine a threshold 

on what is a sufficient number of reads.

Let Ri be a sorted list of the number of reads associated with each of N denoised tags 

(UMIs/CBs) with R1 ≥ … ≥RN. We only attempt to call a consensus sequence for tag i if Ri 

meets a minimum threshold, T, for the number of reads, and discard tags which fail to 

achieve this threshold.

T = max{
R[0.01N]

10 , RNexpected,
∑iRi

Nexpected
, ⌈R1p(1 − p)L − 1⌉, 10}

Nexpected is the expected number of tags in the experiment (or ∞ if unknown or Nexpected > 

N, so that {R∞ = 0), p is the 95th percentile value of the transformed QC scores (error 

probability) across all tag bps for all filtered reads, and L is the number of base pairs in the 

tag.

Our threshold function is a heuristic and was empirically optimized by comparing the length 

distribution of the consensus alignments called from the consensus sequence (see Consensus 

Calling) to fragment length analysis of the same libraries (Supplementary Figure 2D). We 

observed that the log-log plot of the rank-ordered number of reads across the tags, Ri, 

exhibited a plateau (roughly constant number of reads) after the first percentile with a sharp 

fall off (a knee) when the number of reads decreased to one tenth of that of the plateau. 

Similar empirical criteria are used to select single-cell barcodes by other single-cell analysis 

tools such as CellRanger. The next two terms of the threshold function ensure that the 

number of tags does not exceed the expected number of molecules. The fourth term sets a 

conservative estimate on the number of reads expected from a single sequencing error across 

a tag of length L. Finally, we also required that any tag is observed in at least 10 reads. This 

last condition reflects the minimum number of sequences we would like to have for 

consensus calling (see below). The choices for the threshold function were made 

conservatively to minimize false-positives.

For SC data for which a reference CB list is not available, first Ri is tabulated as the number 

of reads for a given CB. A CB read threshold, TCB, is computed using Ri as described above. 

Next, the number of reads is also tabulated for each CB-UMI pair, to compute TUMI. Only 

cell barcodes which have at least TCB reads, and within each CB, UMIs which have at least 

TUMI reads are retained.

For SC data for which a reference CB list is available, only CBs found in the reference CB 

list survive the denoising procedure. Since the reference CB list is separately subject to 

quality control in the software generating the list (for e.g. CellRanger), we trust all denoised 
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CBs, so that the threshold is only required to ensure there are sufficient reads for consensus 

calling. To that end, we only use the last term in our heuristic function, effectively setting 

TCB = TUMI = 10. The mean number of reads, Ri, among CBs that pass this threshold 

criterion is typically one or two orders of magnitude larger than T (see Supplementary Table 

4).

Consensus Calling: Next, we describe the procedure used to call the consensus sequence 

for tags that pass the threshold criterion. First, we selected the tags for which greater than 

50% of the reads are of the same length and possess the same 31-character motif 

classification string (see Motif Classification above). Next, for the selected tags, we retained 

the reads that comprised this majority. The consensus sequence was constructed bp-by-bp by 

selecting the most commonly occurring nucleotide across all the retained reads (i.e. taking a 

per bp mode of the retained reads).

For single-cell data, this procedure is performed on each UMI of a CB separately. Next, we 

collected the consensus sequence across different UMIs that passed the threshold and 

selection criteria. If more than 50% of the consensus sequences are of the same length and 

possess the same 31-character motif classification string, we proceeded as follows. We 

retained the consensus sequences that comprised this majority. The CB consensus sequence 

was constructed bp-by-bp, selecting the most commonly occurring nucleotide across the 

retained UMI consensus sequences.

To construct the consensus alignment, we removed the gaps from the consensus sequence 

and realigned to the reference. To define CARLIN alleles, we pooled all consensus 

alignments, and removed all repeated instances, so that each consensus alignment is 

represented only once. We define an allele to be an element of the resulting set, so that 

alleles are unique by definition. An allele is defined to be edited if its consensus alignment 

does not match the reference exactly. In the text, edited transcript/cell refers to a UMI/CB 

which has a corresponding CARLIN allele that is edited. The frequency of an allele in a 

sample is the number of tags whose consensus alignment matches that allele.

Mutation Calling: To explicitly associate mutations with the alterations harbored by an 

allele, we first tabulated the starting and ending locations of the deletions, insertions, and 

substitutions in the consensus alignment. Next, to account for a single Cas9 cutting event 

that could result in multiple alterations, we combined two mutations if they were adjacent – 

the ending location of one mutation was one bp upstream of the starting location of the other

— or if the ending location of one was co-localized to the same cutsite as the starting 

location of the other. We iterated the process of combining mutations until no further 

combinations were possible. The combined mutations were always designated as indels. For 

example, a typical allele can harbor a single bp deletion, and a 5 bp insertion at the cutsite of 

target site 3, two mutations which are merged into a single indel event using this procedure.

For the purpose of preparing figures, we considered all substitutions as indels (1 bp deletion 

of the reference nucleotide, and 1 bp insertion of the mismatched sequence nucleotide). In 

figures where only insertions and deletions are shown (e.g. Figure 1C,D,F), indels are 
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represented twice, once as an insertion corresponding to the length of the new sequence, and 

once as a deletion for the length of the deleted portion of the reference.

CARLIN Potential: To quantify the extent to which a CARLIN allele is altered with respect 

to the reference, we define the CARLIN potential of an allele as the number of target sites 

whose sequence and the sequence of the adjacent PAM+linker domain exactly matches that 

of the reference. Alterations in the prefix and postfix are considered to be alterations of the 

first and last target site respectively. The CARLIN potential is a whole number between 0 

and 10.

Quantifying Diversity

Effective Alleles: Since independent Cas9 activity across different cells may lead to the 

same altered sequences, the number of alleles detected will generally be less than the 

number of cells, even if all cells are edited. Furthermore, not all alleles are equally likely. 

Some occur more frequently than others.

Ideally, we want detection of a particular allele to restrict the cell in which the allele is 

observed to the smallest possible subset of the original population. For a given number of 

alleles, this occurs if all alleles are equally likely (i.e. the observation carries maximal 

information in the language of information theory). For the case where the allele frequencies 

are not equal, the observation of a particular allele is, on average, not as informative for 

constraining the subpopulation of cells from which the allele came. How many equally 

likely alleles are required to carry the same amount of information in this case?

To answer this question, we devised a metric, the effective number of alleles, calculated as 

2H where H is the Shannon entropy of the normalized allele frequency distribution across the 

edited cells. In the limit that each edited allele appears in an equal number of cells, the 

effective number of alleles is simply the number of edited alleles. Conversely, in the limit 

where a single allele appears in all edited cells, the number of effective alleles is 1. The 

effective allele measure seeks to discount the effect of over-represented alleles, which are 

less informative. The effective number of alleles in the bank of 44000 alleles is 14700.

Diversity Index: The diversity index is computed by dividing the effective number of alleles 

(see above) by the number of cells in the population. (Alternatively, dividing by the number 

of edited cells can be used to compute diversity index across only the edited cells, 

independent of the fraction of cells edited). The diversity index is 0 when only the reference 

is present in the sample, and 1 when the reference is entirely absent and each cell has its own 

allele. The diversity index is α when the cutting efficiency is α, and each edited cell has a 

distinct allele, and is less than α if some cells share the same allele. The reciprocal of the 

diversity index is the average number of cells labeled by each effective allele.

Allele Bank: To estimate the total number of alleles which can be generated by the 

CARLIN system, we pooled the edited transcripts collected from granulocytes harvested 

from 3 mice, to create a bank of ~233K transcripts resulting in ~32K alleles. As 

granulocytes are not expected to proliferate appreciably in the 3 days between induction and 
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collection, shared alleles across multiple cells are coincidental and not due to shared 

ancestry of the cells.

Estimating Number of Unseen Alleles: The total number of alleles that CARLIN can 

generate is the sum of the number of alleles observed in the bank and the number of alleles 

that have gone undetected because only a finite number of cells were measured. To 

extrapolate the total number of alleles, we need to estimate the number of unobserved 

alleles. To intuitively understand the extrapolation, we consider two extreme cases. If most 

alleles are only observed once, then we expect many new alleles would turn up under more 

exhaustive sampling. (In the limit that all alleles are observed only once, the total number of 

alleles is indeterminate). Conversely, if most alleles are observed many times, the system has 

been sufficiently sampled and few unobserved alleles are expected. To estimate the number 

of unobserved alleles, we use tools developed in the field of ecology, where the problem is 

referred to as the unseen species problem. See (J. A. Bunge 2014) for example, for a review 

of techniques in the field.

Non-Parametric Diversity Estimation: We use the Smoothed Goodman-Toulmin estimator 

(SGT) proposed by (Orlitsky 2016) to estimate the expected number of alleles, N, in M 
observations given that n alleles were detected in m observations (m < M). This estimator is 

near-optimal in the sense of mean-squared error and works for M of the order of O(mlogm), 
the theoretical extrapolation limit (Orlitsky 2016). To check the consistency of the estimator, 

we subsample the data to have m ≤ m observations (colored dots in Figure 3G), and compute 

the expected number of alleles for an extrapolated number of observations in the interval 

m ≤ M ≤ mlogm (dotted lines in Figure 3G colored to correspond to the subsample size).

Parametric Diversity Estimation: To validate the non-parametric method, and obtain an 

analytic expression for occurrence frequency of the alleles for subsequent calculations, we 

tabulate the frequency of allele i as Xi and generate a histogram of frequency counts, 

ℎ(Z) = ∑iδZ, Xi, representing the number of alleles that are detected Z times. Note that 

∑Z ℎ(Z) = n, the number of edited alleles observed, and ∑Z Zℎ(Z) = ∑iXi = m, the number 

of observations of edited alleles.

Conceptually, sampling of an allele can be approximated as a Poisson process. The number 

of observations of a particular allele, Xi, given a total number of observations, M, is drawn 

from a Poisson distribution with a rate parameter, λi, that is proportional to the prevalence of 

that allele in the bank. The Poisson approximation allows for an elegant analytical solution 

for estimating the occurrence frequency of an allele:

P Xi = k; λi, M =
λiM

k

k! e−λiM

To model the variability in the prevalence of different alleles, we need to associate a Poisson 

rate parameter with each allele. Although in general, each allele can have a unique Poisson 

rate parameter, for simplicity, we assume that the rate parameters are drawn from a 

distribution that can be succinctly described using a few parameters.
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We use CatchAll (v4.0), a software package described in (J. L. Bunge 2012), to fit a 

distribution of intensive Poisson rate parameters for alleles, fθ(λ), to our observed data. If all 

alleles are equally prevalent with λ = λ, fθ(λ) = δ(λ − λ), and ℎ(Z), when normalized, would 

converge to a Poisson distribution. CatchAll determined that for our data, ℎ(Z) mostly 

closely resembles a mixture geometric distribution so that fθ(λ) is a 4-component 

exponential mixture model.

The probability that an allele remains unobserved after m observations is then given by

P0 = P(X = 0; m) = ∫ P(X = 0 λ; m)P(λ)dλ = ∫ e−λmfθ(λ)dλ

The number of unseen alleles is therefore nP0/(1 − P0) and the total number of alleles is 

given by N = n/(1 − P0). For our bank, m ≈ 233000, n ≈ 32000 and P0 ≈ 0.28 so that the 

number of unseen alleles is estimated to be ≈ 12000 and consequently, the total number of 

alleles is estimated to be N ≈ 44000. The curves in Figure 3H are obtained by using this 

estimate for N, and the endpoints of the 95% CI of N, in the estimators for interpolation and 

extrapolation provided in equations (6) and (12) respectively of (Colwell 2012).

Prevalence of Unseen Alleles: Given our analytical model, we can now determine the 

distribution of the Poisson rate parameters for the unobserved alleles. It is a conditional 

distribution given by Bayes’ rule:

P(λ |X = 0; m) = P(X = 0 λ; m)P(λ)
P(X = 0; m)

For simplicity, we assign all alleles unobserved in the bank the mean Poisson rate under this 

conditional distribution.

λ0 = EP(λ X = 0; m)[λ]

Usage of Allele Rates: For subsequent experiments, we query the alleles observed in the 

experiment against the alleles in the bank. If an observed allele matches an allele in the 

bank, that allele is assigned the rate parameter λi =
Xi
m  based on its empirical prevalence in 

the bank, where Xi is the frequency of the allele in the bank and m is the total number of 

observations constituting the bank. Otherwise, we assign it the rate λ0.

Statistical Analysis

Limitations of a Finite Number of Alleles for Uniquely Marking Clones: Here, we 

consider the implications of having a finite set of alleles with which we can mark a (possibly 

infinite) number of cells. How useful are the alleles in uniquely marking clones if multiple 

cells can be marked with the same allele? To answer this question, the following factors 

need to be considered: the frequency of the allele in the bank, the number of cells marked 
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initially, potential proliferation of the cells after they are marked, and the number of cells 

sampled at the final timepoint.

Suppose that at induction, C ≥ 1 cells are randomly assigned one of N alleles, according to a 

distribution ρ of allele probabilities. Let Lj ∈ {1 …. N} be the allele label of the jth induced 

cell and let Ci = ∑j = 1
C δLj, i, be the number of cells marked with allele i. Then 

P Ci = c; C = C
c ρic 1 − ρi

C − c and the conditional probability given that allele i is present in 

at least one cell is

P Ci = c Ci > 0; C =
P Ci = c; C

1 − P Ci = 0; C

We define the singleton probability and duplication probabilities as

psingleton(i; C) = P Ci = 1 Ci > 0; C
pduplicate(i; C) = P Ci > 1 Ci > 0; C = 1 − psingleton(i; C)

See Supplementary Figure 4B for an illustration of how psingleton, the probability that an 

allele uniquely marks a cell, depends on C and N in the case that ρ is uniform.

In practice, we do not know how the cells are labeled initially but instead observe alleles 

from an unbiased sampling of M ≥ 1 cells at some later time. Subsequent to induction, 

assume that cell j expands such that at the sampling time, the probability that cell j is a 

progenitor of a sampled cell is given by pprogenitor(j; b), where b is a parameter, which will 

be defined later.

Our goal is to label each progenitor uniquely but it could be that some progenitors were 

coincidentally marked with the same allele. At the time of sampling, if we observe the same 

allele across multiple cells, we would like to know the probability that all the cells came 

from a single progenitor.

If we assume that the proliferation rates are not dependent on the allele label, we will be able 

to develop a useful bound on the above probability. Let Xi be the number of cells in the 

observed sample marked with allele i. If progenitor proliferation rates are uncorrelated with 

progenitor allele labels, it follows that the distribution of allele frequencies in the sample is 

equal to that of the induced pool

P Xi = x; M = M
x ∑

j = 1

C
pprogenitor(j; b)ρi

x
1 − ∑

j = 1

C
pprogenitor(j; b)ρi

M − x

= M
x ρix 1 − ρi

M − x

= P Ci = x; M

Let Yi be the number of progenitors of the sampled cells marked with allele i (note the 

distinction from Ci, the number of progenitors marked with allele i). We know that generally 
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P(Yi = m; M) depends on the induction itself (since P(Yi > Ci; M) = 0, for example, when 

the realization of Ci corresponds to the same experiment as Yi). But what can we say about 

P(Yi = m; M) when we don’t know Ci for the same experiment, only P(Ci = c; C)?

First note that the conditional probability of the number of progenitors Yi given that allele i 
is observed at least once is

P Yi = m Xi > 0; M =
P Yi = m; M

1 − P Xi = 0; M

=
∑k = 0

M P Yi = m Xi = k P Xi = k; M
1 − P Xi = 0; M

=
∑k = m

M P Yi = m Xi = k P Xi = k; M
1 − P Xi = 0; M

The specific form of P(Yi = m|Xi = k) depends on the proliferation model. For an observed 

allele i, let us consider the ratio of the probability that more than one progenitor gave rise to 

the cells labeled with allele i at the sampling timepoint, to the probability that more than one 

cell was labeled with allele i at the initial timepoint:

γ f = M
C =

P Yi > 1 Xi > 0; M
P Ci > 1 Ci > 0; C

We note that we calculate these probabilities independently because in general we might not 

know the number of cells that were initially labeled with allele i. We show that γ(1) ≤ 1, so 

that the probability of more than one progenitor giving rise to cells labeled with allele i is 

smaller than the probability of labeling more than one cell with allele i at the initial 

timepoint, given that the number of cells sampled is less than or equal to the initial number 

of cells:

γ(1) =
P Yi > 1 Xi > 0; M
P Ci > 1 Ci > 0; M

=
P Ci > 0; M
P Xi > 0; M

P Yi > 1, Xi > 0; M
P Ci > 1, Ci > 0; M

=
P Yi > 1; M
P Ci > 1; M

=
∑m′ = 2

M P Yi = m′; M

∑m′ = 2
M P Ci = m′; M

=
∑m′ = 2

M ∑k = m′
M P Yi = m′ Xi = k P Xi = k; M

∑m′ = 2
M P Ci = m′; M

=
∑k = 2

M P Xi = k; M ∑m′ = 2
M P Yi = m′ Xi = k

∑m′ = 2
M P Ci = m′; M

=
∑k = 2

M P Xi = k; M 1 − P Yi = 1 Xi = k

∑m′ = 2
M P Ci = m′; M

≤
∑k = 2

M P Xi = k; M

∑m′ = 2
M P Ci = m′; M

= 1
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This result can be generalized to bound any number of progenitor cells:

P Yi > m Xi > 0; M
P Ci > m Ci > 0; C ≤ 1, M ≤ C

How close is γ(1) to 1 for a given choice of parameters? Intuitively, the more heterogeneous 

the proliferation rates, the less likely we are to observe cells that share the same allele but 

not the same progenitor, since the clone that proliferates faster will tend to dominate the 

sample.

To show this mathematically we note γ(1) is maximized when P(Yi = 1|Xi = k) is minimized 

for each 1 < k ≤ M. To determine when P(Yi = 1|Xi = k) is minimized, we turn our attention 

to the b parameter of pprogenitor(j; b). Let b be any parameterization of pprogenitor such that 

pprogenitor(j; 0) = 1
c , pprogenitor(b) ∞ 1 as b → ∞, and 

d pprogenitor(b) ∞
db > 0. Note that

P Yi = 1 Xi = k = ∑
j, Lj = i

pprogenitor(j; b)
∑j, Lj = i pprogenitor(j; b)

k

This is minimized for ∀ k (for example, by Lagrange multipliers) when each of its 

constituent terms is 1
ci

, so that pprogenitor(j; b) = 1
c  i.e. b = 0.

To consider the effect of sampling, we resort to numerical simulations and consider a 

specific proliferation model given by pprogenitor(j; b) = 1
Z(b) 1 − j − 1

C−1
b
, which results in 

pprogenitor(j; b) ≥ pprogenitor(j + 1; b) without loss of generality. Z(b) = ∑j pprogenitor(j; b) is a 

normalizing constant. We simulate induction of an initial pool with N = 2000 alleles (the 

results are insensitive to N) drawn from a uniform ρ, subsequent expansion using this 

proliferation model, followed by sampling of a different number of cells at the final 

timepoint (resulting in different instances of f). Supplementary Figure 4B shows γ(f) ≤ 1 for 

different values of f and b where each data point is the mean of a 1000 simulations. The 

more uneven the proliferation rates (larger values of b), the less likely it is to observe the 

same allele shared across multiple cells that arise from different progenitors. However, as the 

number of observed cells increases (larger values of f), even progeny from slowly-

proliferating progenitors that were redundantly marked are more likely to be observed.

In summary, if we assume that proliferation rates are not dependent on allele marking then:

1. The probability that cells that share a given allele at the final timepoint came 

from more than one progenitor is less than the probability that more than one cell 

would have been labeled with the same allele in the initial population, if the 

number of cells sampled is less than the initial population size. This means that 

psingleton(i; C) C = M underestimates the probability that observed cells share a 

unique progenitor and conversely pduplicate(i; C) C = M overestimates the 

probability that the observed cells arise from multiple progenitors. Therefore, in 
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practice, if the initial population size C is not known, computing 

psingleton(i; C) C = M using the number of sampled cells (in place of the unknown 

initial population size) is a conservative bound on the probability that allele i is 

marking a unique clone, as long as M < C. In the case where M > C, the estimate 

is by definition more conservative because it assumes more cells were initially 

labeled than was actually the case.

2. The more non-uniform the proliferation rates of progenitor cells, the more 

conservative we are in using psingleton(i; C) C = M and pduplicate(i; C) C = M as 

bounds.

3. The fewer cells sampled at the final timepoint, the more conservative we are in 

using psingleton(i; C) C = M and pduplicate(i; C) C = M as bounds, achieving equality 

only in the limit of perfect sampling, where M ≫ C.

Statistical Significance of Alleles: Previous barcoding systems fail to account for the 

natural ubiquity of alleles, mistakenly attributing kinship to cells coincidentally marked by 

the same allele. Since common alleles by definition occur in many cells, the number of cells 

implicated in these false-positive conclusions can be high. We circumvent this issue by 

assigning a p-value to each allele, which quantifies statistical significance of the allele 

according to the biological application, so that standard statistical best practices can be used.

Case 1: p-value for marking clones when C is known or C < M: Consider the case where 

C, the number of cells initially labeled, is known (or there is an estimate on the upper bound 

≤ M, the number of cells observed at the sampling timepoint). If at the sampling timepoint, 

we observe at least one cell harboring allele i, Xi > 0, we would like to quantify the 

probability that the Xi cells arose from more than one progenitor (Ci > 1) coincidentally 

marked with the same allele at the initial induction. If this probability is < α, we can be 

confident at significance level α, that all Xi cells marked with allele i, originated from a 

single progenitor. This probability is just pduplicate introduced above, where we now use the 

approximation that the occurrence frequency of a given allele follows a Poisson distribution.

pduplicate(i; C) = P Ci > 1 Xi > 0; λi, C = P Ci > 1 Ci > 0; λi, C =
1 − e−λiC − λiC e−λiC

1 − e−λiC

Note that conditional on allele i being observed, pduplicate does not depend on the number of 

cells observed (Xi). Given the number of alleles and the distribution of their Poisson rates in 

the CARLIN system, for sufficiently large C, pduplicate will always be larger than a preset 

significance level for some of the alleles. For example, at C = 5000, 72% of alleles are 

significant at α = 0.05, representing a cumulative allele frequency probability of 20% so that 

a fifth of cells will be marked uniquely at this significance level (Figure 3I).

Case 2: p-value for marking clones when M < C or C is unknown: In this case, we still 

seek to quantify the probability that Xi cells arose from multiple progenitors, but without 

knowing the size of the initial pool. We assume that the Xis form an unbiased sampling. The 
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probability of observing more than one cell independently labeled with allele i conditioned 

on having observed the allele is given by,

pclonal(i; M) = P Xi > 1 Xi > 0; λi, M =
1 − e−λiM − λiM e−λiM

1 − e−λiM

Note that pclonal is just pduplicate evaluated at C = M, according to our earlier justification 

(see Limitations of a Finite Number of Alleles for Uniquely Marking Clones) and constitutes 

an upper bound on the probability (a conservative p-value). We separately annotate this as 

pclonal instead of pduplicate to make clear that in this case, we have no knowledge C of or Ci.

As M grows, we are more likely to sample redundantly marked cells. Once M ≥ 35,000, 

even the most rare allele is expected to mark multiple progenitors at significance level α = 

0.05. The upper limit on M is determined by the smallest Poisson rate in our bank, the mean 

rate assigned to the unobserved alleles. Although there is actually a distribution of rates for 

unobserved alleles, we still cannot theoretically go beyond the limit imposed by the mean 

(as we cannot actually associate an unobserved allele to a particular rate in this distribution). 

This regime is indicated in grey in Figure 3I. We use this p-value for all our SC analysis 

where M < 1500.

Case 3: p-value for allele frequency: Lastly, we define a p-value that quantifies the 

probability of observing allele i expressed in Xi cells or more, under the null model that the 

allele has Poisson rate parameter λi.

pfrequency(i; M) = P X ≥ Xi Xi > 0; λi, M =
1 − ∑k = 0

Xi − 1 λiM
ke−λiM

k!
1 − e−λiM

If pfrequency(i; M) < α, this means that cells marked with allele i are significantly over-

represented in a library of M cells (at significance level α). This does not necessarily 

indicate that all cells expressing the allele are related. However, it does indicate that at least 

one progenitor marked with the allele expanded more compared to progenitors marked with 

other alleles. The more skewed the proliferation rates (b → ∞ according to notation 

introduced in Limitations of a Finite Number of Alleles for Uniquely Marking Clones), the 

more likely the over-representation is due to a single progenitor.

Statistically Significant Clones for SC Analysis: An allele was determined to be 

statistically significant if it had a pclonal that survived multiple hypothesis testing using the 

Benjamini-Hochberg procedure at a false discovery rate (FDR) of 0.05. A clone (a group of 

cells marked with the same allele) was said to be statistically significant, if its allele was 

statistically significant. For the 5-FU experiments, the number of observed cells (M) was set 

separately for each sample to equal the number of cells with an edited CARLIN allele in that 

sample (Supplementary Table 4). For the embryonic induction experiment, the number of 

observed cells (M) was the total number of cells with an edited CARLIN allele across the 

four bones (Supplementary Table 4).
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Comparing Progeny Origin in Development and Adult Hematopoiesis: To quantify what 

fraction of statistically significant clones included both HSCs and non-HSCs, we computed 

the proportion of statistically significant alleles that marked cells belonging to both the HSC 

and non-HSC clusters for each sample. For the controls, we aggregated this proportion over 

the three controls as an average of the three proportions, weighted by the number of 

statistically significant alleles in each control. We similarly computed an aggregated 

proportion over the two 5-FU mice. We performed a two-proportion z-test for the alternative 

hypothesis that the proportion is larger in the developmental/adult hematopoiesis than in the 

control, rejecting at significance level α = 0.05.

To quantify what fraction of the observed non-HSCs share an allele with an observed HSC 

(i.e. belong to an HSC-rooted clone) in the embryonic induction and 5-FU experiments, we 

computed the proportion of cells in non-HSC clusters that had a statistically significant 

allele which also appeared in a cell found in the HSC cluster for each sample. For the 

controls, we aggregated this proportion over the three controls as an average of the three 

proportions, weighted by the number of non-HSCs marked with statistically significant 

alleles in each control. We similarly computed an aggregated proportion over the two 5-FU 

mice. We performed a two-proportion z-test for the alternative hypothesis that the proportion 

is larger in development/adult hematopoiesis than in the control, rejecting at significance 

level α = 0.05.

Comparing Number of Clones in Development and Adult Hematopoiesis: To determine 

if there were significantly fewer statistically significant clones in a 5-FU treated mouse, 

relative to a negative control, we first selected cells belonging to statistically significant 

clones. Let M′ be the minimum of the number of selected cells across the two treatments. 

We sampled M′ cells with replacement from each pool of selected cells, and counted the 

number of observed alleles. We repeated this procedure 10,000 times to get a distribution of 

the number of observed alleles in the two treatments. We performed a t-test for the 

alternative hypothesis that the mean of the number of observed alleles is less in the 5-FU 

treated sample at a significance level of α = 0.05. We conducted this test pairwise between 

each 5-FU treated and control mouse (see Supplementary Table 5).

Comparing Clone Size Distributions in Development and Adult Hematopoiesis: To 

determine if the average HSC-rooted clone size is significantly larger in a 5-FU treated 

mouse, relative to a negative control mouse, we selected cells marked by statistically 

significant alleles that also appear in at least one cell belonging to the HSC cluster. Let M′ 
be the number of selected cells in a given treatment. We sample M′ cells with replacement, 

and divide M′ by the number of alleles encountered in the sample, to compute the average 

HSC-rooted clone size. We repeat this procedure 10,000 times for each treatment, and 

perform a t-test for the alternative hypothesis that the average HSC-rooted clone size in the 

5-FU treated mouse is larger at a significance level of α = 0.05. We conducted this test 

pairwise between each 5-FU treated and control mouse (see Supplementary Table 5).

To determine if the distribution of HSC-rooted clone sizes was significantly non-uniform, 

we selected cells marked by statistically significant alleles that also appear in at least one 

cell belonging to the HSC cluster. Suppose M′ cells are selected in a particular sample in 
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this fashion, yielding N ≤ M′ alleles. Let Lj ∈ {1 … N}, 1 ≤ j ≤ M′, be the allele label of 

cell j. We sample M′ cells with replacement from this selected set of cells, and construct a 

CDF over the occurrence frequency of sampled allele labels Xi = ∑j = 1
M′ δLj, i. We also 

sample allele labels M′ times from a discrete uniform distribution with bins, and again 

construct a CDF over the occurrence frequency of allele labels. We compute the p-value 

associated with the KS-statistic derived from comparing these two CDFs. We repeat this 

procedure 10,000 times, and report the 99th percentile for the p-value distribution (see 

Supplementary Table 5).

Statistical Significance of Bone/Fate Bias: To quantify whether an allele i displays 

significant fate bias, we consider the deviation of the observed number of cells marked with 

allele i, fi, 1, …fi, B , across B possible bins (representing bones or phenotypes), against a 

multinomial null distribution given by P(Ni = ∑j = 1
B fi, j, p1, …, pB). For the embryonic 

induction dataset, we tested fate bias over different bones (B = 4). We also tested for bias 

over phenotypes, annotated from the Louvain clusters as defined in Figure 5B (B = 5; the 

lymphoid cluster which only had a few dozen cells was omitted), for each bone separately 

and pooling across bones.

The bin probabilities are the maximum likelihood estimators found by normalizing 

frequency counts after pooling all edited alleles, so that pj =
∑ifi, j

∑j ∑ifi, j
. The fate bias p-value 

that is reported is the probability under the null model of the range (the difference between 

the largest and smallest frequency across the bins for each allele) being greater or equal to 

the range observed. We compute this probability exactly according to the method described 

in (Corrado 2011). We note that while this method does not require that all bins have equal 

probability, using this measure to test bias is prone to false negatives when there is a large 

skew in bin probabilities, since the range does not take into account whether the maximum 

frequency occurred at a bin with low probability; in our data, all the bins (whether they are 

bones or coarse-grained phenotypes), have roughly the same probability. We only report fate 

bias p-values for statistically significant alleles (as defined in Statistically Significant Clones 
for SC Analysis) and reject at significance level α = 0.05 (Bonferroni-corrected on the 

number of statistically significant alleles).

Equivalence Testing for SC Amplicon Protocol Reproducibility: To quantify the 

reproducibility of our single-cell CARLIN amplicon protocol, we prepared libraries in 

duplicate starting from the same single-cell transcriptome library for the samples in the 5-FU 

experiment. We performed equivalence testing on the frequency distribution of alleles 

(edited and unedited) called by the CARLIN pipeline, when applied independently on these 

replicates (Supplementary Figure 6A). We used the KS-statistic at a test value of 0.05 to 

determine whether two replicates are equivalent. We performed 10,000 bootstrapping trials, 

and computed the KS-statistic for each trial, to obtain a distribution over all trials. For all 

samples, the one-sided (1-α) confidence interval excluded the test value of 0.05, so 

replicates are said to be equivalent at significance level α = 0.05. The results presented in the 

main text and Figure 6, were generated by pooling the sequencing data from the replicates, 

and running the CARLIN pipeline on the combined data.
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Lineage Reconstruction—We pool together all cells/transcripts across all libraries/

tissues, so that the reconstruction is agnostic to the origin of the alleles in the data. We use 

the specific details of mutations called in the alleles (see Mutation Calling) to establish a 

hierarchy across the alleles and thereby obtain a simplified phylogeny tree.

Filtering Alleles: For the in vivo data, we discarded alleles whose pfrequency did not satisfy 

an FDR threshold of 0.05 under the Benjamini-Hochberg procedure. The number of 

observations, M, used in computing pfrequency, was the total number of edited transcripts 

after pooling the data. We used pfrequency as opposed to pclonal because even if we are not 

confident that all cells that share a given allele came from the same progenitor, the relative 

expansion of one allele compared with another contains important information about clonal 

expansion across different tissues.

Tree Reconstruction Algorithm: Here, we describe a simple tree reconstruction algorithm 

used as a proof of concept for lineage tracing in the CARLIN system. Since a primary 

contribution of this paper is not in the domain of tree reconstruction, we defer investigation 

of how more sophisticated schemes like those newly developed in (Feng 2019) may improve 

the analysis.

For this algorithm, we make two assumptions, both of which are justified empirically by the 

data (see Figure 2D):

1. Both leaf and internal nodes of the tree can only be occupied by alleles observed 
in the sample. Since the efficiency of Cas9 is not 100%, we expect that every 

allele found after editing round T will also be present after editing round T + 1, 

because not every cell marked with a particular allele is further modified. The 

task of tree reconstruction is therefore simplified from inference of a novel set of 

mutations harbored by internal nodes, to identification of alleles which could 

likely be the internal nodes. In this scheme, we note that an allele must appear as 

a leaf node exactly once. Some leaf nodes may additionally appear once as an 

internal node with the same allele. In such cases, the internal node will always 

appear as a parent to the leaf node.

2. A child allele may only differ from its parent allele by either having additional 
mutations to those harbored by its parent, and/or possessing a subsuming 
deletion, whose endpoints are located at pristine target sites in the parent. The 

subsuming deletion would remove any history of parental mutations between 

deletion endpoints. This assumption therefore requires that there are no repair 

mechanisms, precluding the possibility of mutations that are observed in the 

parent at sites that are unmodified in the child.

Assumption (2) allows us to determine whether any pair of alleles fall along the same 

lineage, in which one allele could be an ancestor of the other. Given a list of n alleles 

(including the unmodified reference), we construct an n x n Boolean matrix A where Ai,j = 1 

if allele j can be a descendent of allele i. We subsequently set to zero some of the non-zero 

entries using the following rules:
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1. Frequency Criteria: We set Ai,j = 0 if the number of cells with allele j is larger 

than the number of cells with allele i. We impose this criteria, consistent with 

Assumption (1), because we expect the number of cells with the parent allele to 

exceed the number of cells with the child allele for two reasons: (i) the cutting 

efficiency is typically <<100% so that the parent allele remains substantially 

represented among cells and (ii) multiple distinct outcomes can result from 

additional modifications to a starting allele, so that a single child allele is 

unlikely to become more prevalent than the parent, its prevalence being diluted 

by its siblings.

2. Maximum Mutation Preservation: For each child allele that can potentially be 

descended from multiple parent alleles, only the candidate parent alleles that 

share the maximum number of mutations with the child allele are retained as the 

potential parents, and the other entries are set to zero. This entails that the 

number of mutations required to transform from parent to child allele is the 

minimum among possible parents, based on the reasoning that multiple editing 

events leading to a child allele are more unlikely than a single editing event. This 

criterion ensures that a given allele is most likely to be connected to its nearest 

ancestor so that matrix A can be interpreted as the set of parent-child 

relationships.

3. Alleles that have no parent allele after this pruning procedure are linked to the 

reference allele at the root of the tree.

A limitation of CARLIN is that alleles exhibiting large deletions could potentially be 

descended from almost any parent allele. In these cases, we have no choice but to connect 

the allele to the root of the tree as the lineage information in the allele is lost. However, such 

alleles are generally common in the bank and are therefore likely to be filtered out using our 

statistical significance tests (Figure 4B; Filtering Alleles).

Even after the pruning procedure, a given allele can still have multiple parent alleles. To 

construct a consensus tree from these potentially contradictory lineage relationships, we 

generate an ensemble of trees, by running simulations in which we probabilistically sample 

the parent edges of children with multiple candidate parents.

The tree is reconstructed recursively as follows: given a partially reconstructed tree and the 

current node, we randomly select one of the remaining unplaced alleles that is a child of the 

current node according to the A matrix. We attach the selected allele to the current node as 

its child. The added node then becomes the current node. When none of the remaining 

unplaced alleles is a valid child of the current node, we backtrack by setting the current node 

to be the parent node. We initialize the algorithm by starting with the reference allele as the 

current node (defined as the root of the tree). Lastly, we include a leaf node for each internal 

node.

Consensus Tree: To determine lineage relationships that are conserved across our simulated 

trees, we focused on nodes that occur closer to the root, reasoning that they are less variable 
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across different reconstructions and carry more information because they have more cells 

associated with their alleles (due to the frequency criteria).

The depth of a given node is one less than the number of nodes on the path from the root to 

the node. Define a depth-X rooted path for a given internal node at depth-X, to be a 

sequence of alleles occurring on the path from the root of the tree (depth-0) to the internal 

node. We tabulate the number of times we observe a particular depth-X rooted path over the 

ensemble of trees. In addition, for each simulation in which the depth-X rooted path occurs, 

we tabulate the sum of the frequency of the alleles (referred to as the clade population) of all 

the leaves that descend from the terminating node of the path. Over the ensemble of trees, 

we obtain a distribution of clade populations for each depth-X rooted path.

We consider a depth-X rooted path to be stable if it appears in fraction f of the simulated 

trees. For the reconstructions presented in the paper, we used f = 1, and constructed a 

consensus tree by aggregating all stable depth-X rooted paths, for X ≤ 3. We chose f = 1 by 

rank-ordering the occurrence frequency of the rooted paths of a given depth across all 

simulated trees (Supplementary Figure 4C,D) and observing that (i) the top-ranked paths 

occurred across all simulations, (ii) the occurrence frequency decayed rapidly for paths that 

don’t appear in all simulations, and (iii) the clade populations associated with the paths that 

did not occur in all simulations were not substantial.

Given our choice of f = 1, the same consensus tree could have been reconstructed by simply 

removing child alleles that had multiple potential parents in the A matrix. In general, other 

choices of f permit reconstruction of trees with contradictory lineage information.

Since there is no contradictory lineage information for f = 1, the consensus tree can be 

visualized unambiguously. For aesthetic reasons, in Figure 2D and 4D we omitted display of 

depth-1 rooted paths whose terminal nodes are leaves with a minimum clade population 

across simulations less than 100.

Tissue Distance: We use the same tissue distance metric outlined in (Feng 2019). In short, 

for the consensus tree, we compute the distance between tissues i and j by first identifying 

all leaves corresponding to alleles found in tissue i. For each allele, we compute the distance 

to its closet ancestor which has a progeny allele that was found in tissue j (one less than the 

number of nodes along the path connecting the leaf to the internal node). Next, we average 

this distance over all alleles for tissue i. We weight each term in the average by the product 

of the number of cells found in tissue i marked by the leaf allele and the number of cells 

found in tissue j marked by progeny alleles of the closest ancestor. In Figure 4H we show the 

matrix obtained from this procedure after symmetrization.

Transcriptomic Analysis and Visualization—After discarding cells with few UMIs 

and high expression of mitochondrial genes (see Preprocessing), the resulting gene 

expression matrices were processed using Seurat (v3.1.2 with default parameters except 

where indicated) as follows (Stuart 2019). First, cell cycle scores were assigned to each cell 

using the CellCycleScoring function. Next, UMI counts were normalized according to a 

regularized negative binomial regression model while regressing out the effect of cell cycle 
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and mitochondrial genes (using the SCTransform function with vars.to.regress = 

c(“percent.mt”, “S.Score”, “G2M.Score”)).

The 4 bones of the embryonic induction dataset were aligned (and similarly the 5-FU and 

control samples), by finding 2000 common features using the FindIntegrationAnchors 

function, and specifying these, together with marker genes (Supplementary Figure 5E,6D), 

as landmarks to the IntegrateData function (Supplementary Figure 5C,6B). Joint 

dimensionality reduction was performed on the aligned datasets using RunPCA. Points in 

this embedding were used to construct UMAP plots (RunUMAP), and find neighbors for 

clustering (FindNeighbors). For all relevant functions, 30 principal components were used.

FindClusters (algorithm=2, resolution=1.5) was used to run the Louvain clustering algorithm 

with multilevel refinement (Supplementary Figure 5D,6C). The dot plots in Supplementary 

Figures 5E and 6D were generated using data from Seurat’s DotPlot function. Differential 

gene expression was performed using the FindMarkers function, whose output when applied 

to our data is shown in Supplementary Table 6.

To test whether proliferation markers alone could be used to predict parent and childless 

HSCs, we assigned all cells in the HSC clusters a proliferation score (using 

AddModuleScore on the following gene list: Mki67, Pbk, Birc5, Ube2c, Top2a, Tk1, Aurkb, 

Cdkn3, Cenpf, Cdk1, Zwint). We designated HSCs in the upper (lower) quartile as highly 

(lowly) proliferating HSCs. We performed a two-proportion z-test for the alternative 

hypothesis that the proportion of highly proliferating HSCs is larger in the parent HSCs than 

in the childless HSCs, rejecting at significance level α = 0.05. We also performed a two-

proportion z-test for the alternative hypothesis that the proportion of highly proliferating 

HSCs is larger among cells belonging to the parent HSC cluster group than among cells 

belonging to the childless HSC cluster group, rejecting at significance level α = 0.05.

Visualization of differentially expressed genes was handled using Seurat’s VlnPlot function 

for Figure 6G and Supplementary Figure 6I,J, and DoHeatmap function for Figure 6H.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CARLIN is a stable, genetically-defined mouse line for CRISPR-based 

lineage tracing

• Can be activated at any point to generate 44000 transcribed barcodes across 

tissues

• Sequential, pulsed induction can be used to determine cellular phylogeny in 
vivo

• Heterogeneity in HSC proliferation following myeloablation revealed

CARLIN is an approach that allows for simultaneous analysis of lineage and 

transcriptomic information of single cells in vivo
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Figure 1: A high diversity of edits are generated by CARLIN in embryonic stem cells
A. Schematic of CARLIN system. Guides RNAs, target sites and inducible Cas9 

components are contained within the Col1a1 locus. The expression of each of the 10 gRNAs 

is driven by a separate U6 promoter (pU6). The CARLIN array sits in the 3’UTR of GFP 

and consists of 10 sites that perfectly match the gRNAs. The doxycycline (Dox) reverse 

tetracycline-controlled transactivator (rtTA) is contained within the Rosa26 locus. Schematic 

created with BioRender.

B. For computational purposes, we consider the CARLIN array as a series of motifs. We 

divide each target site into a 13bp conserved site (that lies outside the expected range of 

Cas9 editing) and 7bp cutsite. Consecutive target sites are interleaved by a 3bp protospacer 

adjacent motif (PAM) and 4bp linker sequence. There is a 5bp prefix motif upstream of the 

first target site and an 8bp postfix motif downstream of the last target site.

C. The 50 most common edited CARLIN alleles generated in CARLIN mouse embryonic 

stem (ES) cells following 96h induction with 0.04 μg/mL Dox. Each row represents a 

different allele. Deletions are marked in red. Insertions are shown in blue with the left 

endpoint indicating the start of the insertion; the length of the strip matches the length of the 

insertion (except when occluded by a subsequent deletion). A grayscale mask as in (B) is 

overlaid to demarcate the CARLIN motifs.

D. The fraction of edited ES cells, following 96h induction with 0.04 μg/mL of Dox, in 

which insertions and deletions of various lengths are observed.

E. Distribution of mutation types across different target sites in ES cells following 96h 

induction with 0.04 μg/mL of Dox.
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F. Chord plots of CARLIN alleles before induction and at 12h, 24h, and 48h after induction 

with 0.04 μg/mL of Dox. The shading of the iris (ccw. from top) corresponds to the shading 

of the motifs in Figure 1B (from left to right). The thickness of an interior line is 

proportional to the number of cells with that mutation. The endpoints of a red line indicate 

the starting and ending bps of a deletion. The upstream endpoint of a blue line indicates the 

insertion site, and the downstream endpoint is offset by an amount equal to the insertion 

length.

G. Time-course of the total number of distinct alleles detected normalized by the total 

number of cells, and (H) average CARLIN potential (Methods) across cells in the absence of 

Dox and after induction with 0.04 μg/mL (low), 0.2 μg/mL (medium) and 1 μg/mL (high) of 

Dox.
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Figure 2: Multiple pulses of doxycycline can consecutively label lineages and enable phylogenetic 
tree reconstruction in embryonic stem cells
A. Chord plots of CARLIN alleles in the absence of doxycycline (Dox) and after one, two or 

three 6h pulses of Dox (R0–3, respectively). Color scheme as in Figure 1F.

B. Following one 6h round of Dox induction, cells were seeded at single-cell density and 8 

colonies were picked for further outgrowth and Sanger sequencing. Following a second 

round of Dox, DNA from cells was collected and sequenced by Next Generation Sequencing 

(NGS). Schematic created with BioRender.

C. Mutations called in each of the 8 colonies from the CARLIN pipeline applied to the 

Sanger sequences. Colonies are colored according to the schematic in (B). Colonies 5, 7 and 

8 share a common mutation.

D. (Left panel) The consensus tree, accounting for 95% of cells, obtained from 10,000 

lineage reconstruction simulations applied to alleles pooled from all libraries (Methods; 

Supplementary Figure 4C). The color of a node and its branch to a parent corresponds to the 

NGS library in which the allele was observed. Leaves that connect to internal nodes of a 

different color correspond to false positives. (Centre panel) Sequence of each CARLIN 

allele visualized as in Figure 1C. (Right panel) Histogram of the number of cells in which 

each allele was detected. Colored bars correspond to NGS sequences which match a Sanger 

sequence.
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Figure 3: Inducible CARLIN editing in vivo
A. 8-week old mice were induced with doxycycline (Dox) for one week. RNA from 

granulocytes and other tissues were collected following 3 days chase. Schematic created 

with BioRender.

B. Fraction of transcripts edited across tissues in the presence and absence of Dox.

C. The 50 most common edited CARLIN alleles observed in granulocytes, visualized as in 

Figure 1C.

D. Distribution of mutation types across different target sites in granulocytes comprising the 

allele bank (Methods).

E. Histogram of insertion and deletion lengths found in the allele bank shaded according to 

presence across mice.

F. Venn diagram showing number of edited alleles (and the corresponding number of edited 

transcripts) in the bank shared across the three induced mice.

G. Non-parametric and (H) parametric extrapolation of the total allele diversity achievable 

by the CARLIN system as a function of the number of edited transcripts observed 

(Methods). The system is estimated to saturate at an allele diversity of 44,000 ± 400. The 

area shaded in grey indicates the number of observed transcripts used to construct the bank.
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I. Number of cells expected to harbor rare alleles (that are unlikely to occur independently in 

multiple cells) as a function of the number of cells edited. When the number of cells is small 

with respect to the CARLIN diversity (shaded in green), many cells harbor rare alleles. As 

the number of edited cells increases (shaded in red), the probability that a given allele marks 

only one cell decreases (orange curve), so that the number of cells that are uniquely marked 

with a CARLIN allele decreases (blue curve). In the regime shaded in grey, no cell can 

confidently be said to be uniquely marked by an allele (Methods).
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Figure 4: Lineage reconstruction in vivo through multiple pulses of doxycycline
A. Pregnant dams were induced with doxycycline at E6.5, E9.5 and E13.5. At 8 weeks, 

RNA from different tissues was collected and sequenced by Next Generation Sequencing 

(NGS). Schematic created with BioRender.

B. Scatter plot of observed allele frequencies vs. expected frequencies obtained by querying 

the bank. Alleles whose statistical significance did not survive a FDR of 0.05 were discarded 

(Methods).

C. Number of edited transcripts found in different tissues after running the CARLIN 

pipeline (All), and after screening for significant alleles (Sig) as described in (B).

D. The consensus tree which accounts for 95% of edited transcripts, obtained from 10,000 

simulations, using the same algorithm as in Figure 2D (Supplementary Figure 4D; 

Methods).

E. Allele sequences called from NGS corresponding to the leaf nodes, visualized as in 

Figure 1C.
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F. Distribution of number of transcripts corresponding to each allele across tissues (row 

normalized to 1).

G. Histogram of total transcript counts across all tissues for each allele.

H. Pairwise similarity matrix of tissues computed across alleles of the consensus tree 

(Methods).
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Figure 5: Clonal tracing of blood progenitors to adulthood
A. CARLIN mice were labelled at E9.5. At 8 weeks, bone marrow cells were collected, 

sorted, and encapsulated for single-cell RNA sequencing. Schematic created with 

BioRender.

B. UMAP representation of pooled transcriptome data from the bone marrow of 4 separate 

bones. See Supplementary Figure 5D,E for the breakdown of clusters and markers used for 

annotation. HSC, hematopoietic stem cell; MPP, multipotent progenitor cell; My, myeloid 

progenitor cells; Ery, erythrocyte; Ly, lymphoid cell.
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C. Statistically significant CARLIN alleles (FDR = 0.05; Methods) across all bones 

combined, overlaid onto the UMAP plot from (B). The green shaded area corresponds to the 

HSC cluster in the transcriptome, shown in (B). We are able to directly map the ancestry 

between differentiated cells (green diamonds) and HSCs (green circles) which share the 

same set of alleles. HSCs without children are shown in blue, and differentiated cells that do 

not share their allele with HSCs are shown in yellow.

D. CARLIN clones overlaid onto the transcriptome of individual bones; a non-biased clone 

(blue) and a biased clone (red) are shown with the Bonferroni-corrected p-values for bone 

bias (Methods).

E. (Left) Bar graph indicating the prevalence of each statistically significant allele across the 

4 bones, with the Bonferroni-corrected p-value for bone bias marked as *p<0.05; **p<10−3; 

***p<10−6. (Right) Heatmap indicating occurrence frequency of alleles across bones and 

cell types. Alleles found in fewer than 4 cells are not displayed. The clone labels follow the 

color scheme in (C).
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Figure 6: Clonal dynamics of adult hematopoiesis following perturbation
A. 8-week old CARLIN mice were labelled with doxycycline and injected with 5-FU after 

10 days. After another 10 days, bone marrow cells were sorted and encapsulated for single-

cell RNA sequencing. Schematic created with BioRender.

B. UMAP representation of pooled transcriptome data from control and 5-FU treated mice. 

See Supplementary Figure 6C,D for the breakdown of clusters and markers used for 

annotation. Cluster labels as in Figure 5B.

C. Number of statistically significant clones in the first control and 5-FU treated mouse 

(FDR=0.05; Methods) after downsampling the 5-FU treated mouse to have the same number 

of cells marked by statistically significant alleles as the control mouse. The control mouse 

has many small clones. The colors correspond to the legend for (D) below with blue clones 

containing only HSCs, yellow clones containing only non-HSCs, and green clones 

containing both.

D. Statistically significant CARLIN alleles (as defined in C) overlaid onto the transcriptome 

indicating childless HSCs (blue), parent HSCs (green circles), non-HSC cells in an HSC-

rooted clone (green diamonds) and non-HSC cells not in an HSC-rooted clone (yellow). The 

green shaded area corresponds to the HSC cluster in the transcriptome shown in (B).

E. Violin plot showing the distribution of the number of cells in statistically significant 

HSC-rooted clones (as defined in C) in the first control and 5-FU treated mouse (the green 
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and blue markers in D). The total number of cells in statistically significant HSC-rooted 

clones is shown in brackets under the sample label.

F. Heatmap indicating occurrence frequency of statistically significant alleles (as defined in 

C) across different cell types in the first control and 5-FU animals. The clone labels are 

colored according to the scheme in (D). The number of clones has been downsampled for 

both animals.

G. Violin plots of log-normalized expression levels of selected genes differentially expressed 

between the parent and childless HSC cluster group (as defined in Supplementary Figure 

6C).

H. Heatmap of the z-score of log-normalized expression levels of genes most differentially 

expressed between the parent and childless HSC cluster group (as defined in Supplementary 

Figure 6C).
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